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Abstract

Consider the following principle regarding the performance of col-

lective choice functions. “If a rule selects alternative x in situation

1, and alternative y in situation 2, there must be an alternative z,

and some member of society whose appreciation of z relative to x has

increased when going from situation 1 to situation 2.” This principle

requires a minimal justification for the fall of x in the consideration

of society: someone must have decreased its appreciation relative to

some other possible alternative. On appropriately restricted domains,

pairwise justifiability, along with anonymity and neutrality, character-

izes Condorcet consistent rules, thus providing a foundation for the

choice of the alternatives that win by majority over all others in pair-

wise comparisons, when they exist. We also study the consequences

of imposing this requirement of pairwise justifiability on a large class

of collective choice correspondences that includes social choice and

social welfare functions as particular cases. When preference profiles

are unrestricted, pairwise justifiability implies dictatorship, and both

Arrow’s and the Gibbard-Satterthwaite’s theorems become corollaries

of our general result.

Journal of Economic Literature Classification Numbers: D70, D71,

D78.

Keywords: Pairwise justifiability, social choice functions, social

welfare functions, Condorcet consistency, Arrow’s theorem, Gibbard-

Satterthwaite’s theorem.
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1 Introduction

We introduce a novel principle called pairwise justifiability, regarding the

performance of collective choice rules. In the simple case where society’s

decisions are singletons and individual preferences are strict, the principle

says the following:

“If a rule selects alternative x in situation 1, and alternative y in situation

2, when both were available in either case, there must be an alternative z,

and some individual whose appreciation of z relative to x has increased when

going from situation 1 to situation 2; likewise, there must be some alternative

w and some individual whose appreciation of w relative to y has decreased.”

Pairwise justifiability demands a minimal reason for the fall of an alter-

native x or the rise of an alternative y in the consideration of society as a

response to any change in the situation that it faces: that is, as a response

to changes in the set of feasible alternatives or to changes in someone’s pref-

erences. In fact, we have stated the requirement at full length for clarity,

but we only need to impose it in one of its two directions, since each one

carries the other. Extending the condition to cases where individual pref-

erences admit indifferences requires to introduce some nuances in the case

where changes in the social decision may result from the use of tie-breaking

procedures among alternatives that are considered indifferent by some agent.

We leave a discussion of this and other technical requirements for further

sections.

We study the consequences of imposing this novel principle and its ex-

tensions to a general class of collective choice rules, that are defined on col-

lections of situations, consisting of preference profiles included in a set D
and of subsets of alternatives, called agendas, belonging to a collection B. A

collective choice rule selects, for each profile in D, one or several alternatives

in each of the agendas in B: if it may select more than one, we call it a

collective choice correspondence; if only a singleton can be selected, we call

it a collective choice function.
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Pairwise justifiability is not only intuitively attractive: it has bite when

trying to discern between different collective choice rules. This is exemplified,

in different directions, by the main results we obtain in this paper. When

applied to anonymous and neutral rules, it is an implication of Condorcet

consistency, and equivalent to this respected and classical requirement in

many situations of interest.

Yet, as it happens with most combinations of attractive normative crite-

ria, pairwise justifiability may not be satisfied by any non-dictatorial collec-

tive choice rule defined on the universal domain. Indeed, we establish that

only dictatorial collective choice functions can satisfy pairwise justifiability,

and also reach the same conclusion for collective choice correspondences sat-

isfying an additional condition that we call weak decisiveness. These general

results have Arrow’s and the Gibbard-Satterthwaite’s theorems as corollar-

ies. This proves that these classical results have a common root, even in their

most general version.

Collective choice rules as defined can be used to analyze many interesting

real-life situations in which specific subsets of alternatives are faced by soci-

ety, and others are not. Consider, for example the case where the citizens in

a jurisdiction must decide what subset of projects to undertake simultane-

ously out of a list of them whose joint cost exceeds the community’s available

resources. Then, the set of feasible agendas consists of those collections of

projects whose total cost is within the community’s constraint.

In addition to economic constraints, sometimes society’s decisions must

accommodate to institutional ones. For example, the composition of par-

liamentary committees typically must satisfy a principle of proportionality,

but the constraints imposed by this principle may vary across committees

depending on their jurisdictions. In that case, the feasible agendas would

consist of those that respect the admissible proportionality bounds, typically

more than one and less than the total number of those conceivable. As a final

example, consider the case where, in order to create a diverse environment
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for students, school districts implement controlled school choice programs

providing parental choice, while maintaining the racial, ethnic or socioeco-

nomic balance at schools. Controlled public school admission policies put

hard or soft bounds on the groups of students who can be admitted to a

school, and these bounds may vary according to the admission criteria. Each

set of admission criteria identifies what subsets of agendas (in that case, what

partition of students into groups) constitute feasible agendas.

A more technical but very important question, also derived from the fact

that we work with rules defined on a variety of situations, refers to the com-

parison between pairwise justifiability and other conditions that social choice

theorists have deemed important for the study of collective decision-making

methods. These conditions are usually defined for specific subcases of our

encompassing definition of collective choice rules, and it is not always obvi-

ous how to compare them with ours, due to the use of different frameworks.

But we also proceed to establish a number of comparisons, enough to prove

that pairwise justifiability is independent or weaker than other well known

normative criteria.

Our main results address important issues that have been debated for a

long time. Social choice theory has seen the advocates of scoring rules oppose

those who support Condorcet consistent rules and the majority principle.

While several axiomatizations have been offered in the literature for scoring

rules1, very few axiomatic characterizations of the Condorcet principle have

been proposed. Campbell and Kelly (2015), and more recently Yonta Mekuko

et al. (2021) are two notably exceptions.

The relation between Arrow’s and the Gibbard-Satterthwaite’s theorems

has also been a matter of interest for a long time in social choice theory.

Well before the work of Gibbard (1973) and Satterthwaite (1975). Vickrey

(1960) had already conjectured that there was a strong connection between

1Fishburn (1973), Smith (1973), Young (1974), Richelson (1978), Nitzan and Rubin-
stein (1981), Myerson (1995) to name a few.
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strategy-proofness and Arrow’s condition of Independence of Irrelevant Al-

ternatives.2 Gibbard used Arrow’s theorem as an intermediate step of his

proof. Satterthwaite explicitly analyzed the mutual implications between the

conditions involved in these two theorems. The latter presented further evi-

dence of the parallelism between strategy-proofness and Arrow’s conditions,

as well as in their respective proofs, and so did Pattanaik (1978), Muller and

Satterthwaite (1977) and later Reny (2001), among other authors.

But it was only in 2004 that Kfir Eliaz (Eliaz, 2004) proved that these

two major results could be obtained as corollaries of a single theorem pred-

icated on rules that contain Arrowian social welfare functions and social

choice functions as particular cases. He defined such a class of rules, that

he called social aggregators, and proved that when these satisfy a condition

termed preference reversal, which is implied by Arrow’s conditions and by

strategy-proofness in strict preference domains, they must be dictatorial.3

Our results differ from his in several respects and extends it substantially: it

is expressed in terms of a different formulation of the aggregation problem,

it uses the requirement of pairwise justifiability, which is a weaker condition

than his, and, very importantly, it covers the general case where Arrow’s

theorem applies in a framework where both individual and collective prefer-

ences admit indifferences. Such an extension is much more than technical:

it is necessary for a full coverage of our target theorems in their most gen-

eral expression and differentiates our condition of pairwise justifiability from

others in the literature. Although many equivalences arise between proper-

ties of functions defined on strict preference domains, pairwise justifiability

is weakest when indifferences are not excluded, and allows for a direct use in

the large framework where both preference profiles and agendas are relevant

2Vickrey stated that “social welfare functions that satisfy the nonperversity and the
independence postulates, and are limited to rankings as arguments are (...) immune to
strategy. It can be plausibly conjectured that the converse is also true”.

3An unpublished paper by Barberà (2001) states a similar result but takes a different
strategy of proof.
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variables.4

The paper proceeds as follows. In Section 2 we provide notation and def-

initions. Section 3 investigates the connections between the requirement of

Condorcet consistency and that of pairwise justifiability under different do-

mains. In Section 4 we state a general dictatorship result for collective choice

correspondences satisfying pairwise justifiability and weak decisiveness, and

also a characterization result in the same spirit for collective choice functions

defined on strict individual preferences. In Section 5 we show that Arrow’s

and the Gibbard-Satterthwaite theorem are corollaries of our main dictator-

ship result. Section 6 discusses the connections between pairwise justifiability

and other conditions proposed in the social choice literature. Section 7 con-

cludes with some final remarks. Although some proofs are outlined in the

text, they are collected in their formal and complete form in the Appendix,

which is organized by sections, and also contains several examples.

2 Notation and definitions

Let N = {1, 2, ..., n} be a finite set of agents with n > 2. Let A be a set

of alternatives with #A ≥ 3. We denote subsets of alternatives as B, B′,...

and we call them agendas. We denote by A the set of all nonempty subsets

of A and by B ⊆ A a collection of subsets of alternatives, or equivalently, a

collection of agendas.

Let R be the set of all preferences on A (that is, all complete, reflexive,

and transitive binary relations on A). Elements ofR are denoted by Ri, Rj,...

The top of a preference Ri ∈ R in B ∈ B, denoted by t(Ri, B), is the set of

alternatives x ∈ B such that xRiy for all y ∈ B. As usual, Pi and Ii denote

the strict and indifference preference relation induced by Ri, respectively.

4More recently, Man and Takayama (2013) also proved interesting results in the spirit
of Eliaz (2004) and Barberà (2001), but again using additional properties and assuming
that preferences are strict in some cases, which blurs the comparison between the two
theorems to be unified.
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Let Rn be the set of all possible preference profiles, also called the uni-

versal domain, and D ⊆ Rn be a subset of preference profiles. Elements

of Rn are denoted by R = (R1, R2, ..., Rn). When we have a partition

of N into different sets S1, S2, ..., Sk, we write a preference profile as R =

(RS1 , RS2 , ..., RSk
).

Let Pn ⊆ Rn denote the subset of all preference profiles where agents’

preferences on A are strict (that is, also antisymmetric), also called the strict

universal domain.

A situation is a pair (R,B) ∈ D × B.5

A collective choice correspondence onD × B is a mapping C : D × B → A
that assigns a non-empty subset of alternatives C(R,B) ∈ 2B\{∅} for each

situation (R,B) ∈ D × B.

A collective choice correspondence C on D × B has full range if for each

B ∈ B and x ∈ B there exists R ∈ D such that x ∈ C(R,B).

Definition 1 A collective choice correspondence C on D × B is anony-

mous on D′×B where D′ ⊆ D if, for any preference profile R = (R1, R2, ..., Rn) ∈
D′, any B ∈ B, and any permutation ρ of N such that (Rρ(1), Rρ(2), ..., Rρ(n)) ∈
D′, then C(R,B) = C

(
(Rρ(1), Rρ(2), ..., Rρ(n)), B

)
.

Definition 2 A collective choice correspondence C on D × B is neutral on

D′×B where D′ ⊆ D if, for any preference profile R = (R1, R2, ..., Rn) ∈ D′,
any B ∈ B, and any permutation µ of B such that (µ(R1), µ(R2), ..., µ(Rn)) ∈
D′, then µ(C(R,B)) = C ((µ(R1), µ(R2), ..., µ(Rn)), B).

We now formalize the principle whose introduction and analysis is the

object of our work, that of pairwise justifiability. We first state it in a general

form, that applies to collective choice correspondences. Immediately after

that, we discuss the consequences of applying it in two special cases that will

5A situation is a pair formed by a preference profile and an agenda in Le Breton and
Weymark (2011).
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be the main object of our attention in what follows, and we discuss why we

attach importance to this principle in each of its forms.

Definition 3 A collective choice correspondence C on D × B satisfies pair-

wise justifiability on D′ × B, D′ ⊆ D if, for any two situations (R,B),

(R′, B′) ∈ D′ × B such that x ∈ C(R,B), x /∈ C(R′, B′), and there exists

y ∈ C(R′, B′) such that x, y ∈ B ∩ B′, then either (1) there is some agent

i ∈ N and some alternative z ∈ A\{x} such that xPiz and zR′ix, or (2) there

is some agent i ∈ N such that xIiy and Ri 6= R′i.

A special type of collective choice correspondences that we are especially

interested in are those that, in fact, select one and only one alternative for

each situation: we call them collective choice functions. Clearly, they result

from restricting the range of the correspondence to singletons.

We may also concentrate on correspondences that are defined on different

restricted domains, but at this point, we limit our attention to a simple one,

that is rather natural in many contexts, especially when the set of alternatives

is finite. The constraint is that correspondences be defined on domains that

only include strict individual preferences.

Our informal statements regarding pairwise justifiability in the introduc-

tion refer to the special but important case of collective choice functions

defined on domains of strict preferences. There, the requisite that every fall

in the social appreciation of an alternative needs to be justified by its fall

in the favor of at least one agent is implied without any reservation. This

is the basis of our proposal to retain pairwise justifiability as an attractive

requirement for collective choice functions and correspondences.

Why, then, add as a special proviso, the exceptional case where this

requirement may be ignored if some agent who changes preferences from

one situation to another was indifferent between the respective outcomes

in the two situations (or with parts of these outcomes when considering

correspondences)? We accept this exception because individual indifferences
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leave room for social choices that are indifferent for some agents and yet

result from the use of tie breaking rules that may be quite elaborate and

hard to track down by an external observer. This implicit acceptance that tie

breaking rules may obscure otherwise transparent conditions is recognized in

many parts of the literature. For example, Arrow’s notion of a dictator allows

for other agents to influence the outcome when the dictator is indifferent.

Therefore, even if our general condition involves a subtle departure from its

neatest and näıve form when indifferences are not present, we feel that it

continues to capture its essence.

Finally, let us also introduce another special case of collective choice cor-

respondences that result from imposing a restriction on their range when

their domain is restricted. We refer to the case where, when defined on the

subdomain of strict individual preferences, the correspondence is required to

select singletons, and only allowed to become multivalued when some agents’

preferences admit indifferences. We say that these correspondences satisfy

weak decisiveness. Admittedly, weak decisiveness is a demanding require-

ment, but it will be useful to formulate some of our results. Formally:

Definition 4 A collective choice correspondence C on D × B, D ⊆ Rn sat-

isfies weak decisiveness if for any situation (R,B) such that R ∈ D ∩ Pn

then #C(R,B) = 1.

Observe that a collective choice function trivially satisfies weak decisive-

ness on D×B, for any D ⊆ Rn but not any collective choice correspondence

satisfying weak decisiveness is a collective choice function. The latter is be-

cause when individual indifferences exist, more than one alternative can be

chosen. Moreover, any collective choice correspondence satisfying weak deci-

siveness is a collective choice function when defined on any domain D ⊆ Pn.
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3 Pairwise justifiability and Condorcet con-

sistency

In this section we show that pairwise justifiability is strongly related with

the classical and appealing requirement of Condorcet consistency. We begin

by formally defining this property in the context of collective choice func-

tions and briefly elaborate about its intrinsic interest. Then we prove that

our proposed principle of justifiability, when applied to anonymous and neu-

tral collective choice correspondences, is in general weaker than Condorcet

consistency but becomes equivalent to it in many well identified cases. That

indicates that our notion of justifiability is rather fundamental, as it provides

new additional arguments in favor of that classical principle. It also shows

that, in spite of the negative character of the results that we will exhibit

in the next section, pairwise justifiability may be used as a useful guide to

discriminate between alternative collective choice rules defined on restricted

domains.

Let (R,B) ∈ D × B be a situation. We say that an alternative y ∈ B

defeats alternative z ∈ B by majority at R ∈ D if the number of agents who

strictly prefers y over z is greater than the number of those who strictly prefer

z over y. We say that an alternative y ∈ B is the (unique) strong Condorcet

winner at (R,B) if y defeats any other alternative in B by majority at R.

Definition 5 A collective choice function C on D × B is Condorcet con-

sistent on D′×B where D′ ⊆ D if for each situation (R,B) ∈ D′×B we have

that C(R,B) selects the strong Condorcet winner at (R,B) when it exists.

For centuries now, this requirement, which demands that if one alterna-

tive is a strict majority winner over all others, it should be selected, has

attracted much attention. This is understandable, because a first and fore-

most question in the theory of voting has been how to extend the notion of

majority to the case where society faces more than two alternatives, espe-

cially as part of a criticism to the use of plurality voting, which can grossly
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deviate from any reasonable idea of respect to majorities. While many social

choice theorists find Condorcet’s principle very attractive and compelling,

others defend the use of scoring methods, which are notoriously distanced

from this view.6 But since respect of the Condorcet principle remains high

in the list of favorite extensions of majority, we consider very significant to

exhibit its strong connection with pairwise justifiability, thus, proving the

strength and the interest of our new proposed principle.

Since we consider collective choice rules, the consistency criterion has

bite for all those situations for which, given the preference profile R, a strong

Condorcet winner exists for the agenda B. Hence our definition:

Definition 6 Given a set B of agendas and a set D of admissible profiles,

the Condorcet domain DCB of B in D is the subset of preference profiles

such that for all situations in DCB×B, there exists a strong Condorcet winner.

Notice that the notion of a Condorcet domain is conditional to the ref-

erence sets B and D. Enlarging D or adding agendas to any given B may

possibly narrow down the relevant Condorcet domain.7

Specifically, if D is the universal domain the Condorcet domain DCB of B
in D is the set of all preferences profiles for which a strong Condorcet winner

exists for all agendas in B. But we can also define the Condorcet domain

for other cases of interest: for example, those where D only contains strict

preferences or where D is the set of all single-peaked preferences profiles.

Our Theorem 1 offers a characterization of Condorcet consistent rules

defined on the largest set of preference profiles where a strong Condorcet

6See Moulin (1988), Chapter 9, for an illuminating discussion of the tension between
scoring methods and Condorcet consistent rules.

7For example, consider the case with three agents, four alternatives A = {x, y, z, t},
B ={A}, and D the universal domain. Then, any profile of preferences where each agent
has x as the top alternative in B belongs to the Condorcet domain of B in D. How-
ever, not all of these profiles can guarantee the existence of a strong Condorcet winner
for B ={A,B} with B = {y, z, t} in D: consider the profile R such that xP1yP1zP1t,
xP2zP2tP2y, xP3tP3yP3z.
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winner exists given the collection of agendas, and shows that the Condorcet

principle is intimately linked with our property of pairwise justifiability.

Theorem 1 Let B be a collection of agendas such that for all B,B′ ∈ B,
〈B ∪ B′〉 ∈ B and D = Rn. A collective choice function C on D × B is

anonymous, neutral, and satisfies pairwise justifiability on DCB × B if and

only if C is Condorcet consistent on DCB × B.

The proof of Theorem 1 is in the Appendix. The same result holds for

the strict universal domain and for any collection B.8

Several observations are in order. First, notice that the result can be

extended, in one direction, and show that any Condorcet consistent collective

choice function is anonymous, neutral, and satisfies pairwise justifiability on

any subdomain of a Condorcet domain, as stated in the following proposition

proved in the Appendix.

Proposition 1 Let B be a collection of agendas, D ⊆ Rn a subset of pref-

erence profiles, and C be a collective choice function on D × B. If C is

Condorcet consistent on D′ × B, then C satisfies pairwise justifiability on

D′ × B for any D′ ⊆ DCB.

Second, it is also worth noting that Condorcet consistency is not always a

consequence of pairwise justifiability. In particular, this may not be true for

all subdomains of the Condorcet domain on B.9 Still, the result of Theorem

1 applies to the two most popular cases in which the existence of Condorcet

winners is guaranteed: it directly results from the proof of the theorem, both

in case of intermediate preferences and in the case of single-peaked profiles.10

8Its proof follows the same logic as that of Theorem 1 but it is much simpler. It is
available upon request.

9Let N = {1, 2}, B = {B} where B = {x, y, z}, and R, R′ be two admissible profiles
such that yP1xP1z, yP2xP2z and yP ′1zP

′
1x, yP ′2zP

′
2x. Define C such that C(R,B) = x

and C(R′, B) = z. Note that C satisfies pairwise justifiability but it does not choose the
strong Condorcet winner at any feasible situation.

10See Grandmont (1978) for intermediateness and Penn, Patty, and Gailmard (2011) for
the definition of extended single-peakedness.
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Third, observe that, although Condorcet consistency is usually predicated

for situations involving a single agenda, we are also able to cover the conse-

quences of pairwise justifiability on the choice of strong Condorcet winners by

collective choice rules defined over situations that include multiple agendas.

In the case of a single agenda and strict preferences, Campbell and Kelly

(2015) show that the Condorcet rule is the unique rule satisfying anonymity,

neutrality, and strategy-proofness on a Condorcet domain, under specific re-

lationships between the number of agents and alternatives.11 Our extension

to multiple agendas is also interesting. For example, it may be used in the

analysis of the many cases in political economy where preference profiles lie

in single-crossing domains and society may confront agendas of different size.

In these cases, for any agenda, the alternative preferred by the median voter

is a strong Condorcet winner.

4 Dictatorship results

In the preceding section we showed that, when defined on properly restricted

domains of preferences, pairwise justifiability is very closely related to the

possibility of respecting the desirable objective of Condorcet consistency.

By contrast, in the present section we explore the consequences of impos-

ing our condition of pairwise justifiability on collective choice rules defined

on the universal domains of profiles formed by either strict or weak prefer-

ence profile. We offer three similar results in this vein, showing that, as it

is known to happen in other contexts and under different conditions, ours is

also too demanding and precipitates dictatorship.12

11Their result and ours are independent given that the Condorcet domain they are con-
sidering does not have a Cartesian product structure and strategy-proofness and pairwise
justifiability are independent properties in such domains (examples are available upon
request).

12Examples are abundant. To mention one, consider for instance the notion of self-
selectivity introduced by Koray (2000) which requires that a social choice function should
choose itself from among other rival such functions when it is employed by the society to
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Theorem 2 If A ∈ B, any full range collective choice correspondence C on

Rn × B satisfying weak decisiveness and pairwise justifiability on Rn × B is

dictatorial.

Corollary 1 If A ∈ B, any full range collective choice function C on Rn×B
satisfying pairwise justifiability on Rn × B is dictatorial.

Theorem 3 If A ∈ B, a full range collective choice function C on Pn × B
satisfies pairwise justifiability on Pn × B if and only if it is dictatorial.

Notice that Theorem 2 applies to collective choice correspondences. It

is the result, out of the three above, that refers to the larger class of collec-

tive choice rules. Observe that the statement in Theorem 2 is robust in the

sense that when ruling out only one of the properties imposed, we can define

rules satisfying the other properties.13 Corollary 1 obtains from Theorem 2,

because it only refers to collective choice functions, and this directly implies

that weak decisiveness must be satisfied. However, we record it as an interest-

ing result because it has content of its own and can be used directly in some

applications. Theorem 3 is at the basis of the proof for the preceding results,

and it is also of independent interest, since environments where individuals

have strict preferences are often considered in the literature. Moreover, it is

a full characterization result. Notice that both Theorem 2 and its corollary,

when applied to the strict domain, imply one of the directions of Theorem 3,

but not the other, since not all dictatorial rules on that domain are pairwise

justifiable when individual indifferences are admitted to be part of preference

profiles.

The detailed proofs of these results are in the Appendix. We provide here

an outline of how we proceed. We start by proving Theorem 3, thus concen-

trating on the case where individual preferences are strict and the collective

make this choice as well. Koray (2000) shows that a unanimous and neutral social choice
function is universally self-selective if and only if it is dictatorial.

13It is not difficult to think of collective choice rules violating either full range or pairwise
justifiability. An example of a violation of weak decisiveness is available upon request.
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choice rule is a function. Later on, we extend the necessity part of that result

to the case contemplated in Theorem 2, by relaxing the requirements on the

image of our rules and allowing for it to be a correspondence, and moreover

allowing for indifferences in the preferences of individuals, while imposing

the auxiliary condition of weak decisiveness. Two lemmas are used in the

transition between one result to the other. As mentioned above, the proof of

Corollary 1 is a straightforward consequence of Theorem 2.

Let us be more specific about the strategy of the proofs, starting by that

of Theorem 3.

Checking the ”if” part is straightforward. The ”only if” part consists of

several steps. In the first step we fix an agenda with at least three alternatives

and show that our property implies the existence of a dictator on such fixed

agenda. The proof of this step contains the novel definition of when an agent

is determinant, which is different to the more usual and weaker notion of

being pivotal. In the second step we compare the outcomes of the rule for

varying agendas. The argument involves two cases, depending on whether

or not both agendas have two elements each or at least one of them contains

three or more alternatives. But the common starting point for both cases

is that, since A ∈ B, for any pair of agendas there will exist a third one

with at least three alternatives, containing the two initial ones. Applying

the previous step to that inclusive agenda precipitates the result that one

and the same dictator prevails at all admissible profiles and for all relevant

agendas. This is the dictator.

Now, to extend the dictatorship result in Theorem 3 to collective choice

correspondences satisfying weak decisiveness, in order to obtain Theorem 2,

we use the following Lemmas, which are proven in the Appendix.

Lemma 1 If C on Rn×{B} is a full range collective choice correspondence

satisfying pairwise justifiability and weak decisiveness on Rn × {B} then C

on Pn × {B} has full range.
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Lemma 2 Let C be a collective choice correspondence satisfying pairwise

justifiability on Rn × {B}. If there is a dictator i for the restriction of C to

Pn × {B}, then C is dictatorial and i is the dictator on Rn × {B}.

5 Applications: Gibbard-Satterhtwaite’s and

Arrow’s impossibility results

As announced and motivated in the introduction, we now apply our main

theorem to prove that Arrow’s and the Gibbard-Sattherthwaite theorems are

both corollaries of our results in the preceding section.

5.1 Gibbard-Satterhtwaite’s theorem

In this subsection we present a first application using the results in Theorem

3 and Corollary 1. The latter says that pairwise justifiability triggers dicta-

torship for any collective choice function defined on the universal domain and

on any collection of agendas B that contains the set A of alternatives. We

show that the Gibbard-Satterthwaite theorem can be obtained as a corollary

of our results.14

Social choice functions, in fact, can be viewed as specific collective choice

functions as follows:

A social choice function f : D → B where B ⊆ A is a collective choice

function C on D × B for B = {B}.
Note that properties on f can be trivially translated as properties on C,

and viceversa. Thus, we use f and C indistinctly.

Observe that when B = {A}, Theorem 3 and Corollary 1, applied to

D = Pn and D = Rn, respectively, provide the same impossibility result

14If we assumed that only agendas with two alternatives are feasible, by May (1952) we
already know that the majority rule is pairwise justifiable and the result of Theorem 3
does not hold.
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as in Gibbard-Satterthwaite using pairwise justifiability instead of strategy-

proofness, where the latter is defined as usual.

Definition 7 Let B ∈ B and D ∈ {Pn,Rn}. A social choice function f :

D → B is strategy-proof on D if for any agent i ∈ N , any preference

profile R ∈ D, and any agent i’s preference R′i, f(R)Rif(R′i, RN\{i}).

Proposition 2 below clarifies why Gibbard-Satterthwaite’s results can be

obtained as a corollary.

Proposition 2 Let B ∈ B and D ∈ {Pn,Rn}. A social choice function f :

D → B is strategy-proof on D if and only if it satisfies pairwise justifiability

on D × {B}.

The proof is included in the Appendix. When individuals are allowed

to be indifferent among alternatives, some dictatorial social choice functions

may not satisfy strategy-proofness. Likewise, it is also possible to construct

a dictatorial social choice function that violates pairwise justifiability when

the dictator is indifferent between two alternatives.

5.2 Arrow’s theorem

This subsection is devoted to discuss in detail how we prove that Arrow’s

result derives from ours. The proof that Arrow’s theorem is also a corol-

lary of our results is more challenging than the proof that the Gibbard-

Satterthwaite’s theorem is a corollary of our results.

First, we define social welfare functions in terms of Arrow’s language and

their relationship with collective choice correspondences.

A social welfare function F on D is a mapping from D to R. For any

R ∈ D, F (R) ∈ R denotes the binary relation that F assigns to R.

Definition 8 A social welfare function F on D is dictatorial if for any

R ∈ D and any x, y ∈ A, there exists i ∈ N , the dictator, such that if xRiy

then xF (R)y.
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Definition 9 A social welfare function F on D satisfies the weak Pareto

condition if for any R ∈ D and any x, y ∈ A, if xPiy for any i ∈ N , then

xF (R)y but not yF (R)x.

Definition 10 A social welfare function F on D satisfies independence

of irrelevant alternatives if for any R,R′ ∈ D and any x, y ∈ A, if [for

any i ∈ N , xRiy ⇐⇒ xR′iy] then [xF (R)y ⇐⇒ xF (R′)y].

To connect social welfare functions with collective choice correspondences

we need the following definition.

Definition 11 A collective choice correspondence C on D × A is transi-

tively rationalizable if for any R ∈ D, there exists a transitive binary

relation on A, say RR ∈ R, that rationalizes C (that is, for any agenda

B ∈ A, C(R,B) = t(RR, B)).

We identify collective choice correspondences defined on all possible agen-

das of size two or larger which are transitively rationalizable with social wel-

fare functions. We then observe that each social welfare function uniquely

defines a transitively rationalizable collective choice correspondence, and vice

versa. The connection between these two objects is finally established in the

following proposition by the fact that any pairwise justifiable collective choice

correspondence is transitive rationalizable. The proof is in the Appendix.

Proposition 3 Any collective choice correspondence C on D×A satisfying

pairwise justifiability on D ×A is transitively rationalizable on D ×A.

In what follows, abusing of the language, when we say that a social wel-

fare function F satisfies either pairwise justifiability or weak decisiveness, we

mean that the associated collective choice correspondence satisfies either of

them.

After having identified collective choice correspondences as social welfare

functions, note that by applying Theorem 2 for B = A, we get Arrow’s impos-

sibility result for the universal domain: any collective choice correspondence
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satisfying pairwise justifiability and weak decisiveness must be dictatorial.

Since a collective choice correspondence on Pn×A satisfying weak decisive-

ness is a collective choice function, by Theorem 3 for B = A we get Arrow’s

impossibility result for the strict universal domain.

Propositions 4 and 5 proven in the Appendix, clarify why Arrow’s results

can be obtained as corollaries of our Theorems.

Proposition 4 If a social welfare function F on D for D = {Pn,Rn} sat-

isfies the weak Pareto condition and independence of irrelevant alternatives,

then C on D ×A satisfies pairwise justifiability.

Proposition 5 If a social welfare function F on D for D = {Pn,Rn} sat-

isfies the weak Pareto condition and independence of irrelevant alternatives,

then C on D ×A satisfies weak decisiveness.

See their proofs in the Appendix. As noted by Mossel and Tamuz (2012),

the connection between Arrowian social welfare functions and dictatorial

rules is no longer one of equivalence when individuals are allowed to be

indifferent among alternatives. Some dictatorial rules may not satisfy the

conditions of Arrow’s theorem. Likewise, it is also possible to construct a

dictatorial social welfare function that violates pairwise justifiability when

the dictator is indifferent between two alternatives.

6 Connections between pairwise justifiability

and other conditions

Pairwise justifiability resembles several properties that have been proposed

in the social choice literature. Nevertheless, most of them apply only to

preference domains that do not admit indifferences. Among the properties

that defined on preference domains admitting individual indifferences, we

deem important to compare pairwise justifiability with strategy-proofness
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and Maskin monotonicity, two well-known properties for social choice func-

tions.

The following two examples prove that our property and strategy-proofness

are in general independent.

Example 1 Let N = {1, 2} and A = B = {x, y, z, w}. The set of admissible

preference profiles is D = {R1, R
′
1} × {R2, R

′
2} where R1: yI1wP1xI1z and

R′1: yP ′1wP
′
1xI

′
1z, R2: zI2yP2xI2w and R′2: xI

′
2wP

′
2zI
′
2y. Define f such that

f(R1, R2) = x, f(R1, R
′
2) = w, f(R′1, R2) = z, and f(R′1, R

′
2) = y. It is easy

to check that f is strategy-proof. However, f violates pairwise justifiability.

To show the latter, take (R1, R2) and (R′1, R
′
2) and observe that no alternative

improves with respect to f(R1, R2) = x for no agent (equivalently, for any

agent i, the lower contour set at x from Ri to R′i weakly increases). Moreover,

no agent is indifferent between x and y under (R1, R2): yP1x and yP2x.

Example 2 Let N = {1, 2} and A = B = {x, y, z, w}. The set of ad-

missible preference profiles is D = D1 × D2, D1 = D2 = {R,R′} where

R: xIzPyPw and R′: wI ′xP ′yI ′z. Define f such that f(R1, R2) = y,

f(R1, R
′
2) = f(R′1, R2) = x, and f(R′1, R

′
2) = w. We can check that f

satisfies pairwise justifiability. However, f violates strategy-proofness. To

show the latter, take R and observe that agent 1 would strictly gain by saying

R′1 instead of R1 since f(R′1, R2) = xP1y = f(R). To show that f satisfies

pairwise justifiability one must consider any pair of profiles with different

outcome and check that either part (1) or (2) of the condition holds. In this

example ten comparisons are required. For the sake of illustration, we prove

it only for one pair of profiles: R = (R1, R2) and R̃ = (R′1, R2). Observe

that from R to R̃ there is an agent, 1, and an alternative, w, such that

f(R) = yP1w and wP ′1y.

Maskin monotonicity is a property that plays a fundamental role in the

implementation literature (see Maskin, 1999).
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Definition 12 Let B ∈ B and D ⊆ Rn be the domain. A social choice func-

tion f : D → B satisfies Maskin monotonicity on D if for any pair of

preference profiles R,R′ ∈ D such that for each agent i ∈ N , [f(R)Riz ⇒ f(R)R′iz]

then f(R′) = f(R).

When indifferences are allowed Maskin monotonicity implies pairwise jus-

tifiability but the converse does not hold. Proposition 6, proved in the

Appendix, and Example 3 show that our property is weaker than Maskin

Monotonicity.

Proposition 6 Let B ∈ B and D ⊆ Rn. Any social choice function f :

D → B satisfying Maskin monotonicity on D satisfies pairwise justifiability

on D.

Example 3 Let N = {1, 2, ..., n} and A = B = {x, y, z}. There are only two

admissible preference profiles and indifferences are allowed: D = {(R1, R−1), (R
′
1, R

′
−1)}

where R1: xP1yI1z, R′1: xI ′1yP
′
1z, and for any j ∈ N\{1}, Rj = R′j ∈ R.

Let f be such that f(R) = x and f(R′) = y. It is easy to check that f sat-

isfies pairwise justifiability (from R to R′, xP1y and yR′1x while from R′ to

R, xI ′1y). However, f violates Maskin monotonicity: for both R and R′, all

alternatives are worse or indifferent to x but their outcome differ.

When only strict preferences are admissible, additional properties have

been defined. In the strict universal domain of preferences, pairwise justifia-

bility is not only equivalent to strategy-proofness and Maskin monotonicity

but also to other well-known properties that have been defined in the liter-

ature, like strong positive association (see Muller and Satterthwaite, 1977)

or strong monotonicity (see Moulin, 1988).15. All these properties bring to

dictatoriality, and Theorem 3 states their equivalence with pairwise justifia-

bility.16 Among the properties proposed for the strict universal domain, the

15See a summary in Section 5 in Barberà, Berga, and Moreno (2012).
16Proposition 4 in Barberà, Berga, and Moreno (2012) shows that these equivalences

break down when considering smaller domains of strict preferences.
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preference reversal property proposed by Eliaz (2004) is of upmost impor-

tance for our setting because he presents a framework that encompasses, like

our own, social choice functions and social welfare functions . Preference

reversal can be rephrased as follows to facilitate comparison with ours: “If a

rule chooses x to be socially better than y in situation 1, and y better than

x in situation 2, it must be that at least one member of society prefers x to

y in 1 and y to x in 2.” Formally, for social choice functions:

Definition 13 Let D ⊆ Pn. A social choice function f : D → B satisfies

preference reversal on D if for any pair of preference profiles R,R′ ∈ D
such that f(R) = x and f(R′) = y, then there must exist one agent i ∈ N
such that xPiy and yP ′ix.

And for social welfare functions:

Definition 14 A social welfare function F : D → R satisfies preference

reversal if for any pair of preference profiles R and R′ ∈ D and for any pair

of alternatives x, y ∈ A, such that xF (R)y and yF (R′)x, there is some agent

i ∈ N such that xPiy and yP ′ix.

Eliaz proved his condition to imply dictatorship if there are at least three

alternatives, as we also do. Hence, his principle and ours, when applied in

a universal domain of preferences profiles, turn out to be equivalent, as they

also are to Gibbard and Satterthwaite’s and to Arrow’s conditions. However,

our notion of pairwise justifiability is strictly weaker, in general, than pref-

erence reversal, and just enough to imply, in addition, the positive results

about Condorcet consistency as presented in Section 5. We also enlarge the

scope of our analysis to include the case in which individual indifferences are

allowed.

It is straightforward to notice that, by definition, preference reversal im-

plies pairwise justifiability. However, the converse does not always hold as

shown for social choice functions and for social welfare functions in the fol-

lowing example.
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Example 4 Let N = {1, 2}, B = A = {x, y, z, w}, and the set of admissi-

ble preference profiles is D = D1 × D2, D1 = D2 = {R1, R2, R3, R4} where

xP 1wP 1yP 1z, wP 2xP 2zP 2y, yP 3zP 3xP 3w, and zP 4yP 4wP 4x.17

Consider the Borda Count with the tie-breaking w � z � y � x which defines

a social welfare function F .18

We show that the social choice function f rationalized by F on A violates

preference reversal, but it satisfies pairwise justifiability. To show the latter,

consider R = (R1
1, R

3
2), and R′ = (R1

1, R
4
2). Observe that f(R) = y and

f(R′) = w. Note that pairwise justifiability from R to R′ is satisfied because

yP 3
2 z and zP 4

2 y, and from R′ to R is satisfied because wP 4
2 x and xP 3

2w. A

similar argument can be repeated for each pair of preference profiles, which

would prove that pairwise justifiability holds. To check that f violates prefer-

ence reversal, note that no agent has changed her preferences between w and

y from R to R′.

Now, we show that the social welfare function F violates preference rever-

sal and satisfies pairwise justifiability. The score at R of w is 2 while that of y

is 4, and therefore, yF (R)w. The score at R′ of w and y is 3, thus wF (R′)y.

Since no agent has changed her preferences from R to R′ between w and y,

this is a violation of preference reversal. Note that pairwise justifiability from

R to R′ is satisfied because yP 3
2 z and zP 4

2 y, and from from R′ to R is satisfied

because xP 3
2w and wP 4

2 x. A similar argument can be repeated for each pair

of preferences profiles and alternatives, which would prove that pairwise jus-

tifiability holds. Therefore, the Borda Count applied to each feasible agenda

defines a collective choice function that satisfies pairwise justifiability.

17Notice that these preference profiles satisfy one of the three forms of value restric-
tion defined by Sen and Pattanaik (1969), called intermediate. Namely, for any triple of
alternatives, there is one that never appears in the second place.

18This rule F is defined as follows: for each agent it allocates 3 points to the alternative
at the top of the agent’s preference order, 2 points to the alternative in the second place,
and 1 point to the alternative in the third place. Then, the social welfare function is
constructed by ranking alternative a over b when a’s total score (summing points for a
over all agents) is greater than b’s total score, and use the tie-breaking rule when the two
scores coincide.
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We point out that the scope of our property goes beyond this framework,

but this non-exhaustive set of comparisons suggests that, in addition to the

applications that we discuss in this paper, an analysis of the condition’s im-

plications in different cases, preference domains and combinations of agendas

will be worthy.

Given the equivalences among properties mentioned above, some of our

results on Condorcet consistency are satisfied with conditions other than ours,

or not, depending on the case. For example, when indifferences are allowed

Condorcet consistency implies strategy-proofness under a Cartesian product

domain but it does not imply Maskin monotonicity (strong positive associ-

ation has no bite with indifferences).19 Under the strict universal domain,

the result in Theorem 1 holds by replacing pairwise justifiability by either

Maskin monotonicity, strong positive association, or preference reversal since

as above mentioned all of them are equivalent under this domain.

7 Final Remarks

We propose a novel property that provides a foundation for Condorcet con-

sistent rules. It also offers a unifying result for the two most important

impossibility results in social choice theory, in a general setting in which in-

dividual preferences are allowed to admit indifferences. In addition to the

extreme cases where only one agenda is considered, or all possible agendas

are deemed relevant, our collective choice rules can be used to analyze many

interesting real-life situations in which specific subsets of alternatives are

faced by society, and others are not.

This adaptability to variation in feasible agendas allows to introduce a

novel definition of dictatorship, when the dictator changes depending on

which agenda is under scrutiny.

Definition 15 A collective choice correspondence C on D × B is a dicta-

19See Remark 2 and Example 5 in the Appendix.
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torship collection (on D × B) if for each B ∈ B there exists an agent

i ∈ N, the local dictator on D × {B}, such that for any R ∈ D, C(R,B) ⊆
t(Ri, B).

In words, a collective choice correspondence is a dictatorship collection

if there is a dictator for each agenda, though not necessarily the same for

different agendas. When the dictator is the same for all agendas we obtain

the usual definition of dictatorship that we also use in the paper.

We could have weakened the notion of pairwise justifiability by only re-

quiring that the conditions it imposes should apply when comparing situa-

tions that involve the same agenda.20 Under this weaker form of our condi-

tion and considering collections of agendas, we obtain the following theorem

(which is proved as Step 1 of Theorem 3 in the Appendix).

Theorem 4 Any full range collective choice rule C on Pn×B satisfies weak

pairwise justifiability on Pn × B for any B ⊆ {B ∈ A such that #B ≥ 3} if

and only if C is a dictatorship collection.

For each given agenda, a single agent would have to be a dictator, how-

ever, this agent would no longer have to be the same as the agenda changed.

Cases where, depending on the subject matter under discussion, citizens del-

egate the collective decision to someone with specific expertise could, then,

enter as candidates to satisfy this weak version of pairwise justifiability.
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Barberà, S., Berga, D., and B. Moreno (2012). Two necessary conditions

for strategy-proofness: On what domains are they also sufficient? Games

and Economic Behavior. 75: 490-509.

Campbell, D. E. and J. S. Kelly (2015). Anonymous, Neutral, and

Strategy-proof Rules on the Condorcet Domain. Economics Letters, 128:

79-82.

Eliaz, K. (2004). Social Aggregators. Social Choice and Welfare, 22, 2:

317-330.

Fishburn P.C. (1973). The Theory of Social Choice, Princeton, Princeton

University Press.

Gibbard, A. (1973). Manipulation of Voting Schemes: A General Result.

Econometrica, 41: 587-601.

Grandmont, J-M. (1978). Intermediate Preferences and Majority Rule.

Econometrica, 46: 317-330.

Koray, S. (2000). Self-Selective Social Choice Functions Verify Arrow and

Gibbard- Satterthwaite Theorems. Econometrica, 68, 4, 981-995.

Le Breton, M., and J. Weymark (2011). Arrovian Social Choice Theory

on Economic Domains. Handbook of Social Choice and Welfare, Volume II,

Elsevier.

Man, P. T. Y. and S. Takayama (2013). A unifying impossibility theorem.

Economic Theory, 54: 249-271.

Maskin, E. (1999). Nash Equilibrium and Welfare Optimality. Review of

Economic Studies, 66: 23-38.

May, K.O. (1952). A set of Independent Necessary and Sufficient Condi-

tions for Simple Majority Voting Decisions. Econometrica, 20: 680-684.

Mossel, E. and O. Tamuz (2012). Complete characterization of functions

satisfying the conditions of Arrow’s theorem. Social Choice and Welfare, 39:

127-140.

27



Moulin, H. (1988). Axioms of cooperative decision making. Econometric

Society Monographs, 15, Cambridge University Press.

Muller, E., and M. A. Satterthwaite (1977). The Equivalence of Strong

Positive Association and Strategy-proofness. Journal of Economic Theory,

14: 412-418.

Myerson, R. (1995). Axiomatic Derivation of Scoring Rules without the

Ordering Assumption, Social Choice and Welfare ,12: 59-74.

Nitzan T. and A. Rubinstein (1981). A Further Characterization of the

Borda Ranking Method. Public Choice, 36: 153-158.

Pattanaik, P. (1978). Strategy and group choice. Amsterdam New York,

New York: North-Holland Publishing Co.

Penn E.M., Patty J.W., and S. Gailmard (2011). Manipulation and

single-peakedness: a general result. American Journal of Political Sciences,

55: 436-449.

Reny, P. (2001). Arrow’s Theorem and the Gibbard-Satterthwaite Theo-

rem: a Unified Approach. Economics Letters, 70: 99-15.

Richelson J.T. (1978). A Characterization Result for Plurality Rule.

Journal of Economic Theory, 19: 548-550.

Satterthwaite, M. (1973). Manipulation of Voting Schemes: A General

Result. Econometrica, 41: 587-601.

Sen, A. K. and P. K. Pattanaik (1969). Necessary and sufficient conditions

for rational choice under majority decision. Journal of Economic Theory, 1:

178-202.

Smith, J.H. (1973). Aggregation of Preferences with Variable Electorate.

Econometrica, 41: 1027-1041.

Vickrey, W. (1960). Utility, Strategy, and Social Decision Rules. The

Quarterly Journal of Economics, 74: 507-535.

Yonta Mekuko, A., Mouyouwou, Y., Nunẽz, M., and N.G. Andjiga. (2021).
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Appendix

7.1 Proofs of results in Section 3

Before proving Theorem 1, we provide a useful remark, whose proof involves

the construction of a specific strict order RBR that rationalizes the choices of

C at all situations given by a fixed R, as the agendas vary over all of those

in B while the Condorcet winner exists. This order is heavily used along the

”only if” part of the proof of Theorem 1.

Remark 1 Let C be any collective choice function that is Condorcet con-

sistent on DCB × B, where B is a collection of agendas such that for all

B,B′ ∈ B, 〈B ∪ B′〉 ∈ B and D ⊆ Rn a subset of preference profiles. Then

C on DCB × B is transitively rationalizable.

Proof of Remark 1. Note that C restricted to DCB × B chooses the Con-

dorcet winner at any situation (R,B) ∈ DCB × B. Given a collection of

agendas B, take any R ∈ DCB. To construct the rationalization we identify

and we rank those alternatives that will be the Condorcet winner at some

situation (R,B) for B ∈ B. We construct the binary relation RBR ∈ P as

follows. Define B1 as the union of all elements in B. By assumption, B1 ∈ B
and therefore there exists a strong Condorcet winner at (R,B1), denoted x1.

Let x1 be the top alternative of RBR. Next, define B2 = ∪{B ∈ B : x1 /∈ B}.
If B2 is empty we stop. Otherwise, by assumption B2 ∈ B and denote x2 the

strong Condorcet winner at (R,B2). Then, let x2 be the second ranked alter-

native of RBR. In general, we could define Bk = ∪{B ∈ B : {x1, ..., xk−1} /∈ B}
and if Bk is not empty, we define xk to be the strong Condorcet winner at

(R,Bk), and let xk be the top k-ranked alternative of RBR. Proceed until

Bk+1 is empty. Our rationalization RBR is a strict order where the identified
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alternatives are ranked in the first places: x1 is first, x2 second, until xk,

and then the rest of alternatives are ordered acording to a fixed exogenous

strict order � on A. Clearly, for any agenda B ∈ B and any R ∈ DCB, the

Condorcet consistent rule on DCB × B is such that C(R,B) = t(RBR, B).

Observe that the order RBR in the proof of Remark 1 is a strict order over

A and if alternative y is the strong Condorcet winner at (R,B), with B ∈ B,

then y is ranked above z according to RBR for all z ∈ B \ {y}.

Theorem 1 Let B be a collection of agendas such that for all B,B′ ∈
B, 〈B ∪ B′〉 ∈ B and D = Rn. A collective choice function C on D × B is

anonymous, neutral, and satisfies pairwise justifiability on DCB × B if and

only if C is Condorcet consistent on DCB × B.

Proof of Theorem 1. Note that since C is defined on Rn × B, for any

R = (R1, R2, ..., Rn) ∈ DCB we have that µ(Rρ(1), Rρ(2), ..., Rρ(n)) ∈ DCB for

any permutations ρ of N and µ of A.21

First, we prove the ”if” implication. Since C is Condorcet consistent on

DCB × B, then C is anonymous and neutral on DCB × B. We now prove

that C satisfies pairwise justifiability on DCB × B, showing that for any two

situations (R,B), (R′, B′) ∈ DCB × B where C(R,B) = x, C(R′, B′) = y,

and x, y ∈ B∩B′ there is some agent i and some alternative z ∈ A\{x} such

that either (1) xPiz and zR′ix or (2) xIiy for some i ∈ N for whom Ri 6= R′i

holds. Since C(R,B) = x, the number of agents who strictly prefer x over

y is greater than that of those who strictly prefer y over x at R. Also since

C(R′, B′) = y, the number of agents who strictly prefer y over x is greater

than that of those who strictly prefer x over y at R′. Therefore, there exists

some agent i such that xPiy and yR′ix.

We now prove the ”only if” statement by contradiction. Let C satisfy

anonymity, neutrality, and pairwise justifiability on DCB × B. Suppose that

C is not Condorcet consistent on DCB × B. Then, there exists a situation

21We use the fact that these permutations do not take us outside the preference domain
repeatedly along the proof, without making it explicit all the time.
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(R0, B) ∈ DCB × B such that y is the strong Condorcet winner at (R0, B)

and C(R0, B) = x0 6= y.

From here on, the proof that this cannot happen under our assumptions

proceeds in two differentiated parts. In part 2 we show that if the strong

Condorcet winner is not chosen at a situation which has a specific structure,

then C cannot satisfy the conjunction of anonymity, neutrality, and pairwise

justifiability. Part 1 is devoted to show that, starting from any situation (R0)

where Condorcet consistency is violated, we can identify another situation in

the Condorcet domain of C where this violation also arises, and which has

the characteristics needed to validate Step 2. The construction of such situ-

ation may involve several iterations, and the delicate part of the arguments

is to show that each of the new situations that are proposed at each one of

them still belongs to our Condorcet domain.

Part 1.

Step 1 . Consider the following partition of N : Y 0 = {i ∈ N : yP 0
i x

0},
X0 = {i ∈ N : x0P 0

i y}, and L0 = {i ∈ N : x0I0i y} = N\(Y 0 ∪ X0). Since y

is the strong Condorcet winner at (R0, B), then #Y 0 > #X0. Let R1 be a

preference profile defined as follows: for every agent i ∈ L0, R1
i = R0

i , for

every i ∈ Y 0 ∪ X0, every alternative except x0 is ranked according to the

strict order RBR0 over A induced by R0, as defined in Remark 1 above. For

all i ∈ Y 0 ∪X0 alternative x0 is ranked adjoining y: for every agent i ∈ Y 0

the alternative x0 is ranked just below y, while for every agent i ∈ X0 the

alternative x0 is ranked just above y.

We now prove that for every B′ ∈ B there exists a strong Condorcet

winner at (R1, B′) and therefore R1 ∈ DCB. We distinguish some cases.

Case 1: x0 /∈ B′.
Suppose first that y is the strong Condorcet winner at (R0, B′). Since

for all i ∈ N and for all a ∈ B′, yP 0
i a implies yP 1

i a and yI0i a implies yR1
i a,

then y is still the strong Condorcet winner at (R1, B′). Suppose that z 6= y

31



is the strong Condorcet winner at (R0, B′). This implies that either y /∈ B′

or z /∈ B. If y /∈ B′, then z is still the strong Condorcet winner at (R1, B′),

because z is ranked above every w ∈ B′ \ {z} according to RBR0 . If y ∈ B′,
then it follows that z /∈ B and z is ranked above y according to RBR0 and

therefore is still the strong Condorcet winner at (R1, B′).

Case 2: x0 ∈ B′.
First notice that if either y or x0 is the strong Condorcet winner at

(R0, B′), then it immediately follows that the strong Condorcet winner at

(R1, B′) is the same (note that if x0 is the strong Condorcet winner at (R0, B′)

then y /∈ B′). Let z ∈ B′\{x0, y} be the strong Condorcet winner at (R0, B′).

We distinguish two cases. Suppose first that z is the strong Condorcet win-

ner at (R0, B′ ∪B). It follows that z /∈ B and z is ranked above y according

to RBR and thus, z is the strong Condorcet winner at (R1, B′). Suppose now

that y is the strong Condorcet winner at (R0, B′ ∪ B). It follows that there

is a majority of agents at R0 who prefers y to z and y is ranked above z

according to RBR. Let H0 be the set of agents who strictly prefer y to z at

R0: if i ∈ H0 ∩ L0 then, by definition, R0
i = R1

i , if i ∈ H0 ∩ (Y 0 ∪X0) then

again, by definition, x0P 1
i z. Therefore, x0 is the strong Condorcet winner at

(R1, B′) and (R1, B′) ∈ DCB × B.

By pairwise justifiability from (R0, B) to (R1, B), C(R1, B) = x1, such that

x1I0i x
0 6= y for some i ∈ Y 0 ∪ X0, since there is no alternative z ∈ B\{x0}

and no agent i ∈ N such that z has improved with respect to x0.

Let Y 1 = {j ∈ N : yP 1
j x

1}, X1 = {k ∈ N : x1P 1
k y}, and L1 = {` ∈ N :

yI1` x
1} and note that #Y 1 > #X1.

Observe that for all i ∈ Y 0 ∪X0, R1
i is a strict order over A, and therefore

L1 ⊆ L0. If L1 = L0, Part 1 ends, let T = 1 and go to Part 2. Otherwise, if

L1 ( L0 continue to the next step.

Step t for t ∈ [2, ..., T ]: Let Rt be a preference profile defined as follows:

for every agent i ∈ Lt−1, Rt
i = Rt−1

i , for every i ∈ Y t ∪X t, every alternative

except xt−1 is ranked according to the strict order RBRt−1 over A induced by
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Rt−1, as defined in Remark 1 above. Note that y is the strong Condorcet

winner at (Rt, B). For all i ∈ Y t−1∪X t−1 alternative xt−1 is ranked adjoining

y: for every agent i ∈ Y t−1 the alternative xt−1 is ranked just below y, while

for every agent i ∈ X t−1 the alternative xt−1 is ranked just above y. Applying

the same arguments as in Step 1 we can prove that there exists a strong

Condorcet winner at (Rt, B′) for all B′ ∈ RBRt−1 .

By pairwise justifiability from (Rt−1, B) to (Rt, B), C(Rt, B) = xtI t−1i xt−1 6=
y for some i ∈ Y t−1 ∪ X t−1, since there is no alternative z ∈ A\{xt−1} and

no agent i ∈ N such that z has improved with respect to xt−1.

Let Y t = {j ∈ N : yP t
jx

t}, X t = {k ∈ N : xtP t
ky}, and Lt = {` ∈ N : yI t`x

t}
and note that #Y t > #X t.

Observe that Lt ⊆ Lt−1. If Lt = Lt−1, then Part 1 ends. Let t = T and

go to Part 2. Otherwise, if Lt ( Lt−1 continue to the next step and repeat

the same argument as in Step t as many times as necessary till we get either

LT = LT−1 or LT = ∅. Define RT as usual and go to Part 2 below. Notice

that C(RT , B) = xT , y is the strong Condorcet winner at (RT , B) and for all

i in LT , xT ITi y.

Part 2. Let {Y T
1 , Y

T
2 } be a partition of Y T such that #Y T

1 = #XT . Let

R′′ = (R′′
Y T
1
, RT

Y T
2
, R′′XT , R

T
LT ) be obtained fromRT where agents in Y T

1 andXT

exchange their preferences. By anonymity, C
(

(R′′
Y T
1
, RT

Y T
2
, R′′XT , R

T
LT ), B

)
=

xT . Take µ a permutation of A such that µ(xT ) = y, µ(y) = xT , and µ(z) = z

for all z ∈ A\{xT , y}. By neutrality, µ(C
(

(R′′
Y T
1
, RT

Y T
2
, R′′XT , R

T
LT ), B

)
) =

C(µ(R′′
Y T
1
, RT

Y T
2
, R′′XT , R

T
LT ), B). Thus, C(µ(R′′

Y T
1
, RT

Y T
2
, R′′XT , R

T
LT ), B) = y.

Note that in profile µ(R′′
Y T
1
, RT

Y T
2
, R′′XT , R

T
LT ), agents in Y T

1 and in XT have

the same preferences as in RT . We now change the preferences of all agents

in Y T
2 to RT

Y T
2

and the new preference profile is RT . By pairwise justifiabil-

ity applied from (µ(R′′
Y T
1
, RT

Y T
2
, R′′XT , R

T
LT ), B) to (RT , B), then C(RT , B) = y

since there is no alternative z ∈ A\{y} and no agent i ∈ N such that z has

improved with respect to y and y is not indifferent to any alternative for

agents in Y T
2 . Thus, we get the desired contradiction.

33



Proposition 1 Let B be a collection of agendas, D ⊆ Rn a subset of

preference profiles, and C be a collective choice function on D × B. If C

is Condorcet consistent on D′ × B, then C satisfies pairwise justifiability on

D′ × B for any D′ ⊆ DCB.

Proof of Proposition 1. Let C be Condorcet consistent on D′ × B where

D′ ⊆ DCB. We prove that C satisfies pairwise justifiability on DCB × B,

showing that for any two situations (R,B), (R′, B′) ∈ DCB × B where

C(R,B) = x, C(R′, B′) = y, x, y ∈ B ∩ B′, there is some agent i and

some alternative z ∈ A\{x} such that either (1) xPiz and zR′ix or (2) xIiy

for some i ∈ N for whom Ri 6= R′i holds. Since C(R,B) = x, the number of

agents who strictly prefer x over y is greater than that of those who strictly

prefer y over x at R. Also since C(R′, B′) = y, the number of agents who

strictly prefer y over x is greater than that of those who strictly prefer x over

y at R′. Therefore, there exists some agent i such that xPiy and yR′ix.

7.2 Proofs of results in Section 4

We first prove Theorem 3 because we use it to prove Theorem 2.

Theorem 3 If A ∈ B, a full range collective choice function C on Pn × B
satisfies pairwise justifiability on Pn × B if and only if it is dictatorial.

Proof of Theorem 3. Note that any dictatorial collective choice function

satisfies full range and pairwise justifiability on Pn × B. We prove the con-

verse implication in two steps. In the first step we fix an agenda with at least

three alternatives (which exists since A ∈ B) and show that our property im-

plies the existence of a dictator on such fixed agenda. In the second step we

show that this dictator is the same for all possible agendas.

Step 1: Let B ∈ B. For any full range collective choice function C on

Pn×{B} satisfying pairwise justifiability on Pn×{B} where #B ≥ 3, there

is an agent that is a dictator on Pn × {B}.

Since this statement refers to the case where individual preferences are strict,
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we only need to use the first part of Definition 3 of pairwise justifiability.

In this step we concentrate on the consequences of pairwise stability when

individual preferences change but the agenda remains the same.

Claim 1 . Let R be a preference profile where alternative x is the top of Ri

in B for each agent i. Then, C(R,B) = x.

Proof of Claim 1 : Since all alternatives in B are in the range of C, there

exists a profile R̃ for which C(R̃, B) = x.

Consider now the profile R̂ where all agents place x at their top in A, thus

also in B, while keeping the same ordering among the rest of alternatives as

in R̃. No alternative in A has improved, for no agent, its position relative to

x when society’s profile changes from R̃ to R̂, hence C(R̂, B) = x by pair-

wise justifiability. Since in all profiles where all agents have x as their top

alternative in A, no alternative in A has improved, for no agent, its position

relative to x, again by pairwise justifiability, the proof is complete.

Claim 2 . Let R be a preference profile where all agents have either z or w

as their top alternative in B. Then, the choice at this profile in B must be

either z or w.

Proof of Claim 2 : Let J be the set of agents whose top in B is z and K

be the set of those whose top in B is w at profile R, and assume that

C(R,B) = x /∈ {z, w}. Consider now the profile R̂ where all agents in J

place z at their top in A and all agents in K place w at their top in A, while

keeping the same ordering among the rest of alternatives as in R. Since no

alternative in A has improved, for no agent, its position relative to C(R,B),

by pairwise justifiability, C(R̂, B) = x. Now, we shall arrive at a contradic-

tion through several assertions.

(2.1) It cannot be that zR̂jwR̂jx for all j ∈ J , nor that wR̂kzR̂kx for all

k ∈ K.

Suppose that zR̂jwR̂jx for all j ∈ J . Consider the profile R̃ where all agents

in J have w as their top in B, keeping the rest of their ranking unchanged

as in R̂, and agents in K have not changed preferences. Then, the choice
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at profile R̃ in B should be w by Claim 1, because w is the top in B for

all agents in R̃. Yet, no alternative has improved, for no agent, its position

relative to x when society’s profile changes from R̂ to R̃, hence C(R̃, B) = x

by pairwise justifiability. A contradiction. By a similar argument, it cannot

be the case that wR̂kzR̂kx for all k ∈ K.

(2.2) Now, consider the partition of profile R̂ into four sets of preferences,

corresponding to agents whose preferences rank x, z, w as follows taking into

account that, without loss of generality, by pairwise justifiability, we can as-

sume that x is ranked as the alternative in the second place in A in those

profiles for J where it is above w, and in those for K where it is above z.

J1 are agents who rank z as the top, followed by x as the second alternative

in A (thus, in B).

K1 are agents who rank w as the top, followed by x as the second alternative

in A (thus, in B).

J\J1 is the set of those agents i for whom z is the top and wR̂ix.

K\K1 is the set of those agents i for whom w is the top and zR̂ix.

If J1 or K1 are empty, we would be in Claim (2.1). Our starting assumption

is that C(R̂, B) = C(R̂J1 , R̂K1 , R̂J\J1 , R̂K\K1 , B) = x.

We shall now consider the possible choices in B under several profiles. In all

of them, the preferences of J\J1 and K\K1 remain unchanged.

Let R′ be such that, all the rest being unchanged with respect to R̂, agents

in J1 have w as the alternative in the second place, between z and x.

Let R′′ be such that, all the rest being unchanged with respect to R̂, agents

in K1 have z as the alternative in the second place, between w and x.

Let R′′′ be such that both agents in J1 and K1 have changed in the way

described when defining R′ and R′′. That is, those in J1, have w as the

alternative in the second place, between z and x, and those in K1, have z as

the alternative in the second place, between w and x.

Remark that, C(R′, B) 6= x, by the argument we used in (2.1), and that w is

the only alternative whose ranking has improved over some alternative and
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for some agent from R̂ to R′ (equivalently, w is the unique alternative that

gets worse from R′ to R̂ for some agent). Hence, by pairwise justifiability

C(R′, B) = w. For the same reasons, it must be that C(R′′, B) = z. But

then, C(R′′′, B) must be w, because passing from R′ to R′′′, the relationship

between w and all other alternatives has not changed for any agent. And,

for the same reasons, passing from R′′ to R′′′, C(R′′′, B) must be z. Since C

is a collective choice function, that is a contradiction.

Remark Before we develop our third claim, let us introduce some notation

and definitions that will be useful. For B′ ⊆ B, we will say that an agent i is

B′-determinant at profile R if and only if C
(
(R′i, RN\{i}), B

′) = t(R′i, B
′) for

all R′i. Also remark that if i is B′-determinant at R, it is also B′-determinant

at all profiles R̃ such that R̃j = Rj for all j 6= i.

Given Claims 1 and 2, there will exist a profile where agents’ preferences

have alternative z and w as the only top in B and one of the agents is (z, w)-

determinant.

Claim 3 . If agent i is (z, w)-determinant at a profile R = (Ri, RJ , RK) where

all agents in J have z as the top in B, and all those in K have w as the top

in B, then agent i is (z, w)-determinant at any profile R′ = (Ri, RJ , R
′
K)

where all agents in K have w as the top in B and x ∈ A\{w} as the alter-

native in the second place in B.

Proof of Claim 3 : By pairwise justifiability, without loss of generality, we

can assume that agent i is (z, w)-determinant at a profile R = (Ri, RJ , RK)

where agents in J have z as the top in A, and those in K have w as the

top in A. Since i is (z, w)-determinant at a profile R = (Ri, RJ , RK), by

pairwise justifiability, C ((Rw
i , RJ , RK), B) = w where Rw

i is such that w

is the top and z as the alternative in the second place in A. Again, by

pairwise justifiability, C ((Rw
i , RJ , R

′
K), B) = w where R′K is such that w

is the top and x as the alternative in the second place in A. By Claim 2,

C ((Rz
i , RJ , R

′
K), B) ∈ {z, w} where Rz

i is such that z is the top and w as the

alternative in the second place in A. If C ((Rz
i , RJ , R

′
K), B) = w, by pairwise
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justifiability, C ((Rz
i , RJ , RK), B) = w which is a contradiction to agent i

being (z, w)-determinant at (Ri, RJ , RK).

Claim 4 . If agent i is (z, w)-determinant at a profile R = (Ri, RJ , R
′
K)

where agents in J have z as the top in B, and those in K have w as the top

in B and x ∈ A\{w} as the alternative in the second place in B, then agent

i is also (x, z, w)-determinant at profile R = (Ri, RJ , R
′
K).

Proof of Claim 4 : We show that agent i is (x, z, w)-determinant at profile

R = (Ri, RJ , R
′
K).

We first prove that C ((R′i, RJ , R
′
K), B) = x where R′i ranks x as the first, z

as the second in B. Suppose not. By Claim 3, agent i is (z, w)-determinant

at (Ri, RJ , R
′
K). Then, C ((Rz

i , RJ , R
′
K), B) = z, where Rz

i ranks z as the

first, x as the second in B, and the relative order of the rest of alternatives in

A as in R′i. Note that if C ((R′i, RJ , R
′
K), B) was y 6= z, since y has the same

relative order with respect to all alternatives in Rz
i and in R′i, by pairwise

justifiability, C ((Rz
i , RJ , R

′
K), B) = y which is a contradiction to what we

obtained above. Then, C ((R′i, RJ , R
′
K), B) = z.

For the same reason, when R′′i ranks x as the first, w as the second in B, and

the rest of alternatives in A as in R′i, it should be that C ((R′′i , RJ , R
′
K), B) =

w.

Now consider the profile where agents in K switch the positions of x and w,

and the relative order of the rest of alternatives in A as in R′K , so that x is

the top in B for all of them. At that new profile (R′′i , RJ , R
′′
K), the only two

alternatives in top positions in B are z and x. Hence, by Claim 2, the choice

must be either z or x. But z cannot be, because this would violate pairwise

justifiability, because z has not improved for any alternative by any agent.

Thus, C ((R′′i , RJ , R
′′
K), B) = x.

Now, starting from this last profile, consider the one, say R′′′i , where i changes

preferences so that z becomes the second to x in B, and the relative order

of the rest of alternatives in A as in R′′i . Again, by pairwise justifiability,

C ((R′′′i , RJ , R
′′
K), B) = x since no alternative and for no agent has improved
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relative to x. Finally, let agents in K change preferences to rank w as the

first, x as the second, and the relative order of the rest of alternatives in A

as in R′′K , say R′′′K . By pairwise justifiability, the choice cannot be z, and yet

(R′′′i , RJ , R
′′′
K) is the same profile we start with, where z was to be chosen.

This contradiction proves that C ((R′i, RJ , R
′
K), B) = x.

We now show that for any Ri whose top is x ∈ B, then C ((Ri, RJ , R
′
K), B) =

x. Suppose not. We have shown that C ((R′i, RJ , R
′
K), B) = x where R′i ranks

x the first, z the second in B. By pairwise justifiability, from (R′i, RJ , R
′
K) to

(R′′i , RJ , R
′
K) with x as the top in A and the relative order of the rest of alter-

natives in A as in Ri, then C ((R′′i , RJ , R
′
K), B) = x. Again, by pairwise justi-

fiability, from (Ri, RJ , R
′
K) to (R′′i , RJ , R

′
K) we have that C ((R′′i , RJ , R

′
K), B) 6=

x which is a contradiction.

Claim 5 . If an agent i is (z, w)-determinant at a profile R = (Ri, RJ , RK)

where all agents in J have z as the top in B, and all those in K have w as

the top in B, then this agent i is B-determinant at that profile.

Proof of Claim 5 : Suppose not. That is, there exists R̂i with x as the top

alternative in B such that C
(

(R̂i, RJ , RK), B
)
6= x.

LetR′i with x as the first and w as the second inB and the relative order of the

rest of alternatives in A is as in R̂i. By the same argument as the one at the

end of Claim 4, since x is the top in B of R̂i and R′i, C ((R′i, RJ , RK), B) 6= x.

Since agent i is (z, w)-determinant at a profile R = (Ri, RJ , RK), then

C ((Rw
i , RJ , RK), B) = w, where Rw

i ranks w as the first, x as the sec-

ond in B, and the relative order of the rest of alternatives in A as in

R̂i. If C ((R′i, RJ , RK), B) was y 6= w, since y has the same relative or-

der with respect to all alternatives in Rw
i and in R′i, by pairwise justifiability,

C ((Rw
i , RJ , RK), B) = y which is a contradiction to agent i being (z, w)-

determinant at (R′i, RJ , RK). Thus, C ((R′i, RJ , RK), B) = w. Let R′K where

all agents in K have w as the top in B and x ∈ A\{w} as the alternative in

the second place in B, and the relative order of the rest of alternatives is as in

RK . Since w has the same relative order with respect to all alternatives and
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all agents, by pairwise justifiability from (R′i, RJ , RK) to (R′i, RJ , R
′
K), we

have C ((R′i, RJ , R
′
K), B) = w. But, this is a contradiction since by Claims 3

and 4, agent i is also (x, z, w)-determinant at profile R = (Ri, RJ , R
′
K) and

thus C ((R′i, RJ , R
′
K), B) = x.

Therefore, C ((R′i, RJ , RK), B) = C
(

(R̂i, RJ , RK), B
)

= x.

Claim 6 . If an agent i is B-determinant at a profile R = (Ri, RJ , RK) where

all agents in J have z as the top in B, and all those in K have w as the top

in B, then i is B-determinant at all profiles.

Proof of Claim 6 : We first show that agent i is B-determinant at all pro-

files. Consider R in the statement where agent i is B-determinant. Thus,

i is also (z, w)-determinant at R. Change the preferences of all agents for

y ∈ B\{z, w} so that y is the worst alternative, keeping the relative order-

ing of the rest of the alternatives. The choice is either z or w by Claim 2,

depending on agent i’s preferences. Then, by Claim 5, the modified profile

still leaves i as being B-determinant. Now let y become the top alternative

in B for i. The choice will be y, even if it is worse for all other agents since

agent i is B-determinant at the modified profile. By pairwise justifiability,

all profiles where y is the top in B for agent i gives y. This argument can

be repeated for all alternatives y in B. Thus, agent i is B-determinant at all

profiles.

Claim 7 . For any B ∈ B, there is an agent that is B-determinant at all

profiles in Pn. Thus, there is an agent that is a dictator on B at all profiles

in Pn.

Claim 7 follows from all previous claims. This ends the proof of Step 1.

Step 2. For any B, B′ ∈ B such that B′ 6= B there exists an agent who is

both a dictator on Pn × {B} and on Pn × {B′}.

Take any two sets B, B′ ∈ B such that B′ 6= B. Let B′′ ∈ B with at least

three alternatives and such that B ∪ B′ ⊆ B′′ (note that B′′ exists since

A ∈ B). By Step 1 there is an agent, say i, who is a dictator on B′′. We
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show that i is also a dictator on B and B′. Note that this is straightforward

if an agenda B has only one alternative. Consider two cases.

Case 1: B and B′ have both only 2 alternatives.

Take one of them, without loss of generality, B = {z, w}. Suppose, to get a

contradiction, that agent i is not a dictator on B.

Subcase 1.1. There is a dictator on B, say agent 1 6= i. Let R ∈ Pn be such

that z is the top of R1 in A, w is the top of Ri in A, and any preference for

other agents. Note that C(R,B) = t(R1, B) = z and C(R,B′′) = t(Ri, B
′′) =

w. By pairwise justifiability, from (R,B) to (R,B′′) the choice must be the

same for the two situations since agents’ preferences do not change. Then,

the dictator must be the same on B and on B′′ which is the contradiction.

Subcase 1.2. There is no dictator on B. Let R ∈ Pn be such that for each

agent j ∈ N\{i}, t(Rj, A) = z and t(Ri, A) = w. If C(R,B) = w and since

by Claim 1 in the proof of Step 1, when all agents have z as top, the choice is

z, then agent i is (z, w)-determinant at R. By Claim 6 in the proof of Step 1,

agent i is (z, w)-determinant at all profiles, meaning that i is a dictator on B,

which is a contradiction. Therefore, C(R,B) = z. Since agent i is a dictator

on B′′, C(R,B′′) = w. By pairwise justifiability, from (R,B) to (R,B′′) the

choice must be the same for the two situations, which is the contradiction.

Therefore, agent i must be the dictator on B.

Case 2: B and B′ where at least one of them has three or more alternatives.

Suppose, without loss of generality, that B′ has at least three alternatives.

We first show that i is a dictator on B′.

By Step 1 there is an agent, say 1, who is a dictator on B′. Suppose to

get a contradiction that i 6= 1. Let z ∈ B′ ∩ B′′ be such that z 6= w. Let

R ∈ Pn be such that z is the top of R1 in A, w is the top of Ri in A,

and any preference for other agents. Note that C(R,B′) = t(R1, B
′) = z,

C(R,B′′) = t(Ri, B
′′) = w. By pairwise justifiability, from (R,B′) to (R,B′′)

the choice must be the same for the two situations. Then, the dictator must

be the same on B′ and on B′′ which is the contradiction.
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We now show that i is also a dictator on B.

If #B ≥ 3, repeat the same argument as for B′. Otherwise, if #B = 2,

repeat the same argument as in Case 1.

This ends the proof of Theorem 3.

Theorem 2 Let A ∈ B, any full range collective choice correspondence C

on Rn×B satisfying weak decisiveness and pairwise justifiability on Rn×B
is dictatorial.

The next two lemmas will help to develop the proof of Theorem 2.

Lemma 1 If C on Rn×{B} is a full range collective choice correspondence

satisfying pairwise justifiability and weak decisiveness on Rn × {B} then C

on Pn × {B} has full range.

Proof of Lemma 1. We show that for any x ∈ B there exists R ∈ Pn such

that x ∈ C(R,B). Since all alternatives in B are in the range of C, there

exists a profile R̃ ∈ Rn for which x ∈ C(R̃, B). Consider now the profile R̂

where all agents place x as the top in A, thus also in B, while keeping the

same ordering among the rest of alternatives as in R̃. Distinguish two cases:

(1) x ∈ C(R̂, B). Construct R′′ ∈ Pn such that for any i ∈ N , t(R′′i , B) =

x. When agents’ preferences change from R̂ to R′′, no alternative in A

has improved, for no agent, its position relative to x and no alternative is

indifferent to x by any agent at R̂. Hence, by pairwise justifiability, x ∈
C(R′′, B).

(2) x /∈ C(R̂, B). When society’s profile changes from R̃ to R̂, no alternative

in A\{x} has improved, for no agent, its position relative to any alternative

in A. By pairwise justifiability and the fact that x ∈ C(R̃, B), then for some

y ∈ C(R̂, B) there exists some j ∈ N such that yĨjx.

Let y ∈ C(R̂, B)\{x}, and construct R′′ ∈ Pn such that for any i ∈ N ,

t(R′′i , B) = x and yP ′′i z for any z ∈ A\{x, y} and keeping the same order

among the rest of alternatives as in R̂. When agents’ preferences change

from R̂ to R′′, no alternative in A has improved, for no agent, its position

relative to y. Hence, by pairwise justifiability, either y ∈ C(R′′, B) or else
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w ∈ C(R′′, B) if there is some agent j ∈ N such that yÎjw. By definition of

R̂, w 6= x. By weak decisiveness and Theorem 1, there is an agent i that is

a dictator on Pn × {B}. Thus, C(R′′, B) = x which is a contradiction.

Lemma 2 Let C be a collective choice correspondence satisfying pairwise

justifiability on Rn × {B}. If there is a dictator i for the restriction of C to

Pn × {B}, then C is dictatorial and i is the dictator on Rn × {B}.

Proof of Lemma 2. Let i be a dictator for the restriction of C to Pn×{B}.
Take R ∈ Pn such that t(Ri, B) = x and x is the worst alternative for the

rest of the agents. Since i is the dictator on Pn × {B}, then C(R,B) = x.

Now, let R′ ∈ Rn be any preference profile such that each agent’s preferences

keep the same relative order of x with respect to the rest of alternatives as

in R, that is, x is the unique top alternative of i while x is the unique worst

alternative for the rest of agents. By pairwise justifiability, no alternative in

A has improved, for no agent, its position relative to x and x is not indifferent

under R to any other alternatives for any agent. Then, x ∈ C(R′, B). We

now show that C(R′, B) = x. By contradiction, let y ∈ C(R′, B)\{x}, and

construct R′′ ∈ Pn such that t(R′′i , B) = x, yP ′′i z for any z ∈ A\{x, y}, y is

the unique top alternative and x is the worst alternative for the rest of the

agents. When agents’ preferences change from R′ to R′′, no alternative in

A has improved, for no agent, its position relative to y. Hence, by pairwise

justifiability, either y ∈ C(R′′, B) or else w ∈ C(R′′, B) if there is some agent

j ∈ N such that yI ′jw. By definition of R′, w 6= x. Since i is a dictator on

Pn × {B}, C(R′′, B) = x which is a contradiction. Thus, C(R′, B) = x.

Now change the preferences of all agents different from i to any preference in

R. Again, by pairwise justifiability, the choice is still x since no alternative is

weakly worse than x under Rj for no agent different from i. We have shown

that agent i is a dictator if her top is unique.

Finally, suppose now to get a contradiction that agent i is not a dictator when

her top is not unique. Then, there exists R ∈ Rn such that y ∈ C(R,B) but

y /∈ t(Ri, B). Suppose, without loss of generality, that x ∈ t(Ri, B). Let R′′′i

43



be such that x is the unique top alternative keeping the relative order of the

rest of alternatives. By pairwise justifiability from R to (R′′′i , RN\{i}), y ∈
C((R′′′i , RN\{i}), B) or else w ∈ C((R′′′i , RN\{i}), B) if wI iy. Since xP iy, w 6=
x. Given that agent i is the dictator when she has a unique top alternative,

we get C((R′′′i , RN\{i}), B) = x which is a contradiction. This completes the

proof of Lemma 2.

Proof of Theorem 2. Let A ∈ B, and let C be any full range collective

choice correspondence on Rn × B satisfying weak decisiveness and pairwise

justifiability on Rn × B. As a first step, for any fixed agenda B ∈ B we

obtain that C has full range on Pn × {B} by Lemma 1. Since pairwise

justifiability and weak decisiveness are inherited in subdomains, then C is a

full range collective choice function on Pn×B satisfying pairwise justifiability

on Pn×B. As a second step, we apply Theorem 3 and obtain that there is a

dictator i for the restriction of C to Pn×B. Finally observe that by Lemma

2 applied to any B ∈ B, C is dictatorial and i is the dictator on Rn × B.

This ends the proof.

7.3 Proofs of results in Section 5

Proposition 2 Let B ∈ B and D ∈ {Pn,Rn}. A social choice function f :

D → B is strategy-proof on D if and only if it satisfies pairwise justifiability

on D × {B}.

Proof of Proposition 2. As mentioned in the text, properties on f can be

trivially translated as properties on C, and viceversa and we use f and C

indistinctly

We first show the ”if part”. Let D = Pn and by contradiction, suppose that

f violates strategy-proofness on Pn, that is, there exist R ∈ Pn, i ∈ N , and

R′i ∈ P such that y = f(R′i, RN\{i})Pif(R) = x. Define R̂i and R̃i such that

y is the best alternative and the rest of alternatives are ordered as in Ri

and R′i, respectively. By pairwise justifiability from R to R̂ = (R̂i, RN\{i}),
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f(R̂) = x. Similarly, by pairwise justifiability from R to R̃ = (R̃i, RN\{i}),

f(R̃) = y. Then, by pairwise justifiability from R̃ to R̂, f(R̂) = y which is

the desired contradiction.

Let nowD = Rn. By contradiction suppose that f violates strategy-proofness

on Rn × {B}, that is, there exist R ∈ Rn, i ∈ N , and R′i ∈ R such

that y = f(R′i, RN\{i})Pif(R) = x. Let R̃i ∈ Rn be such that (i) the set

of alternatives indifferent to x at R̃i is the lower contour set at x of Ri

(denoted as L(Ri, x)), (ii) [zP̃iw ⇐⇒ zP ′iw] for all z ∈ A\L(Ri, x) and

w ∈ L(Ri, x), and (iii) [z1R̃iz2 ⇐⇒ z1R
′
iz2] for all z1, z2 ∈ A\L(Ri, x).

Thus, by pairwise justifiability from R to R̃ = (R̃i, RN\{i}), then f(R̃) = s

where s ∈ L(Ri, x). Since condition (1) in pairwise justifiability can not hold

from R̃ to R′ = (R′i, RN\{i}), condition (2) must hold which imposes that

f(R′i, RN\{i}) ∈ L(Ri, x) which is the desired contradiction since y /∈ L(Ri, x).

We show the ”only if part” by contradiction: suppose that f violates pair-

wise justifiability on Rn × {B}, that is, there exist two preference profiles

R, R′ ∈ Rn such that f(R) = x, f(R′) = y, x, y ∈ B, and for no agent

i ∈ N and no alternative z ∈ A\{x}, xPiz and zR′ix, and for no agent i ∈M
where M = {i ∈ N : Ri 6= R′i}, xIiy. Therefore, at R either xPiy or yPix

for all agents i ∈ M . Define R̃ as follows: for each agent j ∈ M such that

xPjy, x is the top in A of R̃ and y in the second place, and for each agent

k ∈ M such that yPkx, y is the top in A of R̃ and x in the second place.

Start from R and change, one by one, the preference of each agent j ∈ M
such that xPjy from Rj to R̃j. In each step, strategy-proofness implies that

the outcome is x (otherwise, agent j ∈ M would gain by saying Rj instead

of R̃j). Now, change the preference of each agent k ∈ M such that yPkx

from Rk to R̃k. In each step, strategy-proofness implies that the outcome is

x (otherwise, if xPkf(R̃) agent k ∈ M would gain by saying Rk instead of

R̃k and if f(R̃) = y agent k ∈ M would gain by saying R̃k instead of Rk).

Thus, f(R̃) = x. Note that since pairwise justifiability is violated, for each

agent j ∈ M such that xPjy, xP ′jy, while for each agent k ∈ M such that
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yPkx, either xP ′ky, yP ′kx, or xI ′ky. Define R̂ as follows: for each agent j ∈M
such that xPjy and xP ′jy, x is the top in A of R̂ and y in the second place,

for each agent k ∈ M such that yPkx and xP ′ky, x is the top in A of R̂ and

y in the second place, for each agent k ∈ M such that yPkx and yR′kx, y

is the top in A of R̂ and x in the second place. Start from R′ and change,

one by one, the preference of each agent j ∈ M such that xPjy and xP ′jy

from Rj to R̂j. In each step, strategy-proofness implies that the outcome

is y (otherwise, agent j ∈ M would gain by saying Rj instead of R̂j or the

converse). Now, change the preference of each agent k ∈ M such that yPkx

and xP ′ky from R′k to R̂k. In each step, strategy-proofness implies that the

outcome is y (otherwise, agent k ∈M would gain by saying Rk instead of R̂k,

or the converse). Finally, change the preferences of agents k ∈ M such that

yPkx and yR′kx from R′k to R̂k. In each step, strategy-proofness implies that

the outcome is y (otherwise, agent k ∈ M would gain by saying R′k instead

of R̂k). Thus, f(R̂) = y. Finally, change the preference of each agent i ∈ N
from R̃i to R̂i starting first with type j agents in M . Remember that all

such agents have x as top and y as second in both preferences. Therefore,

strategy-proofness implies that the outcome is x (otherwise, agent j ∈ M

would gain by saying R̃j instead of R̂j). We now change type k agents in M .

Remember that all such agents have y as top and x is second in R̃ and x and

y in the first and second position in R̂. By strategy-proofness, the outcome

must be either x or y. Note that if the outcome is y, then this agent k would

gain by saying R̂k instead of R̃k). Therefore, f(R̂) = x which is the desired

contradiction.

Proposition 3 Any collective choice correspondence C on D×A satisfying

pairwise justifiability on D ×A is transitively rationalizable on D ×A.

Proof of Proposition 3. Let C be a collective choice correspondence on

D ×A satisfying pairwise justifiability on D ×A. Let R ∈ D be any prefer-

ence profile. Since A contains every pair of alternatives as a possible agenda,

define a binary relation RR on A as follows: for any x, y ∈ A, xPRy if and
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only if C(R, {x, y}) = x and xIRy if and only if C(R, {x, y}) = {x, y} (∗).
Note that RR is complete. We now show that RR transitively rationalizes

C, that is, for any agenda B ∈ A, C(R,B) = t(RR, B) and RR is transitive.

We first show that for any agenda B ∈ A, C(R,B) = t(RR, B) (**). Con-

sider any agenda B containing at least two alternatives (otherwise, the choice

is unique). First, we show C(R,B) ⊆ t(RR, B): take any x ∈ C(R,B) and

show that x ∈ t(RR, B). Take any y ∈ B\{x} such that {x, y} ⊆ B and

observe that the following holds: if x ∈ C(R,B) then x ∈ C(R, {x, y})
by pairwise justifiability since agents’ preferences do not change. Thus,

x ∈ t(RR, {x, y}) by (∗). Repeating the same argument for all y ∈ B\{x},
we obtain that x ∈ t(RR, B).

Second, we prove t(RR, B) ⊆ C(R,B): take any x ∈ t(RR, B) and suppose,

by contradiction, that x /∈ C(R,B). Consider {x, y} such that y ∈ C(R,B)

(which always exists). By pairwise justifiability, since y ∈ C(R,B) then

y ∈ C(R, {x, y}). Moreover, since x /∈ C(R,B) then x /∈ C(R, {x, y}). By

definition of RR on pairs of alternatives (∗), yPRx which is a contradiction

to the fact that x ∈ t(RR, B).

Now, we prove that RR transitively rationalizes C, that is RR is transitive:

take any triple of alternatives x, y, z ∈ A we have to show that if xRRy

and yRRz then xRRz. Observe that by definition of RR on pairs stated in

(∗), each one of the three relationships can be written using C(R, ·), where ·
refers to the corresponding pair of compared alternatives being B = {x, y},
B′′ = {y, z}, or B′ = {x, z}. Distinguish the two cases concerning the choice

in B:

(1) C(R,B) = x (xPRy) or (2) C(R,B) = {x, y} (xIRy).

For each one of the two cases we distinguish subcases depending on the

choices in B′′, that is, C(R,B′′) ∈ {{y}, {y, z}} (yRRz). Define B̃ = {x, y, z}
and start with case (1):

(1.1) C(R,B) = x, C(R,B′′) = y, then we show that C(R,B′) = x. Since

y /∈ C(R,B), x, y ∈ B∩B̃, and agents’ preferences do not change from (R, B̃)
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to (R,B), by pairwise justifiability we obtain y /∈ C(R, B̃). Similarly, since

z /∈ C(R,B′′), y, z ∈ B′′ ∩ B̃, and agents’ preferences do not change from

(R, B̃) to (R,B′′), by pairwise justifiability we obtain z /∈ C(R, B̃). Thus,

x = C(R, B̃). By (**), x = t(RR, B̃) and thus x = t(RR, B
′) and by (∗),

x = C(R,B′).

(1.2) C(R,B) = x, C(R,B′′) = {y, z}, then we show that C(R,B′) = x. We

prove it by contradiction. First observe that since y /∈ C(R,B), x, y ∈ B∩B̃,

and agents’ preferences do not change from (R, B̃) to (R,B), by pairwise jus-

tifiability we obtain y /∈ C(R, B̃) and by (**) y /∈ t(RR, B̃). Now suppose,

by contradiction, that z ∈ C(R,B′). By (**), z ∈ t(RR, B
′) and since

y /∈ t(RR, B̃), we obtain that z ∈ t(RR, B̃). Again by (**), z ∈ C(R, B̃).

Since y, z ∈ B′′ ∩ B̃, and agents’ preferences do not change from (R,B′′) to

(R, B̃), by pairwise justifiability we obtain y ∈ C(R, B̃) which is a contradic-

tion to what we have previously obtained. Therefore, we have proved that

C(R,B′) = x.

We now consider case (2):

(2.1) C(R,B) = {x, y}, C(R,B′′) = y, then we show that C(R,B′) = x.

We prove it by contradiction. First observe that since z /∈ C(R,B′′), y, z ∈
B′′ ∩ B̃, and agents’ preferences do not change from (R, B̃) to (R,B′′), by

pairwise justifiability we obtain z /∈ C(R, B̃). By (**) z /∈ t(RR, B̃). More-

over, since C(R,B) = {x, y}, we get that t(RR, B̃) = {x, y} and by (**)

C(R, B̃) = {x, y}. Now suppose, by contradiction, that z ∈ C(R,B′). Since

x, z ∈ B′∩B̃, and agents’ preferences do not change from (R,B′) to (R, B̃), by

pairwise justifiability we obtain z ∈ C(R, B̃) which is a contradiction to what

we have previously obtained. Therefore, we have proved that C(R,B′) = x.

(2.2) C(R,B) = {x, y}, C(R,B′′) = {y, z}, then we show that C(R,B′) =

{x, z}. By contradiction, if C(R,B′) = x then z /∈ C(R, B̃). If z ∈ C(R, B̃),

since x, z ∈ B′ ∩ B̃, and agents’ preferences do not change from (R, B̃) to

(R,B′), by pairwise justifiability we obtain z ∈ C(R,B′) which is a contradic-

tion to our hypothesis. Suppose that y ∈ C(R, B̃), then since y, z ∈ B′′ ∩ B̃,
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and agents’ preferences do not change from (R,B′′) to (R, B̃), by pairwise jus-

tifiability we obtain z ∈ C(R, B̃) which is a contradiction, thus y /∈ C(R, B̃).

Then, x ∈ C(R, B̃). Since x, y ∈ B∩B̃, and agents’ preferences do not change

from (R,B) to (R, B̃), by pairwise justifiability we obtain y ∈ C(R, B̃) which

is a contradiction. Thus, C(R, B̃) is not well-defined. A similar argument

holds and non-definiteness of C(R, B̃) would be obtained if we suppose that

C(R,B′) = z. This ends the proof.

Proposition 4 If a social welfare function F on D for D = {Pn,Rn} sat-

isfies the weak Pareto condition and independence of irrelevant alternatives,

then C on D ×A satisfies pairwise justifiability.

Proof of Proposition 4. Let F on D be a social welfare function satisfying

the weak Pareto condition (WP) and independence of irrelevant alternatives

(IIA). Suppose, to get a contradiction, that F violates pairwise justifiability.

Therefore, there exist two profiles R,R′ ∈ Rn and a pair of alternatives

x, z ∈ A such that either (1) x �R z and z �R′ x, or (2) x �R z and z �R′ x,

or (3) x �R z and z �R′ x, and pairwise justifiability is violated when applied

to R and R′. If case (1) holds, the violation of pairwise justifiability requires

that there is no agent i and no alternative y ∈ A\{x} such that either xPiy

and yR′ix or xIiz. This means that for any agent i either xPiz or zPix. This

also implies that for those agents i such that xPiz then xP ′iz. By WP, there

must be at least one agent j ∈ N such that xPjz. By IIA, there must be an

agent changing the relative position between x and z when going from R to

R′. Therefore, by (1), there must be an agent k ∈ N such that zPkx and

xR′kz. We now define R̂ as follows: for any agent j ∈ N such that xPjz we

have xP̂jz and zP̂jy, and for agent k ∈ N such that zPkx we have zP̂ky and

yP̂kx. By IIA, x �R̂ z and by WP, z �R̂ y. We now define R̃ as follows: for

any agent j ∈ N such that xP ′jz we have xP̃jy and yP̃jz, and for agent k ∈ N
such that zR̃kx if and only if zR′kx and we have yP̃kz and yP̃kx. By IIA,

z �R̃ x and by WP, y �R̃ z. Since x �R̂ y and y �R̃ x, but when going from

R̂ to R̃ no agent has changed the relative position between x and y we get a
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contradiction to IIA. Case (2) follows a symmetric argument exchanging the

roles of R and R′ and of x and z. Concerning case (3) the same argument as

in Case (1) works.

Proposition 5 If a social welfare function F on D for D = {Pn,Rn} sat-

isfies the weak Pareto condition and independence of irrelevant alternatives,

then C on D ×A satisfies weak decisiveness.

Proof or Proposition 5. Let F on D be a social welfare function satisfying

the weak Pareto condition (WP) and independence of irrelevant alternatives

(IIA). Suppose, to get a contradiction, that F violates weak decisiveness.

Therefore, for some situation (R,B) and some x, z ∈ B, x ∼R z and there

is no agent i such that xIiz. This means that for any agent i either xPiz or

zPix. We now define R̂ as follows: for any agent j ∈ N such that xPjz we

have xP̂jy and yP̂jz, and for agent k ∈ N such that zPkx we have yP̂kz and

zP̂kx. By IIA, x ∼R̂ z and by WP, y �R̂ z. We now define R̃ as follows:

for any agent j ∈ N such that xPjz we have zP̃jy and xP̃jz, and for agent

k ∈ N such that zPkx, we have zP̃ky and yP̃kx. By IIA, z ∼R̃ x and by WP,

z �R̃ y. Since y �R̂ x and x �R̃ y, but when going from R̂ to R̃ no agent

has changed the relative position between x and y we get a contradiction to

IIA.

7.4 Proofs of results in Section 6

Proposition 6 Let B ∈ B and D ⊆ Rn. Any social choice function f :

D → B satisfying Maskin monotonicity on D satisfies pairwise justifiability

on D.

Proof of Proposition 6. By contradiction, if f violates pairwise justifiabil-

ity on D, there exist two preference profiles R, R′ ∈ D such that f(R) = x,

f(R′) = y, x, y ∈ B, and for any i ∈ N and any alternative z ∈ A\{x} such

that Ri 6= R′i, either (1) xPiz and xP ′iz, or (2) zPix and zR′ix, or (3) zPix and

xP ′iz, holds. Start from R and change the preference of all agents Ri to R′i.
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Note that by (1), (2) and (3), for each agent i ∈ N , [f(R)Riz ⇒ f(R)R′iz]

thus, by Maskin monotonicity f(R′) = f(R) which is the desired contradic-

tion.

Remark 2 Let B be a collection of agendas and D ⊆ Rn a subset of prefer-

ence profiles. Any Condorcet consistent collective choice function C on D×B
satisfies strategy-proofness on D′×B where D′ ⊆ DCB and with a Cartesian

product structure.

Proof of Remark 2. Let C be Condorcet consistent on D′ × B where

D′ ⊆ DCB and D′ has a Cartesian product structure. We prove that C is

strategy-proof. By contradiction, suppose that there exist two situations

(R,B), (R′, B) ∈ DCB × B where C(R,B) = x, C(R′, B) = y, and for some

agent i, yPix. Since C(R,B) = x is the strong Condorcet winner, then

C(R′, B) 6= y since if x defeats y under R, it also defeats it under R′.

Example 5 Consider N = {1, 2, 3}, B = {B} where B = {x, y}, and

D = {R,R′}. Let R be such xP1y, xP2y, and yP3x and R′ such that xI1y,

xI2y, and yP3x. The strong Condorcet winner at (R,B) and (R′, B) are

x and y, respectively. Any Condorcet consistent rule C must be such that

C(R,B) = x and C(R′, B) = y. If C satisfied Maskin monotonicity, we

should have that C(R′, B) = C(R,B) which is not the case.
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