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1. Introduction 

The Stone-Geary utility function (Geary, 1950; Stone, 1954) is an extension of the 

Cobb-Douglas utility function that allows us to consider some minimum (or 

subsistence) requisite of consumption levels that need to be guaranteed before full 

consumption demand is determined. The vector of subsistence levels provides the 

coordinates for the shifting of the Cobb-Douglas function that yields the Stone-Geary 

extension. The nicest property of the Stone-Geary function is that its demand function 

yields a linear expenditure system (LES). For any good, total expenditure is the sum of 

a fixed level of expenditure allotted for the minimum consumption levels and a fixed 
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proportion of the leftover income once the minimum consumptions are accounted for 

that indicates the variable part of consumption demand. In this text, we explore the 

extension of this idea to the CES utility function (Arrow et al, 1961). We shift the 

coordinates of the CES function using the vector of minimum consumptions and derive 

the demand and cost functions for this new extended system.  

In Section 2, we recall the essential properties of the LES system and show a simple 

way to recalculate them from basic and well-known results. In Section 3 we present the 

properties of the CES shifted expenditure system whereas in Section 4 we discuss the 

calibration issues and procedures that would arise in the implementation of the extended 

demand system in numerical general equilibrium. Section 5 concludes.  

2. The Cobb-Douglas Linear Expenditure System 

For the n-good case the Stone-Geary utility function is defined by: 

1 2

1 2 1 1 2 2

1

( , ,..., ) ( ) ( ) ... ( ) ( ) jn

n

n n n j j

j

u x x x x z x z x z x z
 



           (1) 

where zj ≥ 0 are minimum levels of consumption and αj nonnegative weights that add up 

to 1. The utility maximization problem under the budget constraint imposed by income 

level m and given minimum consumptions zj is: 
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.       and 
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The solution of this problem is straightforward if we perform the change of variables: 

 i i iy x z   and m' = 
1

'
n

j j

j

m m p z


         (2) 

We then solve the reformulated –and back to standard– Cobb-Douglas case to find: 

'/i i iy m p    

Undo the change of variable and we obtain: 
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j j i i

ij

x z m p z
p





            (3) 

It is well known, and straightforward to verify, that this solution yields a demand 

system that has the linear expenditure property. The expenditure on good j includes a 

fixed part –given by value at the current price of the minimal consumption of j– and a 

variable part that is αj proportional to the leftover level of income after the consumer 

incurs in the expenditure of the minimal consumption levels: 

  
1

( )
n

j j j j j i i

i

p x p z m p z


             (4) 

Notice that with no minimum consumption levels, i.e. when all zj = 0, the demand 

function in (3) reverts of course to the standard Cobb-Douglas demand function. 

Because of the linearity that we observe in expression (4), we commonly refer to this 

Stone-Geary demand system as the Linear Expenditure System (LES) as well.  

Much less commonly derived is the cost function in the Stone-Geary utility case. 

Consider the cost minimization problem: 

1
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Min p x
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
 

We can also solve it quickly by performing the same change of variable as before: 

1 1
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.  and 0j
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j j j j j
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j j

j

Min p y p x z

st u y y
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
 

The optimal solution yj of this problem is independent of the constant expenditure term 

for minimal consumption levels zj in the objective function and we can omit it without 

loss of generality. Thus, we revert once again to the standard Cobb-Douglas cost 

minimization problem. The minimal cost for this Cobb-Douglas solution yj is: 
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j j j j
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

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Since the solution yj indicates the excess of demand xj over minimum consumption zj, 

the function e(p,u) is just the variable cost associated with the solution yj. We undo the 

change of variable to obtain total minimum cost as: 

1 1 1 1

( , ) ( , ) j j

n n n n

j j j j j j j j

j j j j

c p u p x p z e p u p z u p
 




   

             

The total cost function c(p, u) adds up the variable cost e(p, u) and the fixed cost. Notice 

that in terms of production theory, we can reinterpret in a natural way this cost function 

as depicting a situation where a firm needs a minimum level of inputs before actually 

entering into production operations. 

3. Extension to CES utility functions 

The Constant Elasticity of Substitution (CES) (Arrow et al, 1961) utility function takes 

the form: 

1

1 2

1

( , ,..., )
n

n j j

j

u x x x a x






 
  
 
        (5) 

In this expression ( 1) /     and 1/ (1 )    where 0 ≤ < ∞ is the elasticity of 

substitution, which takes non-negative values only, and thus –∞ < θ ≤ 1. Its lowest 

possible value is  = 0, which corresponds to goods that are perfect complements. The 

CES utility function encompasses the Cobb-Douglas function when  = 1. For the CES 

case, therefore, we may also consider the implications of the possible existence of 

minimum consumption levels zj ≥ 0. This would involve transforming the CES function 

in expression (5) to the shifted new utility function: 

1

1 2

1

( , ,..., ) ( )
n

n j j j

j

u x x x a x z






 
   
 
       (6) 

Again, with no minimum consumption levels expression (6) quickly reverts to 

expression (5), the standard CES function. The utility function in (6) is a displacement 

to coordinates (z1, z2, …, zn) of the utility function in (5), which is centered at the origin. 

Hence, it inherits most of the properties (monotonicity, convexity, differentiability but 

not homotheticity) of the standard CES function.  
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3.1 The demand system 

The quickest way to solve the utility maximization problem is to reformulate it from: 
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where we have undertaken the same change of variables as in (2) above. The standard 

solution
2
 to this CES problem is: 

1
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'
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with: 
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1
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

 
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We now undo the change of variable and obtain, from expression (7), that demand xj for 

good j will be: 

11
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
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 (8) 

The expenditure system becomes: 

                                                 
2
 See Varian (1992), Chapter 7, and Jehle and Reny (2011), Chapter 1. 
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with: 
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We first observe that the terms sj(p) are indeed proportions since clearly their sum over j 

is 1. But unlike the LES case in (4), where the proportions of expenditure over leftover 

income are constant, here these proportions sj(p) are price and substitution elasticity 

dependent.  

Notice also the following properties: 

Property 1. When  = 1, which represents the LES Cobb-Douglas case, the proportions 

become constant. Indeed, in this case: 

1
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and we recover the LES constancy property that follows from the usual Stone-Geary 

utility function. 

Property 2.  The own derivatives have opposite signs depending on the substitution 

elasticity: 

( )
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
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If we take the derivative from expression (10) we obtain: 
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 
 
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We see that its sign depends only on whether  < 1 or  > 1. When goods tend to be 

complementary (0 <  < 1) any increase in the price of good j will require a larger 
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fraction of the leftover income to be devoted to the good getting more expensive. The 

reason is that for complements consumptions tend to move in the same direction and the 

good getting relatively more expensive will be the most affected in terms of 

expenditure. The consumer needs to devote a greater proportion of the leftover income 

to purchase the good in question. We can see this more clearly in the limit case of 

perfect complements. In this extreme case, consumption proportions are constant and, 

even if the allotted income falls, the share of leftover income needed for the good whose 

price increase becomes larger. The opposite occurs when goods tend to be substitutes ( 

> 1). 

Property 3. The cross derivatives have opposite signs depending on the substitution 

elasticity: 

( )
0

j

i

s p

p





 for 0 < 1   and 

( )
0

j

i

s p

p





 for 1   

The same intuition as in Property 2 helps to explain why. If good i becomes more 

expensive, and goods are complements, demand for j will fall too but the share sj(p) 

becomes smaller for good j since it is getting relatively cheaper than good i. 

Property 4. The CES utility function with minimal consumptions is no longer 

homothetic. We calculate the marginal rate of substitution MRSi,j for the utility in (6) 

and obtain: 

1

, 1

( )

( )

i i i
i j

j j j

a x z
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a x z









 
 

 
  

Along the ray j ix x   with 0  it becomes: 

1

, 1
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i i i
i j

j i j

a x z
MRS

a x z









 
 

  
 

whose value depends on the value of xi and thus the marginal rate of substitution is 

clearly not constant. One of the criticisms to the use (or abuse) of homothetic utilities in 

applied work is that the real world does not seem to be homothetic. The extended CES 

utility function with minimal consumption levels does not suffer from this problem 

since the MRS is not constant along a ray. Graph 1 illustrates the changing values of the 

marginal rate of substitution along a   ray. 
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Graph 1: Non-homothetic CES shifted utility function. 
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3.2 The cost function 

If we substitute the solution in (7) into the CES utility function u(y) we derive the 

indirect utility function. With a little bit of tedious algebra we can show that it adopts 

the form: 

1( , ') ' pv p m m    

We swiftly find the cost function using duality: 

( , ) ( , ( , ')) ' ( , ') p pe p u e p v p m m v p m u       

Recall, however, that e(p, u) measures just the cost of the excess consumption over 

subsistence levels. We can derive the total cost function once again undoing the change 

of variable. For the yj minimal cost solution we have: 

1 1

( , ) ( )
n n

j j j j j

j j

e p u p y p x z
 

        

Therefore total cost is: 

1 1 1

( , ) ( , )
n n n

j j j j j j p

j j j

c p u p x p z e p u p z u
  

               (11) 

Total cost contains a fixed part and a variable part. In the absence of minimum 

consumption levels, the cost function reverts to the standard CES cost function. Even 

though the variable cost function satisfies the homotheticity property, i.e.

( , ) ( ,1),e p u u e p   the total cost function does not. 

4. Calibration issues in empirical applications 

The common use of the Stone-Geary utility function in the implementation of numerical 

general equilibrium models is clearly a way to improve the usual but more restrictive 

Cobb-Douglas assumption. Similarly, the shifted CES utility system improves upon the 

LES approach by eliminating two of its restrictions. One is the unitary substitution 

elasticity implicit in the Cobb-Douglas function, the other is the fixed proportions of 

excess consumption over minimum levels that we observe in the LES system, which 

turn out to be unrealistically independent of the evolution of the price vector p. The 

shifted CES function does not suffer these problems. The question is how to implement 
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the extended CES utility in numerical general equilibrium models. The calibration goal 

is to have an empirical specification of expression (6) that has the property that when 

we use it to maximize utility, the solution endogenously yields the very same observed 

empirical data registered in some database, such as in input-output (I-O) or Social 

Accounting Matrix (SAM) databases. 

A look at (6) shows that we need values for the n share coefficients aj, the elasticity of 

substitution   (which gives us  ) and the n minimum consumption levels zj. We 

usually borrow the elasticity of substitution from available econometric estimates. This 

leaves 2n parameters to be determined, or "calibrated": the n aj coefficients and the n 

minimal consumptions zj. If we use I-O or SAM data, however, we only have n 

observations available, which are the currency values (Euros, Dollars, etc) of 

consumption for the n goods registered in the I-O database. 

The first calibration trick is to assume that all prices reflected in the database are 

unitary. This entails a redefinition of the units in such a way that one physical unit has 

the worth of one currency unit. With this redefinition, all observed data in the database 

are now both value as well as physical units (for the appropriate unit, of course). If the 

price vector for goods is implicitly made to be equal to the unit vector 1, the proportions 

in expression (10) become for all j: 

1

1

1 1

1
( )

1

j j j

j n n

i i i

i i

a a
s

a a

  

  





 


 

 
1  

The second step in the calibration uses the fact that, from expression (9), the income 

elasticity of demand j  is easily seen to be:  

1( ) ( ) ( )

j

j

j j j j

j j

x m m
s p s p p

m x p x
  


     
 

  

Here ( ) /j j jp p x m    is the share of expenditure on good j over total income m. We 

can calculate these shares from the given database where all prices are redefined to be 1. 

Hence: 

( ) ( )j j js   1 1   
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Provided estimates of the income elasticity of demand for all n goods are available, we 

can calibrate the proportions sj(1) using these elasticity estimates and the shares 

obtained from the data. For a given substitution elasticity value , we can now solve the 

linear system: 

1

( )     1,2,...,
j

j n

i

i

a
s j n

a







 


1  

and obtain the coefficients aj. This system, however, has one redundant equation. 

Indeed, if aj is a solution so is ·aj  for any positive scalar . We can therefore add an 

extra independent equation that makes, for example, the sum of all the aj coefficients to 

be 1 and then proceed to solve. 

The final step is to determine the subsistence levels zj. For this the same procedure as in 

the standard LES case will work. Define the coefficient: 

1

n

j j

j

m m

m
m p z






  


 

  

with 0 m  . When 0   no income would be devoted to purchase minimum 

consumptions and then 1   whereas when m  then     an in this case no 

income would be available for the variable part of consumption demand. The coefficient

  is known as the Frisch parameter (Frisch, 1959) and measures the flexibility in the 

distribution of income between the fixed and the variable parts, with maximum 

flexibility when 1    and null flexibility when    . We substitute in expression 

(9) to obtain: 

1

( ) ( )
n

j j j j j i i j j j

i

m
p x p z s p m p z p z s p



 
           

 
  

Solve for zj recalling that all prices are set to 1 in the initial data: 

( )j j j

m
z x s


  


1  
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In this expression we know the values of xj and m (from the data) and sj(1) (from step 2 

above) so if we borrow   from the econometrics literature we have all we need to 

calibrate the minimum consumptions zj.  

As an illustration of the calibration procedure, we borrow income elasticities calculated 

for the two-digit 12 ECOICOP sectors for Spain for the Spanish economy from Garcia-

Villar (2018). The fact that these estimated income elasticities are not unitary challenges 

the typical use of homothetic utility functions in numerical general equilibrium since, 

most commonly, the selection of preferences give rise to unitary income elasticity
3
. This 

justifies departing from homothetic functions and endorses the use of LES or the here 

proposed CES extended Stone-Geary utility functions. We also use the reported value of 

the Frisch parameter ( 2   ) from Deaton and Muellbauer (1980) along with two 

sensible small deviations around it. The central elasticity of substitution value 

corresponds to the widely used Cobb-Douglas case ( 1  ) but, again, we introduce 

deviations from this unitary elasticity value to appraise the sensitivity of the results. 

Finally, we use expenditure data for the same classification of goods taken from the 

ECOICOP data published by the National Institute of Statistics for 2017
4
. Table 1 

shows the calibration of the utility function coefficients whereas Table 2 shows the 

calibrated minimum levels of consumption. 

Table 1:  Utility coefficients for alternative substitution elasticity values and 2     

Goods Coefficients   = 0.75   = 1   = 1.25 
1.-Food and non-alcoholic beverages a1 0.087 0.093 0.095 

2.-Alcoholic beverages and tobacco a2 0.006 0.013 0.019 

3.-Clothing a3 0.058 0.069 0.075 

4.-Housing a4 0.165 0.151 0.140 

5.-Household articles a5 0.051 0.062 0.069 

6.-Health a6 0.032 0.044 0.052 

7.-Transportation a7 0.259 0.211 0.183 

8.-Communication services a8 0.009 0.016 0.024 

9.-Recreational services a9 0.070 0.079 0.084 

10.-Education a10 0.013 0.022 0.030 

11.-Hotels and restaurants a11 0.175 0.157 0.145 

12.-Other services a12 0.074 0.083 0.086 

Source: Our computations 

 

                                                 
3
 The econometrics literature provide ample evidence for non-unitary income elasticities. See Lecocq & 

Robin (2006), Christensen (2014) and García-Enriquez & Echevarría (2016). 
4
 https://www.ine.es/jaxiT3/Tabla.htm?t=24765&L=0 
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Table 2:  Minimum consumptions for alternative values of the Frisch parameter   

Goods Expenditure 

data 2017 

Minima   = -1.75   = -2   = -2.25 

1.-Food and non-alcoholic beverages 76.042 z1 47.268 50.864 53.662 

2.-Alcoholic beverages and tobacco 9.927 z2 6.054 6.538 6.914 

3.-Clothing 28.043 z3 6.781 9.439 11.506 

4.-Housing 162.431 z4 115.939 121.750 126.270 

5.-Household articles 24.762 z5 5.542 7.944 9.813 

6.-Health 18.149 z6 4.502 6.208 7.535 

7.-Transportation 67.890 z7 2.819 10.953 17.279 

8.-Communication services 17.209 z8 12.188 12.816 13.304 

9.-Recreational services 30.770 z9 6.289 9.349 11.729 

10.-Education 7.668 z10 0.855 1.707 2.369 

11.-Hotels and restaurants 55.588 z11 7.008 13.081 17.804 

12.-Other services 41.864 z12 16.332 19.524 22.006 

Source: National Institute of Statistics, García-Villar (2018) for the income elasticities,  

and our computations. Expenditure data in millions of current Euros. 

 

5. Concluding remarks 

The Stone-Geary linear expenditure system correctly captures some rigidity properties 

of consumption demand, namely, the likely existence of minimum or subsistence levels 

of consumption for some goods. Actual consumption goes over these limits but cannot 

go under. Excess consumption over these minimal levels is apportioned using fixed 

share coefficients only when some level of leftover income is available. This real-world 

property, however, turns out to be price insensitive as long as the shifted utility function 

is restricted to be of the Cobb-Douglas variety. When we contemplate wider substitution 

possibilities, as is the case with CES displaced utility functions, the shares of excess 

consumption become price sensitive, capturing a more realistically empirical property. 

This extension to non-unitary substitution elasticities yields expenditures systems that 

are both linear in the mathematical structure but variable in the values of the excess 

consumption shares. The fact that CES displaced utilities gives rise to price responsive 

coefficients, hence improving the reaction capacities of consumers before changing 

prices, may endow the modeling of numerical general equilibrium with a more 

consistent demand platform which in turn may provide more reliable, and more real-

world grounded, welfare assessment of policies. Additionally, the LES or the proposed 

CES extended function, being non-homothetic, both reflect the empirical nature of 
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income elasticities, since plenty of econometrics evidence suggest their values are not 

unitary.   

Notice also that our emphasis here on utility theory can quickly be reinterpreted in 

terms of production theory. In this case, the technology would presume a minimum size 

of primary factors, labor and capital, and in a very natural way the derived cost function 

would separate variable and fixed production costs in contrast with the usual practice of 

numerical general equilibrium, where the introduction of fixed costs follows ad-hoc 

rules with little theoretical backing. 
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