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The problem of multiplicity is a key con-
cern for the design of real-world mecha-
nisms and institutions. Following the semi-
nal work of Maskin (1999), the implementa-
tion literature has often addressed this con-
cern via the design of complicated mecha-
nisms and often relied on strong assump-
tions of common knowledge. Both of these
features have been the object of famous cri-
tiques: on the one hand, Jackson (1992)
called for a greater relevance of full im-
plementation theory, initiating an agenda
based on mechanisms with more econom-
ically appealing structure and properties;
on the other, the so called Wilson’s doc-
trine stressed the importance of weakening
the reliance on common knowledge assump-
tions “[...] to conduct useful analyses of
practical problems [...]” (Wilson (1987))

In this short paper we illustrate how
novel insights gained from the robustness
literature may be put to work to address
both ‘critiques’ at once. We show this in
a standard efficient implementation prob-
lem, with quasi-linear preferences and in-
terdependent values, in environments that
are symmetric in a twofold sense: (i) the
total level of preference interdependence
is constant across agents (symmetric to-
tal preference interdependence); (ii) types
are drawn from distributions with identical
means (identical-means beliefs).

To address the first of the critiques above,
we pursue full implementation via the de-
sign of simple transfer schemes, that only
elicit agents’ payoff relevant information.
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To address the second, we only assume that
agents commonly believe that others’ types
are drawn from distributions with an iden-
tical mean, but the actual distribution and
its mean are unknown to both the agents
and the designer.

Despite the weakness of these common
knowledge assumptions and the demanding
notion of implementation under restricted
mechanisms, we identify surprisingly per-
missive conditions in such symmetric en-
vironments. Our main results characterize
the conditions on agents’ preferences under
which full efficient implementation is pos-
sible in our sense, and identify a transfer
scheme – the equal-externality transfers –
that achieves full efficient implementation
whenever possible. We further show that
these transfers are also optimal in the sense
that, among the set of all transfers that
achieve full implementation, they uniquely
minimize the sensitivity of the mechanism
with respect to the presence of ‘faulty’ play-
ers (Robustness to Mistakes in Play).

I. Framework

A. Symmetric Environments and Beliefs

We consider public good environments
with transferable utility. There is a fi-
nite set of agents I = {1, ..., n}, and we
let x ∈ R+ denote the quantity of pub-
lic good, which can be produced at cost
c(x) = 1

2
x2. The payoff type of agent i is

θi ∈ Θi := [0, 1], and we let θ−i ∈ Θ−i =
×j 6=iΘj and θ ∈ Θ = ×i∈IΘi. Agent i’s
valuation for the public good is equal to
vi(x, θ) = (θi +

∑
j 6=i γijθj)x. Letting ti de-

note the monetary transfer to agent i, the
overall utility of agent i is:

ui(x, θ, ti) = (θi +
∑
j 6=i

γijθj)x+ ti,

1
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The efficient allocation rule is thus d : Θ→
X, such that d(θ) =

∑
i∈I
(
1 +

∑
j 6=i γji

)
θi.

We maintain the following assumptions
on preferences: first, the allocation rule is
increasing in types 1+

∑
j 6=i γji > 0 for each

i; second, valuations are symmetric in the
sense that

∑
j 6=i γij = ξ for each i.

As for the beliefs, we maintain common
knowledge that agents believe the types
of others to be distributed with identical
means, but they do not necessarily agree
on the actual distribution. Hence, the de-
signer regards many beliefs BIM

θi
⊆ ∆ (Θ−i)

as possible for any given type θi, namely
all those which are consistent with the idea
that the opponents’ types come from distri-
butions with identical means. This is for-
mally represented by belief restrictions

BIM = ((BIM
θi

)θi∈Θi)i∈I ,

such that for all i and θi, BIM
θi

is
the set that contains all distributions
bθi ∈ ∆ (Θ−i) which satisfy Ebθi (θj) =
Ebθi (θk) for all j, k 6= i.1

B. Direct Mechanisms

We consider direct mechanisms in which
agents report their payoff types, the alloca-
tion is chosen according to d, and a transfer
scheme t = (ti)i∈I , ti : M → R specifies the
transfer to each agent i, for all profiles of
reports m ∈ Θ. (To distinguish the report
from the state, we maintain the notationMi

even though the message spaces are Mi =
Θi.) We let U t

i (m; θ) = vi (d(m), θ)+ ti (m)
denote the payoff function of the game in-
duced by transfer scheme (ti)i∈I , and let
∂2
ijU

t
i := ∂2U t

i /∂mi∂mj.
For every θi ∈ Θi, µ ∈ ∆ (M−i ×Θ−i)

and mi ∈ Mi, we let EUµ
θi

(mi) =∫
M−i×Θ−i

Ui (mi,m−i; θi, θ−i) dµ denote i’s

expected payoff from message mi, given
his type θi and conjectures µ, and
let BRθi (µ) := arg maxmi∈Mi

EUµ
θi

(mi).
For conjectures that assign probability
one to the opponents reporting truth-
fully, we let Ebθi (Ui (mi, θ−i; θi, θ−i))) :=

1These belief restrictions are a special case of the

general notion of moment conditions introduced by

Ollár and Penta (2017).

∫
Θ−i

Ui (mi, θ−i; θi, θ−i) dbθi .

C. Implementation Concepts

We first introduce two notions of incen-
tive compatibility:

DEFINITION 1: A direct mechanism is
ex-post incentive compatible (ep-IC) if,
Ui(θ; θ) ≥ Ui(θ′i, θ−i; θ) for all θ and θ′i.

A direct mechanism is BIM -incentive
compatible (BIM -IC) if for all i ∈ I,
for all θi, θ

′
i, and for all bθi ∈ BIM

θi
,

Ebθi (Ui (θ; θ)) ≥ Ebθi (Ui (θ′i, θ−i; θ)).

As it is well-known, ep-IC characterizes
partial implementability when the designer
has no information about agents’ beliefs,
since it requires truthful revelation to be a
mutual best-reply for all beliefs in ∆(Θ−i)
(Bergemann and Morris (2005)). BIM -IC
is less demanding than ep-IC, since it only
requires truthful revelation to be a mutual
best-reply for all beliefs in the set BIM

θi
, but

it is still stronger than interim incentive
compatibility, in which truthful revelation
is required to be a mutual best response
only for the single beliefs that each type
may have in a standard Bayesian setting.

Our notion of full implementation
requires truthful implementation to be
the only strategy consistent with play-
ers’ common belief in rationality and
in the BIM -restrictions. Formally, for
every i and θi, the set of conjectures
that are consistent with common be-
lief in identicality is defined as CIM

θi
:={

µi ∈ ∆ (M−i ×Θ−i) : margΘ−iµi ∈ BIM
θi

}
.

Then, given a transfer scheme t, for each
i ∈ I, let RIM,0

i = Θi × Mi and for each
k = 1, 2, ..., let RIM,k−1

−i = ×j 6=iRIM,k−1
j ,

where RIM,k
i is the set that contains all

pairs (θi,mi) such that mi ∈ BRθi (µi)

for some µi ∈ CIM
θi
∩ ∆

(
Rid,k−1
−i

)
. In the

limit, RIM
i =

⋂
k≥0

RIM,k
i . The set of BIM -

rationalizable messages for type θi is de-
fined as RIM

i (θi) := {mi : (θi,mi) ∈ RIM
i }.

Belief-free rationalizability, RBF
i (θi), is

defined similarly, replacing the set CIM
θi

with ∆(M−i ×Θ−i).
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DEFINITION 2: The transfer scheme
t = (ti)i∈I fully BIM -implements d if
RIM
i (θi) = {θi} for all θi and all i. Allo-

cation rule d is fully BIM -implementable
if there exist some transfers that fully
BIM -implement it. Full belief-free imple-
mentation obtains if RBF

i (θi) = {θi} for
all θi and i.

It is immediate that BIM -IC and ep-IC
are necessary, respectively, for full BIM - and
belief-free implementation.

II. The Equal-Externality Transfers

Since d is the efficient allocation rule,
ep-IC is obtained by the generalized VCG
transfers, which in this setting are:

t∗i (m) = − ∂d
∂θi

(
1

2
m2
i +

∑
j 6=i

γijmjmi

)
.

Being ep-IC, the VCG transfers are ob-
viously also BIM -IC. The following equal-
externality transfers, instead, are BIM -IC
but not ep-IC:

tei (m) = − ∂d
∂θi

(
1

2
m2
i + ξ

∑
j 6=imjmi

n− 1

)
Aside from incentive compatibility, how-

ever, full implementation depends crucially
on the properties of the strategic externali-
ties that are induced by a mechanism (see
Ollár and Penta (2017, 2021a)), that is on
how players’ best responses are affected by
marginal misreports of the other players.
Letting U∗i and U e

i denote, respectively,
the payoff functions induced by t∗ and te,
such strategic externalities are conveniently
captured by the second-order derivatives of
these functions with respect to mi and mj.

It is easy to check that ∂2
ijU
∗
i = −γij,

and hence strong preference interdepen-
dence (i.e., large ((|γij|)j 6=i)i∈I) immedi-
ately translates into strong strategic exter-
nalities in the VCG mechanism, which may
induce multiplicity and hence a failure of
full implementation.2 This is the reason for

2The technical condition is the following: the VCG
transfers achieve full implementation if and only if the

matrix SE∗ in which the ij-th entry is equal to |γij |

Bergemann and Morris (2009a)’s negative
result, for which belief-free full implementa-
tion is possible if and only if the preference
interdependence is small enough. But if the
designer has information about agents’ be-
liefs, and specifically in the form of moment
conditions, then incentive compatible trans-
fers may be designed that have weak strate-
gic externalities, and hence achieve unique-
ness, even with strong preference interde-
pendence (cf. Ollár and Penta (2017)).

In the present setting, however, due to
the limited set of moment conditions that
are available to the designer, such strate-
gic externalities cannot be weakened with-
out violating incentive compatibility: Sim-
ilar to the case studied by Ollár and Penta
(2021a), they can only be redistributed, and
as it turns out, the implementation prob-
lem can be cast as one of optimally redis-
tributing the strategic externalities induced
by the VCG transfers, in order to induce a
mechanism with contractive best replies.3

As it is easy to check, for the equal-
externality transfers we have that ∂2

ijU
e
i =

1
n−1

∑
j 6=i ∂

2
ijU
∗
i for all i and j 6= i, and

∂2
iiU

e
i = ∂2

iiU
∗
i for all i. Hence, as required

by the BIM -IC constraints, these transfers
do preserve the total strategic externalities
of the VCG mechanism. They only differ
in that they redistribute them evenly across
the opponents (hence their name). Such a
redistribution does expand the possibility
of achieving full implementation (i.e., there
are environments in which (γij)i,j∈I are such
that te achieves full implementation, but t∗

does not), and in fact maximally so under
the present symmetry restrictions on the
environment. That is, as we show next, in
our setting full implementation is achieved
by some transfers if and only if it is achieved
by the ‘equal-externality’ transfers:

PROPOSITION 1: In symmetric environ-
ments, the following are equivalent:

1) Full BIM -Implementation is possible.

if j 6= i, and 0 otherwise, has a spectral radius smaller
than one (see Ollár and Penta (2021a)).

3As discussed in Ollár and Penta (2021a), this is for-

mally equivalent to an optimal network design problem.
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2) Full BIM -Implementation is achieved
by transfers (tei )i∈I .

3) |ξ| is less than 1.

The improvement that te marks relative
to t∗, in terms of possibility of achieving
full implementation, is captured by the lat-
ter condition, which expresses an upper
bound on the total level of preference in-
terdependence. This is a less stringent re-
quirement than the one that applies to the
VCG transfers, which depends on the in-
dividual (γij)i,j∈I parameters (cf. footnote
2). Intuitively, while the condition for VCG
transfers requires each γij not to be ‘too
large’ in absolute value, the te transfers en-
able one to accommodate settings in which
some such parameters have large positive
and large negative values, that ‘cancel each
other out’ in terms of the total externalities
condition in point (3) above.

III. Implementing Transfers:
Multiplicity and Sensitivity

A. Other Transfers for Full Implementation

As discussed, in symmetric environments
te achieve efficient full BIM -implementation
whenever it is possible, but they are not the
only transfers that do this. For instance,
the loading transfers introduced by Ollár
and Penta (2021a) can be shown to also
achieve full BIM -implementation whenever
te does. In the present setting, the loading
transfers are defined as follows:

tli (m) = − ∂d
∂θi

(
1

2
m2
i + ξm1mi

)
if i 6= 1

tl1 (m) = − ∂d

∂θ1

(
1

2
m2

1 + ξm2m1

)
.

To appreciate the difference between te

and tl, it is best to consider the strategic
externality matrices that they induce:

SEe =


0 ξ

n−1
. . . . . . ξ

n−1
ξ

n−1
0 ξ

n−1
. . . ξ

n−1
...

. . .
. . .

. . .
...

ξ
n−1

. . . ξ
n−1

0 ξ
n−1

ξ
n−1

. . . . . . ξ
n−1

0

 , and

SEl =


0 ξ 0 . . . 0
ξ 0 0 . . . 0
...

...
...

. . .
...

ξ 0 0 . . . 0


Similar to the equal-externality transfers,

also the loading transfers preserve the total
strategic externalities of the VCG mecha-
nism (the row-sums of the two SE-matrices
are the same, and equal to ξ). The two
mechanisms only differ in the way in which
the VCG-strategic externalities are redis-
tributed. This is not coincidental: adapting
arguments from Ollár and Penta (2021a),
it can be shown that such redistribution is
necessary for BIM -IC in this setting. Given
this, designing transfers for full implemen-
tation boils down to a problem of ‘opti-
mally’ redistributing the given total, on the
entries of a strategic externality matrix,
with the objective of ensuring ‘most con-
tractive’ best replies. As shown in Ollár and
Penta (2021a), this objective entails mini-
mizing the spectral radius of the resulting
SE-matrix. In the present setting, both tl

and te achieve this minimum, which is equal
to |ξ|. For that reason, if |ξ| < 1, they
are both “fully implementing” transfers, as
any other transfer whose SE-matrix has the
same spectral radius would be (there is a
continuum of those).

B. Sensitivity to Mistakes in Play

In this section we explore the sensivity
of transfers with respect to the possibil-
ity of small ‘mistakes’ by the agents. In
words, the idea is that the designer does
not know how many or which agents might
be potentially faulty, and the criterion with
which he/she assesses the robustness of
the mechanism is the worst-case scenario
across all possible configurations of sets of
faulty agents. The measure of the fragility
of the mechanism is therefore provided by
the largest misreport consistent with RFε

i ,
across all agents and all configurations of
the set of faulty agents.

Formally, we consider mistakes in play
made by a subset of agents F of size f 6= 0,
whose choice in the mechanism is within
ε > 0 from optimal. At each step of the
iterative process, replacing the best reply
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sets of these agents by the set BRε
θi

(µi) =
{mi : |mi −m′i| ≤ ε and m′i ∈ BRθi (µi)}
defines the set of Fε-rationalizable mes-
sages, RFε

i (θi). Then, the transfer scheme
t is ‘η-sensitive’ to mistakes in play by f
agents if for all F with |F | = f and for all

θi, R
IM,Fε
i (θi) ⊆ [θi ± ηε]. Setting ηf0 (t)

to be the infimum of such ηs, we have a
measure of sensitivity to mistakes in play
by a group of agents.

For the next result, we focuse on
quadratic ts. This simplifies the proof, but
the result holds with respect to all ts.

The next result shows that, under the
maintained assumptions, te are the most
robust transfers among all those which
achieve full BIM -implementation:

PROPOSITION 2: The equal-externality
transfer scheme te is least sensitive to mis-
takes in play: ηf0 (te) ≤ ηf0 (t) for all t that
fully BIM -implement d. Moreover if ξ 6= 0,
then for all t 6= te and for all f < n,
ηf0 (te) < ηf0 (t).

The intuition behind this result is the fol-
lowing: as can be gathered from the SEl-
matrix, the loading transfers induce a very
hierarchical strategic structure, in which
the contractiveness of the mechanism is
completely determined by the two agents
with smallest preference interdependence.
But loading all strategic externalities on
these agents also makes the mechanism
especially vulnerable to the possibility of
these agents being faulty. To avoid this
risk, and not knowing which set of agents
may potentially be faulty, the safest solu-
tion for the designer is to redistribute the
strategic externalities uniformly across all
players, so that no player is especially crit-
ical for the mechanism. The same logic
extends to other mechanims that achieve
full implementation: as long as they induce
uneven strategic externalities, the worst-
case scenario of a set of faulty agent makes
the mechanism less robust than the equal-
externality tranfers.

IV. Proofs

For the Proof of Propositon 1, extending
the proof of Lemma 1 in Ollár and Penta

(2021a), we use the following Lemma:

LEMMA 1: If (d, t) is BIM -IC, and if the
spectral radius of (|SEt|) is less than one,
then t ensures full BIM -implementation.

Proof of Proposition 1. Clearly, (2)
⇒ (1). To see that (1) ⇒ (3), note that

Bid ⊂ BIM and hence Rid,k
i ⊂ RIM,k

i

∀k. Thus, if some t achieves full BIM -
implementation, then it also achieves full
Bid-implementation, which by Theorem 2
in Ollár and Penta (2021a) is possible iff
|ξ1ξ2| < 1. In a symmetric environment,
|ξ1ξ2| = ξ2, and thus |ξ| < 1. To see that (3)
⇒ (2), note that if |ξ| < 1, Gershgorin circle
theorem implies that all eigenvalues of SEe

are less than 1 in absolute value. Full BIM -
implementation follows from Lemma 1. �

For the Proof of Proposition 2, we first
prove the following Lemma:

LEMMA 2: Fix ε > 0 and F ⊆ I. If t
achieves B-implementation and is s.t. ∂2

ijU
t
i

is constant in m for all i, j, then the largest
set of reports in RFε

i is the largest element of

the vector (I − |SEt|)−1
εF , where εF ∈ Rn

is s.t. εi = ε if i ∈ F and εi = 0 if i /∈ F .

Proof of Lemma 2. Let ε ∈ Rn+ be an
arbitrary non-negative vector. The charac-
terization of the best replies in the Proof
of Lemma 1 in Ollár and Penta (2021a) ex-
tends from Bid to BIM . Given the assump-
tions on t and U t, letting l := θ − θ and
a1 := |SEt|1l + ε, it follows ∀θi:

RBε,1
i (θi) = [θi ± [a1]i] ∩

[
θ, θ
]

In the second round, ∀mi ∈ RBε,2
i (θi),

|θi −mi| ≤
∑
j 6=i

|∂2
ijUi|
|∂2
iiUi|

[∑
m 6=j

|∂2
jmUj|l
|∂2
jjUj|

+ εj

]
+εi.

Moreover, applying again the bounds in
Lemma 1 Ollár and Penta (2021a), letting
a2 := |SEt|21l + |SEt|ε + ε, for each θi:

RBε,2
i (θi) = [θi ± [a2]i] ∩

[
θ, θ
]
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By induction, letting ak := |SEt|k1l +
|SEt|k−1ε + . . .+ |SEt|ε + ε, we obtain:

RBε,k
i (θi) = [θi ± [ak]i] ∩

[
θ, θ
]

Taking limits as k →∞ (while assuming
that ρ (|SEt|) < 1), we have that for all i
and θi, the rationalizable messages for all θi
are

RBε

i (θi) =
[
θi ±

[(
I − |SEt|

)−1
ε
]
i

]
∩
[
θ, θ
]
.

Applying this formula to ε-faulty agents
with Fε completes the proof. �
Proof of Proposition 2. Fix f <
n. Lemma 2 implies that, for any
t, the sensitivity to mistakes in play
is equal to ηf0 (t) := gf (SEt) :=

maxF :|F |=f maxi
[
(I − |SEt|)−1

εF
]
i
. Min-

imizng ηf0 (t) in t is equivalent to:

min
SEt

gf
(
SEt

)
s.t. ρ

(
|SEt|

)
< 1∑

j 6=i

SEt
ij = ξ and SEt

ii = 0 for all i ∈ I.

Let t be s.t. SEt 6= SEe. If SEt is feasi-
ble, then so is π SEt, for every permutation
π of the ordered set of agents {1, 2, . . . , n}.
Moreover, gf (SEt) = gf (π SEt). For F ∗t ∈
argmaxF :|F |=f maxi

[
(I − |SEt|)−1

εF
]
i
,

gf
(
SEt

)
>

1

f
εTF∗

t

(
I − |SEt|

)−1
εF∗

t

=
1

f
εTF∗

t

∞∑
k=0

|SEt|kεF∗
t
.

The inequality is strict because SEt
ij is not

uniform across all i, j and f < n (the latter
implies that εF∗

t
has at least one 0).

Moreover, for every permutation π,

gf
(
π SEt

)
>

1

f
εTF∗

t

∞∑
k=0

|π SEt|kεF∗
t
,

otherwise the equality of gf (π SEt)s is con-
tradicted. Now, adding up the previous in-

equalities for all π, we get that

gf
(
SEt

)
>

1

n!

∑
π

1

f
εTF∗

t

∞∑
k=0

|π SEt|kεF∗
t
.

Exchanging the order of summations on
the RHS, we obtain:

gf
(
SEt

)
>

1

f
εTF∗

t
(I − |SEe|)−1

εF∗
t

= gf (SEe) ,

which completes the proof. �
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