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Abstract

We study markets in which each agent is endowed with multiple units of an indivisible
and agent-specific good. Monetary compensations are not possible. An outcome of a market
is given by a circulation which consists of a balanced exchange of goods. Agents only have
(responsive) preferences over the bundles they receive.

We prove that for general capacity configurations there is no circulation rule that satisfies
individual rationality, Pareto-efficiency, and strategy-proofness. We characterize the (so-called
irreducible) capacity configurations for which the three properties are compatible, and show
that in this case the Circulation Top Trading Cycle (cTTC) rule is the unique rule that satisfies
all three properties. We also explore the incentive and efficiency properties of the cTTC rule
for general capacity configurations and provide a characterization of the rule for lexicographic
preferences.

Next, we introduce and study the family of so-called Segmented Trading Cycle (STC)
rules. These rules are obtained by first distributing agents’ endowments over a number of
different smaller markets (the market segments), then applying the standard Top Trading
Cycle algorithm within each market segment separately, and finally lumping together the
induced circulations. We show that STC rules are individually rational, strategy-proof, and
nonbossy. Even though STC rules do not satisfy group-strategy-proofness in general, they
do satisfy weaker notions of group-strategy-proofness. For irreducible capacity configurations
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the family of STC rules collapses to the cTTC rule which then is also group-strategy-proof.
Finally, we characterize one particularly interesting STC rule by means of top unanimity and
self-enforcing group-strategy-proofness.

Keywords: indivisible goods, circulation, top trading cycles, strategy-proofness, Pareto-efficiency
JEL classification: C71, C78

1 Introduction
In the classical “housing market” of Shapley and Scarf [29] each agent owns one indivisible good
and monetary compensations are not possible. Each agent has preferences over all goods and
is interested in having exactly one good. What would be a “good” redistribution of the goods?
A well-studied rule in this setting is David Gale’s Top Trading Cycle (TTC) rule. Roth and
Postlewaite [24] showed that for any profile of strict preferences, the TTC rule yields the unique
strong core element. Hence, the TTC rule is individually rational and Pareto-efficient. Roth [23]
proved that the TTC rule is strategy-proof, i.e., for each agent it is a weakly dominant strategy
to reveal her true preferences. Ma [14] showed in fact that on the domain of strict preferences the
TTC rule is the unique rule that satisfies individual rationality, Pareto-efficiency, and strategy-
proofness. But what happens if agents are endowed with multiple indivisible goods that they want
to exchange in a one-for-one fashion?

Multi-unit Shapley-Scarf markets

Real-life examples of such markets abound. In the European Erasmus program, higher education
institutions exchange their students for a semester or longer.1 An important restriction is that
for each involved institution the number of students it sends out equals the number of students it
receives.

Another example is time banks. Each participant in a time bank offers some service (hair-
cutting, teaching, babysitting, etc.). Hours of service are exchanged in a one-for-one fashion
without the intermediation of money. Usually there are bilateral agreements or there is a credit
system, where credits are earned by providing services, and which can be used later to request
services, possibly from a different participant. In the latter case, balancedness can be obtained
through central coordination.

Other similar barter exchange markets include timesharing networks where users offer their
homes or holiday apartments in exchange for spending the same amount of time at another place.
International deceased donor sharing schemes, such as Eurotransplant2 or Scandiatransplant,3 aim
to efficiently exchange the deceased donors of participating countries. Since any available organ has
to be used immediately, the exchange of grafts is dynamic. However, in the long run these schemes
ensure that each country sends and receives about the same number of organs for transplantation.
Thus, given a sufficiently long time period, the exchange is approximately balanced.

1The EuRopean community Action Scheme for the Mobility of University Students involves currently more
than 4,000 higher institutions across 37 countries, see, e.g., https://ec.europa.eu/education/ and in particu-
lar https://web.archive.org/web/20160305053245/http://ec.europa.eu/education/library/statistics/ay-12-13/facts-
figures_en.pdf

2https://www.eurotransplant.org/
3http://www.scandiatransplant.org/
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A stylized model

In this paper, we study a stylized model of the previously described markets. As a first but non-
trivial step towards a full-fledged analysis we consider the case in which each agent has multiple
units of an indivisible agent-specific good. We refer to the number of units of the good an agent
is endowed with as her capacity. For instance, in the setting of time banks, an agent’s capacity
would represent the maximum number of hours of service the agent can give. A desideratum (if
not a requirement) that appears to be common to many of the markets above is that any exchange
be balanced, i.e., each agent receives as many goods/service hours as she gives away. Thus, we
conveniently employ the graph theoretical notion of circulation to study balanced exchanges.

In our model, agents only have preferences over the possible bundles they can receive. We
assume that each agent’s preferences over bundles are “responsive” with respect to her preferences
over individual goods. Indeed, in some applications it is unlikely that all agents have lexicographic
or even additive preferences. Responsiveness allows for a richer extension of the preferences over
individual goods4 and induces substantially different results as compared to lexicographic prefer-
ences.

In centrally coordinated markets, agents can often only reveal their ordinal preferences over the
individual goods. For this reason we study circulation rules that take these ordinal preferences and
the capacities of the agents as an input and return a circulation. Considering individual rationality
an indispensable property of a circulation rule, we focus our attention on its compatibility with
two important desiderata: Pareto-efficiency and strategy-proofness. As pointed out earlier, these
properties are simultaneously achievable by the TTC rule in the classical Shapley-Scarf setting.
However, we run into an impossibility in our more general model. Next, we discuss in more detail
this result as well as our main findings.

Our main contributions

Our first result is that for general capacity configurations there exists no individually rational
circulation rule that is both Pareto-efficient and strategy-proof (Proposition 1). The proof of this
incompatibility is based on a three-agent market where just one agent has a capacity larger than 1
and all preferences are lexicographic. On the domain of responsive preferences this impossibility
holds for all so-called “reducible” capacity configurations (Proposition 2). For irreducible capacity
configurations a natural generalization of the TTC rule that we call the Circulation Top Trading
Cycle (cTTC) rule is Pareto-efficient (Corollary 1) as well as strategy-proof (Corollary 2). In fact,
for irreducible capacity configurations the TTC rule is the unique individually rational rule that
satisfies both properties (Theorem 2). We complete our analysis of the cTTC rule by studying its
incentive properties on the domain of responsive preferences (Propositions 5 and 6) and providing
a characterization on the domain of lexicographic preferences where the cTTC rule is the unique
individually rational rule that is Pareto-efficient and “dropping-proof” (Theorem 1).

Next, in Section 5, we introduce and study the family of so-called Segmented Trading Cycle
(STC) rules which are obtained by extending the standard TTC rule from the classical (i.e., unit
capacity) setting to our setting in a different way than the cTTC rule. More specifically, the
STC rules are obtained by first distributing agents’ endowments over a number of different smaller
markets (the market segments), then applying the standard Top Trading Cycle algorithm within

4Yet, responsiveness still does not allow for certain complementarities between goods.
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each market segment separately, and finally lumping together the induced circulations. We show
that STC rules are individually rational, strategy-proof, and nonbossy (Proposition 9). Even
though STC rules do not satisfy group-strategy-proofness in general (Proposition 10), they do
satisfy a weaker notion of group-strategy-proofness (Proposition 12). Moreover, for irreducible
capacity configurations the family of STC rules collapses to the cTTC rule (Proposition 8) which
then is also group-strategyproof for lexicographic preferences (Proposition 14). One particularly
interesting member of the class of STC rules is the Sequentially Segmented Trading Cycle (SSTC)
rule which sequentially fills up the market segments with goods as much as possible, i.e., first
segment 1, then segment 2, and so on. Our final main results are characterizations of the SSTC
rule by top unanimity and self-enforcing group-strategy-proofness (Theorem 3) and top unanimity,
strategy-proofness, and nonbossiness (Corollary 3). A rule satisfies top unanimity if for each
preference profile it “respects” top trades, i.e., it is consistent with the first round of the cTTC
rule. Self-enforcing group-strategy-proofness is a weaker version of group-strategy-proofness that
essentially rules out all self-enforcing manipulations (where no agent would prefer to revert back
unilaterally to the true preferences).

Related literature

As mentioned in the introduction, the earliest results (Roth [23] and Roth and Postlewaite [24]) on
the housing market of Shapley and Scarf [29] established that on the domain of strict preferences
the TTC rule is individually rational, Pareto-efficient, and strategy-proof. Ma [14] showed in fact
that the TTC rule is the unique rule that satisfies these three properties.5

Sönmez [30] studied a general class of allocation problems that includes the class of housing
markets. He proved that if there is a individually rational, Pareto-efficient, and strategy-proof
rule, then the strong core correspondence is essentially single-valued and the rule is a selection
from this correspondence. He also obtained an impossibility result for the model of exchange of
multiple indivisible goods, namely that if at least one agent owns more than one good then there
is no allocation rule that is individually rational, Pareto-efficient, and strategy-proof. Konishi
et al. [11] proved a similar impossibility result in a model with market segments (cars, houses,
etc.) where each agent owns exactly one good in each market segment. Todo et al. [34] also
obtained an impossibility result for a particular setting where agents have multiple heterogeneous
indivisible goods and lexicographic preferences. Sonoda et al. [31] considered a model with multiple
heterogeneous indivisible goods where agents’ preferences can have indifferences. They determined
for different preference domain restrictions whether the impossibility result of Sönmez [30] still
holds or fails to hold. Our impossibility result (Proposition 1) strengthens these impossibility
results as we establish our result on the domain of lexicographic preferences with homogeneous
goods. Moreover, our characterization of the capacity configurations for which the impossibility
holds under responsive preferences (Theorem 2) appears to be a novel sort of result in this literature.

Given the above described impossibility results, several studies restored strategy-proofness by
weakening the requirement of Pareto-efficiency. Pápai [19] introduced the Segmented Trading
Cycle (STC) rules in a general model with multiple heterogeneous indivisible goods. In the STC
rules, each trade is one-for-one and cannot cross market segments. Pápai showed that the STC
rules are the only exchange rules that satisfy strategy-proofness, nonbossiness, trade sovereignty,

5Pycia [22] extended the result to a model that includes a network with directed edges that represent feasibility
of shipment.
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and strong individual rationality. Todo et al. [34] introduced variants of the STC rules for a
model with multiple heterogeneous indivisible goods under different restrictions on the preference
domain. The above models do not require the solutions to be balanced, but nevertheless the STC
rules always produce balanced exchanges, so they are naturally suitable solution concepts for our
circulation model. In Section 5, we explore the properties of the STC rules in our circulation model
with homogeneous goods and responsive preferences.

Fujita et al. [8] followed up the paper of Todo et al. [34] and studied a generalized TTC
algorithm, called augmented top trading cycles (ATTC), for a model with multiple heterogeneous
indivisible goods under lexicographic preferences. They showed that the ATTC rule is strong core
selecting (hence Pareto-efficient) but also vulnerable to strategic manipulation. On the other hand,
they proved that the ATTC rule is NP-hard to manipulate, which can be interpreted as a cognitive
barrier for possible manipulators. Their results do not automatically carry over to our model with
homogeneous goods. However, according to Lesca [13] the latter NP-hardness reduction can be
adjusted for our cTTC rule in our model.

Dur and Ünver [6] studied balanced rules for a special exchange problem motivated by tuition
and worker exchanges. Their model is two-sided; students/workers are also strategic players.
Moreover, each college/firm has (responsive) preferences over the set of students/workers they
may be assigned to as well as an “internal” priority order over their own students/workers which
may be sent off. They studied and characterized a two-sided TTC rule which is an analogue to
our cTTC rule.

For the model that we introduce in the next section, we studied in our companion paper [4]
so-called single-serial and multiple-serial rules, which are the classes of rules where agents in turn
choose one unit of some good or a bundle of goods, respectively. To guarantee individual rationality,
at each step the set of available goods is restricted. We showed that the two resulting classes of rules
are Pareto-efficient on the domain of lexicographic and responsive preferences, respectively, but
they necessarily violate strategy-proofness. Cechlárová et al. [5] studied serial dictatorship rules in
a related course allocation model with multiple homogeneous goods and budget constraints under
lexicographic preferences. Earlier characterizations of more general serial dictatorship rules were
obtained by Pápai [18] and Ehlers and Klaus [7].

Andersson et al. [1] studied time banks, where agents exchange their services/time in a one-for-
one fashion. They considered dichotomous preferences over individual services and extended them
to bundles in a specific way. In particular, agents have upper quotas representing their maximum
needs for each service. This paper introduced so-called priority mechanisms that select individually
rational and time-balanced allocations that are Pareto-efficient and maximize exchanges. They
showed that priority mechanisms are strategy-proof. The same rules were also characterized by
Hatfield [9] for the allocation of multiple indivisible goods under additive preferences in a model
without initial endowments and where agents’ capacities must be filled exactly.

Manjunath and Westkamp [15] studied the exchange of heterogeneous goods without monetary
compensations. They assumed that each agent has trichotomous preferences in the sense that an
agent partitions goods into desirable, undesirable but in the agent’s endowment, and remaining
undesirable goods. They introduced the so-called Individually Rational Priority (IRP) mechanisms
and showed that IRP mechanisms are individually rational, Pareto-efficient, and strategy-proof.

Finally, we note that there are many papers that study special cases of Shapley and Scarf’s [29]
original setting (where each agent has one indivisible good only). This literature studies markets
that range from kidney exchange (Roth et al. [25]) to timeshare exchange (Wang and Krishna [35]).
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The remainder of the paper is organized as follows. In Section 2, we introduce the circulation
model. In Section 3, we state and prove the first incompatibility results regarding individual
rationality, Pareto-efficiency, and strategy-proofness. In Sections 4 and 5 we introduce and study
the Circulation Top Trading Cycles rule and the Segmented Trading Cycle rules, respectively.
Section 6 provides a final outlook.

2 The circulation model
Let N with n = |N | ≥ 2 be the set of agents. Each agent i ∈ N is endowed with a set ei
of indivisible, homogeneous, and agent-specific goods. The non-negative integer qi = |ei| ∈ N+

denotes agent i’s capacity. Let q = (qi)i∈N . The pair (n, q) is the capacity configuration. Since
goods are agent-specific, for any i ∈ N , we often refer to the good of agent i as good i.

Each agent i has preferences ≻i over all individual goods, i.e., preferences over receiving a unit
of good j ∈ N\{i} and the option of retaining a unit of her good i. We assume that ≻i is a linear
order on N , i.e., it is strict, complete, and transitive. For any j, l ∈ N\{i} with j ̸= l, j ≻i l
denotes that agent i prefers receiving one unit of good j over receiving one unit of good l. Let
⪰i denote the weak counterpart of ≻i, i.e., j ⪰i l if and only if j ≻i l or j = l. If j ⪰i i, then
good j is acceptable for agent i; otherwise it is unacceptable for i. Let Ai ≡ A≻i

i denote the set
of acceptable goods for agent i. For each agent i ∈ N , let Li denote the set of strict preferences
over individual goods for agent i. Let L = ×i∈NLi be the set of profiles of strict preferences over
individual goods.

A bundle for agent i is a vector xi = (xij)j∈N\{i} with
∑

j∈N\{i} xij ≤ qi. We often refer to the
latter inequality as the feasibility (constraint) of the bundle. Here, xij ∈ N+ is the number of
units of good j that are sent to / received by agent i. One particular bundle for agent i is the null
bundle 0i where agent i receives no good from any other agent, i.e., 0ij = 0 for all j ̸= i. Let Xi

denote the set of possible bundles for agent i.
Agent i has a linear order Pi on Xi. A bundle xi is acceptable for i if xiPi0i or xi = 0i; it is

unacceptable for i otherwise. Let Ri denote the weak counterpart of Pi. So, xiRix
′
i if either xiPix

′
i

or xi = x′
i.

We assume that the preferences Pi over Xi are a responsive extension of the associated
preferences ≻i over individual goods. Formally, Pi is a linear order that satisfies the following two
properties. Let x′

i, xi ∈ Xi.

(resp-1). x′
iPixi if xiRi0i and there is j ∈ N\{i} with j ≻i i such that

x′
ij = xij + 1 and x′

ik = xik for all k ∈ N\{i, j};

(resp-2). x′
iPixi if xiRi0i and there are j, l ∈ N\{i} with j ≻i l such that

x′
ij = xij + 1, x′

il = xil − 1, and x′
ik = xik for all k ∈ N\{i, j, l}.

Condition (resp-1) states that agent i prefers bundle x′
i to an acceptable bundle xi if in x′

i she
receives one more unit of some acceptable good than in xi and the same number of units of all other
goods. This property is also referred to as separability in the literature. Condition (resp-2) states
that agent i prefers bundle x′

i to an acceptable bundle xi if x′
i is obtained from xi by replacing one
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unit of some good with one unit of a more preferred good (both goods being different from agent
i’s own good).

Remark 1. Note that if a bundle only contains acceptable goods for some agent, then, by repeated
application of (resp-1), the agent finds the bundle acceptable. However, there can be acceptable
bundles that contain unacceptable goods. ⋄

An additional assumption can also be imposed on preferences, in addition to (resp-1) and
(resp-2), which rules out preferences that allow for unacceptable goods in acceptable bundles.

(resp-3). The preferences Pi of each agent i ∈ N are such that for all xi ∈ Xi, 0iPixi if for some
j ∈ N\Ai, xij > 0.

Condition (resp-3) is a property of “absolute desirability”: it states that an agent finds a bundle
unacceptable if it contains some good that is unacceptable for her. Together with the first part of
Remark 1 this implies that a bundle is acceptable if and only if it only contains acceptable goods.

Throughout the paper, the results hold both with or without imposing condition (resp-3). We
focus on the responsive preference domain in the exposition which does not require (resp-3), since
it is a larger and more realistic preference domain, but we note that the impossibility results in
Section 3 are stronger when condition (resp-3) also holds.

For each agent i and any responsive preferences Pi, let XA
i denote the set of bundles that only

contain goods that are acceptable for i. Formally, for xi ∈ Xi, xi ∈ XA
i if and only if for each

j ∈ N with xij > 0, j ∈ Ai.
We denote the set of responsive preferences for agent i by Pi. Let P = ×i∈NPi be the set of

profiles of responsive preferences. A market is a triple (N, q, P ) where P ∈ P . For any responsive
preferences Pi ∈ Pi of agent i, we denote the underlying preferences over individual goods by ≻Pi .
For any P ∈ P , ≻P= (≻Pi)i∈N . Whenever no confusion is possible we write ≻i for ≻Pi and ≻ for
≻P .

Next, we introduce the class of additive preferences and the class of lexicographic preferences.
Agent i’s responsive preferences Pi are additive if there is a utility function ui : Ai → R such
that6 ui(i) = 0 and

for all xi, x
′
i ∈ XA

i , [x′
i Pi xi if and only if

∑
j∈Ai

x′
ijui(j) >

∑
j∈Ai

xijui(j)]. (1)

Note that we only impose conditions on bundles that solely consist of acceptable goods.7 Moreover,
responsiveness does not imply additivity.8 We denote the set of additive preferences for agent i by
PA

i . Let PA = ×i∈NPA
i be the set of profiles of additive preferences.

Agent i’s responsive preferences Pi are lexicographic if there is a utility function ui : Ai → R
such that (1) holds and

for all k, l ≻i i, [k ≻i l if and only if ui(k) > qiui(l)].

6The assumption that ui(i) = 0 is without loss of generality and sets the utility of the null bundle at 0.
7The reason for this becomes clear in Remark 2.
8For instance, suppose N = {1, 2, 3, 4, 5, 6} and q1 = 3. Then, there are responsive preferences P1 such that each

good in N\{1} is acceptable for agent 1, (1, 0, 0, 1, 0)P1(0, 1, 1, 0, 0), and (0, 1, 1, 0, 1)P1(1, 0, 0, 1, 1). (Here, a bundle
is written as a vector the entries of which indicate the quantity of goods 2, . . . , 6.) Any such P1 is not additive.
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By definition, all lexicographic preferences are additive. (But, obviously, not all additive prefer-
ences are lexicographic.) In the case of lexicographic preferences, the ordinal ranking over bundles
that only contain acceptable goods is completely determined by the ordinal ranking over individual
goods. For this reason we will often refer to lexicographic preferences as lexicographic exten-
sions of the preferences over individual goods. We denote the set of lexicographic preferences
for agent i by PL

i . Let PL = ×i∈NPL
i be the set of profiles of lexicographic preferences. Note

PL
i ⊊ PA

i ⊊ Pi, and hence PL ⊊ PA ⊊ P .
We require the exchange of the indivisible goods be balanced. In other words, any outcome of a

market should be a circulation, i.e., a vector of bundles such that each agent receives as many goods
as she gives away from her initial endowment. For any vector of bundles x = (xi)i∈N ∈ (Xi)i∈N , let
xi� =

∑
j∈N\{i} xij denote the number of goods agent i receives from the other agents. Similarly, let

x�i =
∑

j∈N\{i} xji denote the number of goods agent i sends to the other agents. A circulation
is a vector of bundles x = (xi)i∈N ∈ (Xi)i∈N such that for each agent i ∈ N , xi� = x�i. We often
refer to the latter equalities as the balancedness (constraints) of the circulation. If for agent i
and circulation x, xi� = qi, then we say that i is filled at x; otherwise (i.e., xi� < qi), we say that i
is unfilled at x. Let X denote the set of circulations. To describe a circulation x we usually only
specify the strictly positive exchanges, i.e., the integers xij with xij > 0. Finally, at any circulation
x, let xii ≡ qi − x�i ≥ 0 denote the number of goods i agent i keeps (i.e., does not send to other
agents).

Circulation rules

Our aim is to study rules that can be used by a centralized clearinghouse. In practice such kind of
clearinghouse often does or would collect only the ordinal preferences of the participating agents
over individual goods. Moreover, given our assumption that preferences are responsive, the most
important information about preferences is concisely summarized by the ranking of individual
goods. For this reason we introduce the following definition of circulation rule.

Fix the set of agents N and the capacity configuration (n, q). A circulation rule f : P → X
specifies a circulation for each preference profile. For any preference profile P ∈ P , fi(P ) denotes
agent i’s bundle at P . We assume all circulation rules to be individual-good-preference based
in the sense that for any two preference profiles, if each agent has the same underlying ordinal
preferences over individual goods at both profiles, then a circulation rule yields the same circulation
at both profiles. Formally,

for all P, P ′ ∈ P with ≻P= ≻P ′
, f(P ) = f(P ′). (2)

Below we first introduce the key desiderata that we consider in the next sections. The property
that we consider indispensable is individual rationality. This standard property requires that each
agent receives a bundle that is acceptable for her.

Definition 1. A circulation x is individually rational for agent i ∈ N at P ∈ P if xi is acceptable,
i.e., xiRi0i. A circulation x is individually rational at P ∈ P if it is individually rational for all
agents at P . A circulation rule f is individually rational if for all P ∈ P , f(P ) is individually
rational at P . ⋄

Remark 2. As noted in Remark 1, an acceptable bundle may contain unacceptable goods. How-
ever, any individually rational circulation rule always assigns bundles that only consist of acceptable

8



goods. To see this note, let i ∈ N . Let P ∈ P . Denote P−i ≡ (Pj)j ̸=i. Let ≻i be agent i’s asso-
ciated preferences over individual goods. Then, there is a responsive (in fact even lexicographic)
extension P̃i of the preferences ≻i such that all acceptable bundles only contain acceptable goods
for i. Hence, by individual rationality of f , fi(P̃i, P−i) consists of acceptable goods for i. Since
from (2) it follows that fi(P ) = fi(P̃i, P−i), fi(P ) consists of acceptable goods for i. ⋄

Given the relatively simple structure and the particular interest of lexicographic preferences
within the class of responsive preferences we will examine two different versions of each of the
axioms where applicable: “necessarily satisfied” and “possibly satisfied,” indicating whether the
axiom holds for every responsive extension of the underlying preferences over individual goods, or
only to the lexicographic extensions that can be inferred from the ordering of individual goods.
Thus, “necessarily satisfied” corresponds to the axiom being satisfied by the entire responsive
preference domain and is the standard version of the axiom for responsive preferences over bundles.
The “possibly satisfied” version is weaker; namely, it corresponds to the axiom being satisfied by
the lexicographic extensions of any preferences over the individual goods. Henceforth, we will
denote the weaker version of each axiom by adding the prefix “ig” (the acronym for “individual
good”) to the name of the standard version of the axiom.9

Definition 2. A circulation x is Pareto-dominated by another circulation y at P ∈ P if yiRixi

for all agents i ∈ N and yjPjxj for some agent j ∈ N . A circulation rule f is (necessarily)
Pareto-efficient if for all P ∈ P , f(P ) is not Pareto-dominated by any other circulation at P .
A circulation rule f is ig-Pareto-efficient if for all profiles of lexicographic preferences P ∈ PL,
f(P ) is not Pareto-dominated by any other circulation at P . ⋄

Definition 3. Agent i ∈ N can manipulate circulation rule f at P ∈ P if there exists a deviation
P ′
i ∈ Pi such that fi(P

′
i , P−i)Pifi(P ). A circulation rule f is (necessarily) strategy-proof if no

agent can manipulate f at any P ∈ P . A circulation rule f is ig-strategy-proof if no agent can
manipulate f at any profile of lexicographic preferences P ∈ PL.10 ⋄

Since the three key properties above will turn out to be incompatible for a large class of capacity
configurations, we will also study the following (weaker) incentive properties. A preference ≻′

i ∈ Li

is a truncation of ≻i ∈ Li if for any k, l ∈ N , [if k ⪰′
i l ⪰′

i i, then k ⪰i l ⪰i i] and [if k ≻′
i i and

l ≻i k, then l ≻′
i i].

Definition 4. Agent i ∈ N can manipulate circulation rule f at P ∈ P by means of truncation
if there exists a deviation P ′

i ∈ Pi such that ≻P ′
i is a truncation of ≻Pi and fi(P

′
i , P−i)Pifi(P ). A

circulation rule f is (necessarily) truncation-proof if no agent can manipulate f at any P ∈ P
by means of truncation.11 ⋄

A preference ≻′
i ∈ Li is a dropping of ≻i ∈ Li if for any k, l ∈N , [if k ⪰′

i l ⪰′
i i, then k ⪰i l ⪰i i].

Obviously, any truncation is a dropping.
9By Remark 1, the two versions of individual rationality are equivalent.

10Since circulation rules are individual-good-preference based, equivalent definitions of strategy-proofness and
ig-strategy-proofness are obtained by additionally demanding that the deviation P ′

i be lexicographic.
11Kojima [10] similarly defined “non-manipulability via truncation” in the context of resource allocation with

multi-unit demand. Moreover, since circulation rules are individual-good-preference based, an equivalent definition
of truncation-proofness is obtained by additionally demanding that the deviation P ′

i be lexicographic.
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Definition 5. Agent i ∈ N can manipulate circulation rule f at P ∈ P by means of dropping
if there exists a deviation P ′

i ∈ Pi such that ≻P ′
i is a dropping of ≻Pi and fi(P

′
i , P−i)Pifi(P ). A

circulation rule f is (necessarily) dropping-proof if no agent can manipulate f at any P ∈ P by
means of dropping. A circulation rule f is ig-dropping-proof if no agent can manipulate f by
means of dropping at any profile P ∈ PL of lexicographic preferences.12 ⋄

Note that dropping-proofness implies truncation-proofness. Finally, in the next definition,
we will express the circulation outcome explicitly as a function of the capacity configuration, in
addition to the preference profile. Let (n, q) be a capacity profile and let i ∈ N . We denote
q−i ≡ (qj)j ̸=i.

Definition 6. A circulation rule f is hiding-proof13 if for all i ∈ N , P ∈ P , and q′i < qi,
fi(P, q) Ri fi(P, (q−i, q

′
i)). ⋄

The underlying directed graph

The notion of circulation is well-studied in graph theory, see e.g. Schrijver [27]. To clarify the link
to that literature let D(N,A(P )) denote the directed graph where N is the set of nodes and A(P )
is the set of arcs (directed edges) such that (i, j) ∈ A(P ) if and only if j ≻Pi i.

An individually rational circulation is a non-negative function on the arcs, x : A(P ) → N+,
where x(i, j) denotes the flow from j to i, such that each node satisfies flow conservation (i.e., the
incoming flow equals the outgoing flow) and incoming/outgoing flow does not exceed the capacity
of the corresponding agent. Setting xij ≡ x(i, j) for all i, j with i ̸= j, gives a straightforward one-
to-one correspondence between circulations as vectors of bundles and circulations as non-negative
functions on the arcs.

3 Impossibility results
In this section we show that individual rationality, strategy-proofness, and Pareto-efficiency are
not compatible.14 First we prove this result for a simple market with three agents and lexico-
graphic preferences (Proposition 1), where only one agent has capacity two and the other two
agents have unit capacity. Although this result implies an incompatibility for the more general
domain of responsive preferences, we will study that domain in detail as well. The reason is that
the impossibility result only holds for a certain class of capacity configurations. More specifically,
we will first show that for so-called reducible capacity configurations the impossibility result holds
(Proposition 2). Next, in Section 4, we will complement this result by showing that for irreducible

12Since circulation rules are individual-good-preference based, equivalent definitions of dropping-proofness and
ig-dropping-proofness are obtained by additionally demanding that the deviation P ′

i be lexicographic.
13In the context of classical exchange economies, Postlewaite [21] was the first to introduce and study “non-

manipulability by withholding.”
14Note that individual rationality is compatible with Pareto-efficiency and strategy-proofness separately. For

instance, Biró et al. [4] studied rules that are individually rational and Pareto-efficient. Since [4] uses the assumption
of (resp-3), showing the existence of such rules without this assumption requires an adjustment to the rules in [4].
Details of this relatively straightforward adjustment are available from the authors upon request. Moreover, the
Segmented Trading Cycle rules of Section 5 are individually rational and strategy-proof on both preference domains.
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capacity configurations there is a unique rule (the cTTC) that satisfies all three properties (The-
orem 2) and in Section 5 we revisit this theorem in order to show that this unique rule can also
be derived from a different rule (the SSTC) when restricted to irreducible capacity configurations
(Theorem 2 revisited).

Before stating the impossibility results in this section, recall that all the results hold with
the additional assumption of (resp-3) on the preferences, which makes these impossibility results
stronger, since they hold on a smaller preference domain.

Proposition 1. There are capacity configurations for which there is no circulation rule that is
individually rational, ig-Pareto-efficient, and ig-strategy-proof.

Proof. We first note that it can be easily verified that all preferences that are considered and
constructed in the proof can be assumed/taken to satisfy (resp-3).

Let (n, q) = (3, (1, 2, 1)). Suppose for a contradiction that there exists an individually rational
rule f that is both ig-Pareto-efficient and ig-strategy-proof. Consider the market (N, q, P ) where
N = {a, b, c}, (qa, qb, qc) = (1, 2, 1), and P is a profile of lexicographic extensions of the following
preferences ≻ over individual goods:15

≻a: b ≻a a
≻b: c ≻b a ≻b b
≻c: a ≻c b ≻c c

The corresponding graph D(N,A(P )) is depicted in Figure 1. Edges correspond to acceptable
goods. For instance, the edge from c to a shows that agent c finds good a acceptable. Similarly,
there is no edge from a to c as agent a finds good c unacceptable. Continuous edges denote most
preferred goods and discontinuous edges denote second most preferred goods.

b

a c

xbcxab

xca

xcbxba

Figure 1: ≻ and D(N,A(P ))

One easily verifies that by individual rationality and ig-Pareto-efficiency, f(P ) ∈ {x, x′} where
x and x′ are the circulations given by x : xab = xbc = xca = 1 and x′ : x′

ab = x′
ba = 1, x′

bc = x′
cb = 1,

respectively.
Suppose f(P ) = x. Now let b report lexicographic preferences P ′

b such that ≻′
b≡≻P ′

b is given
by a ≻′

b c ≻′
b b. At the new preference profile P ′ = (P ′

b, P−b) the only two individually rational and
Pareto-efficient circulations are still x and x′. If f(P ′) = x′ then b can manipulate at P via P ′

b. If
f(P ′) = x then b can manipulate at P ′ by reporting lexicographic preferences P ′′

b where ≻′′
b ≡≻P ′′

b

is given by a ≻′′
b b, because at the resulting profile P ′′ = (P ′′

b , P−b) the unique individually rational
and Pareto-efficient circulation is x′′ : x′′

ab = x′′
ba = 1. This contradicts ig-strategy-proofness of f .

15Because of individual rationality we always omit unacceptable goods from the description of the preferences.
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Suppose now f(P ) = x′. Then c can manipulate at P by reporting lexicographic preferences
P ∗
c such that ≻∗

c ≡≻P ∗
c is given by a ≻∗

c c, since the only individually rational and Pareto-efficient
circulation at P ∗ = (P ∗

c , P−c) is x. This contradicts again ig-strategy-proofness of f . Hence, there
is no individually rational rule that is both ig-Pareto-efficient and ig-strategy-proof.

In the proof of Proposition 1 we made use of a particular capacity configuration, namely
(n, q) = (3, (1, 2, 1)). The incompatibility of Pareto-efficiency and strategy-proofness holds for
“many” other capacity configurations as well. In fact, our next result gives a sufficient condition
for this incompatibility– the necessity of this condition is established in the next section.

A capacity configuration (n, q) is called reducible if it satisfies one of the following two con-
ditions:

(rd1) n ≥ 3 and there are three different agents a, b, c ∈ N with qb > qc ≥ qa;
(rd2) n ≥ 4 and there are four different agents a, b, c, d ∈ N with qa = qb = qc > qd.

A capacity configuration is irreducible if it is not reducible.
Note that the capacity configuration in the proof of Proposition 1 is reducible as it satisfies

condition (rd1).

Proposition 2. If the capacity configuration is reducible, then there is no circulation rule that is
individually rational, Pareto-efficient, and strategy-proof.

A direct proof of Proposition 2 is relegated to Appendix A. A much shorter proof is provided at
the end of Section 5, which relies on the characterizations of the two main rules that we propose,
cTTC (Theorem 1) and SSTC (Theorem 3).

In view of the results in the upcoming sections it is convenient to note (and not difficult to
verify) that a capacity configuration (n, q) is irreducible if and only if it satisfies one of the
following three conditions:

(ird1) n = 2;
(ird2) n = 3 and there are three different agents a, b, c ∈ N with qb = qc > qa;
(ird3) n ≥ 3 and all agents have identical capacity.

We call irreducible capacity configurations “irreducible” because, if we start with an irreducible
capacity configuration, when we reduce the available units for any subset of the agents S ⊆ N
with |S| ≥ 2 by the same number and at least one of these agents reaches exactly zero units, we
still get an irreducible capacity configuration. This holds only when the capacity configuration is
irreducible.

4 The Circulation Top Trading Cycle rule
In this section we introduce the Circulation Top Trading Cycle (cTTC) rule which is a circulation
rule based on David Gale’s Top Trading Cycle algorithm. We will show that this rule satisfies
individual rationality, Pareto-efficiency, and strategy-proofness for irreducible capacity configura-
tions. In view of Proposition 2, this also shows that irreducibility is a necessary and sufficient
condition on the capacity configuration for the compatibility of the three properties. Our second
main result in this section is a characterization: on the domain of lexicographic preferences, the
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cTTC rule is the unique individually rational rule that is both Pareto-efficient and dropping-proof
(Theorem 1). As a consequence, the cTTC rule is the unique rule that satisfies individual ra-
tionality, Pareto-efficiency, and strategy-proofness on the domain of responsive preferences when
capacity configurations are irreducible (Theorem 2).

4.1 Description of cTTC

In the first step of this algorithm let each agent point to her most preferred good, or equivalently,
potential trading partner. If there is no such trading partner then the agent points to herself.
There is at least one “top trading” cycle. Let the agents in each top trading cycle send as many
goods as possible such that the number of goods exchanged within the cycle is the same for each
agent (i.e., maximize the flow subject to capacity restrictions). If the agent points to herself then
she receives her own remaining endowments. We decrease the capacity of each agent in a cycle
according to the number of goods traded in that cycle (i.e., the flow). In each top trading cycle,
there is at least one agent that exhausts all of her endowment (or in other words, at least one
node in the graph becomes saturated). All such agents are now removed from the market (i.e., all
saturated nodes are removed from the graph), and we repeat the same process in the remaining
market (reduced graph) until all agents are removed.

We will refer to this algorithm as the cTTC algorithm and denote the corresponding cTTC
rule by τ . Note that the cTTC algorithm can be equivalently executed and described by restricting
the flow of each cycle in each step to one unit. In the one-unit-per-cycle (version of the) algorithm,
it is not necessarily true that in each step some agent is removed; multiple steps with identical
cycles may be required to exhaust the capacity of some agent.

Note that the cTTC rule is individually rational. Moreover, when all agents have unit capacity,
i.e., qi = 1 for all agents i, the cTTC algorithm is the original top trading cycles algorithm. In
fact, when all agents have the same capacity, say q∗, the cTTC algorithm gives each agent the
bundle that consists of q∗ units of the good she receives at the circulation obtained from the TTC
algorithm applied to the economy with unit capacities and the same preferences over individual
goods.

4.2 Pareto-efficiency

We now turn to Pareto-efficiency, which is the first main property we consider.

Proposition 3. If n ≤ 3 or all agents have the same capacity, then the cTTC rule is Pareto-
efficient. If n ≥ 4, then there are capacity configurations for which the cTTC rule is not Pareto-
efficient. For any capacity configuration, the cTTC rule is ig-Pareto-efficient.

Proof. We prove the result in four steps.
Step 1. If n ≤ 3, then the cTTC rule is Pareto-efficient.
If n = 2 the result follows trivially. Let n = 3 and let N = {a, b, c}. Assume, without loss of
generality, that qa ≤ qb ≤ qc. Let P ∈ P . If τ(P ) can also be obtained by a serial dictatorship
following some ordering of the agents (where each agent in the ordering sequentially picks the
bundle she prefers most among the bundles that can be formed using all still available goods),
then it is Pareto-efficient at P . So, it is sufficient to show that at any preference profile, the
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cTTC outcome can also be obtained by some serial dictatorship (not necessarily the same serial
dictatorship for all preference profiles).

Fix a preference profile. Suppose in the first round of the cTTC algorithm there is a top trading
cycle that consists of a single agent. Then, this agent, say (without loss of generality) agent a, gets
her favorite bundle. Then, since the other two agents do not get good a, it can be easily verified
that the serial dictatorship based on ordering (a, b, c) or (a, c, b) gives the cTTC outcome.

Now suppose that in the first round of the cTTC algorithm no top trading cycle consists of a
single agent. Then, there is a unique top trading cycle in the first round of the cTTC algorithm.
We consider the following three cases.
Case 1: The top trading cycle in the first round consists of either a, b, and c, or of a and b.

Then, in the first round they trade qa units and a gets her most preferred bundle. Suppose
qa = qb. Then b also gets her most preferred bundle and the serial dictatorship with ordering
(a, b, c) gives the same circulation as cTTC. Now suppose qa < qb. If both c ≻b b and b ≻c c,
then b and c trade qb − qa units in the second round of cTTC and the serial dictatorship
with ordering (a, b, c) gives the same circulation as cTTC. Otherwise b and c do not trade in
the second round of cTTC but still b or c gets her most preferred bundle.16 Thus, the serial
dictatorship with (a, b, c) or (a, c, b) gives the same circulation as cTTC.

Case 2: The top trading cycle in the first round consists of a and c.
Then, in the first round they trade qa units and a gets her most preferred bundle. Suppose
qa = qc. Then c also gets her most preferred bundle and the serial dictatorship with ordering
(a, c, b) gives the same circulation as cTTC. Now suppose qa < qc. If both c ≻b b and
b ≻c c, then b and c trade min{qb, qc − qa} units in the second round of cTTC and the serial
dictatorship with ordering (a, c, b) gives the same circulation as cTTC. Otherwise b and c
do not trade in the second round of cTTC but still b or c gets her most preferred bundle.17

Thus, the serial dictatorship with (a, b, c) or (a, c, b) gives the same circulation as cTTC.
Case 3: The top trading cycle in the first round consists of b and c.

Then, in the first round they trade qb units and b gets her most preferred bundle. Suppose
qb = qc. Then c also gets her most preferred bundle and the serial dictatorship with ordering
(b, c, a) gives the same circulation as cTTC. Now suppose qb < qc. If both c ≻a a and
a ≻c c, then a and c trade min{qa, qc − qb} units in the second round of cTTC and the serial
dictatorship with ordering (b, c, a) gives the same circulation as cTTC. Otherwise a and c
do not trade in the second round of cTTC but still a or c gets her most preferred bundle.18

Thus, the serial dictatorship with (b, a, c) or (b, c, a) gives the same circulation as cTTC.

Step 2. If all agents have the same capacity, then the cTTC rule is Pareto-efficient.
Suppose the agents have the same capacity, say q∗. Let P ∈ P . Suppose that x = τ(P ) is not
Pareto-efficient at P . Let x′ be a circulation that Pareto-dominates x. Note that when cTTC
is applied to P each agent trades in only one round and receives exactly q∗ units of some good
(or receives the null bundle). Consider the earliest round of cTTC, say r, in which some agent i
receives a bundle xi ̸= x′

i. Let j be the good of which i receives q∗ units at x. Since preferences
are responsive and i prefers x′

i to xi there is a good l such that l ≻i j and x′
il > 0. By definition

of cTTC, all q∗ units of l were assigned to some agent k in some round 1, . . . , r − 1 of cTTC (or
16More precisely, if agent i ∈ {b, c} finds good j ∈ {b, c}\{i} unacceptable, then i gets her most preferred bundle.
17More precisely, if agent i ∈ {b, c} finds good j ∈ {b, c}\{i} unacceptable, then i gets her most preferred bundle.
18More precisely, if agent i ∈ {a, c} finds good j ∈ {a, c}\{i} unacceptable, then i gets her most preferred bundle.
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k = l and agent k left the market with all q∗ units of her own good). But then xk ̸= x′
k. This

contradicts the fact that round r is the earliest round in which some agent receives a bundle that
differs from the one she receives at x′. Hence, x = τ(P ) is Pareto-efficient at P .
Step 3. Let n ≥ 4. Then, there are capacity configurations for which the cTTC rule is not
Pareto-efficient.
Without loss of generality assume that N = {a, b, c, d}. (Otherwise, let any additional agent find
all goods (but her own good) unacceptable.) Suppose qa < qc ≤ qd ≤ qb. Consider the class of
preferences P ′ ⊂ P such that the preferences over individual goods are as follows:

≻a: c ≻a a
≻b: d ≻b b
≻c: a ≻c b ≻c c
≻d: a ≻d b ≻d c ≻d d

Let P ∈ P ′. Let x = τ(P ). In the first round of the cTTC algorithm, there is a unique top
trading cycle which consists of a and c, which yields xac = xca = qa. In the second round, there
is a unique top trading cycle which consists of b and d, which yields xbd = xdb = qd. In the final
round(s), the remaining goods are kept by their owners.

Let x′ ∈ X be the circulation defined by x′
ac = xac = qa and x′

bd = xbd = qd, but x′
cb = qc,

x′
da = qa, x′

db = qd − qc, and x′
dc = qc − qa. Note that a and b receive the same bundles at x

and x′. Since qc > qa, there exist two numbers uc(a) and uc(b) such that 0 < uc(b) < uc(a) and
qcuc(b) > qauc(a). Let P ∈ P ′ be such that d has lexicographic preferences and c has additive
preferences with qcuc(b) > qauc(a). Then c prefers x′

c to xc and d prefers x′
d to xd. Hence, x′

Pareto-dominates x at P . Hence, the cTTC rule does not yield a Pareto-efficient circulation.
Step 4. For any capacity configuration, the cTTC rule is ig-Pareto-efficient.
Suppose the cTTC rule does not yield a Pareto-efficient circulation for some market (N, q, P ),
where P is a profile of lexicographic preferences. Let x = τ(P ). Then, there is a circulation x′ that
Pareto-dominates x. Consider the one-unit-per-cycle version of the cTTC algorithm for x. Let i
be an agent in a top trading cycle in the first round. Among the goods that i receives at x′, let j
be the good she prefers most. Since agent i weakly prefers x′

i to xi and since she has lexicographic
preferences, j is the good to which agent i points in the first round of the cTTC algorithm for
x. Therefore, j is also in a top trading cycle in the first round (for x). By repeating the same
arguments, it follows that each top trading cycle in the first round (for x) is part of circulation x′.
More formally, let i be any agent in a top trading cycle in the first round for x, and let j be the
good of which she then (i.e., in the first round) receives one unit. Then, x′

ij > 0.
Consider the market that is obtained by 1) reducing with one unit the capacity of each agent

that was in a top trading cycle in the first round, and 2) removing the agents that as a consequence
have capacity 0. Let the remaining agents have the same lexicographic preferences as before (if
necessary, update preferences by omitting goods/agents that are no longer present). Let y and
y′ be the circulations obtained from x and x′, respectively, by 1) setting y = x and y′ = x′, 2)
updating yij = yij − 1 and y′ij = y′ij − 1 for any agent i in a top trading cycle of the first round, j
being the good agent i points to, and19 3) removing any ykl and y′kl if good l is no longer present,

19Since x and x′ are both feasible circulations, it follows that for each good l it holds that for all k, ykl = 0 if and
only if for all k, y′kl = 0.
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i.e., if ykl = y′kl = 0 for all k.
Since x′ Pareto-dominates x and preferences are lexicographic, y′ Pareto-dominates y with

respect to the updated lexicographic preferences. Since y is also the circulation obtained from the
cTTC algorithm applied to the updated lexicographic preferences, we can use the same arguments
as before to subtract again the first top trading cycles from y and y′, update the market, etc. By
repeating this procedure a finite number of times it follows that x = x′, which contradicts the fact
that x′ Pareto-dominates x.

Corollary 1. If the capacity configuration is irreducible, then the cTTC rule is Pareto-efficient.

4.3 Strategy-proofness and other incentive properties

When all agents have unit capacity the cTTC rule boils down to the classical top trading cycles
mechanism and hence the rule is strategy-proof. In fact, by considering the one-unit-per-cycle
version of the cTTC algorithm, we immediately obtain the following more general result.

Proposition 4. For any capacity configuration, the cTTC rule cannot be manipulated by any agent
with unit capacity, i.e., any agent i with qi = 1.

We will show that there are reducible capacity configurations for which Proposition 4 cannot
be generalized to agents with larger capacity (Proposition 6). However, our next result shows that
it can be generalized for all irreducible capacity configurations.

Corollary 2. If the capacity configuration is irreducible, then the cTTC rule is strategy-proof.

We defer the proof of Corollary 2 to Section 5, as it is a direct corollary to Propositions 8 and 9.
Next, we study if and when the cTTC rule satisfies other incentive properties.

Proposition 5. For any capacity configuration, the cTTC rule is hiding-proof and truncation-
proof.

Proof. We only show that τ is hiding-proof; using similar arguments one easily proves that τ is
also truncation-proof. Suppose q′i < qi. Then, the (one-unit-per-cycle) cTTC algorithm applied
to (P, (q−i, q

′
i)) proceeds precisely in the same way as the (one-unit-per-cycle) cTTC algorithm

applied to (P, q) until agent i exhausts her capacity. Therefore the bundle fi(P, (q−i, q
′
i)) contains

a weakly smaller number of units of each good compared to fi(P, q). By responsiveness of Pi,
fi(P, q)Ri fi(P, (q−i, q

′
i)). This shows that τ is hiding-proof.

The formulation of the following result is very similar to that of Proposition 3.

Proposition 6. If n ≤ 3 or all agents have the same capacity, then the cTTC rule is dropping-
proof. If n ≥ 4, then there are capacity configurations for which the cTTC rule is not dropping-
proof. For any capacity configuration, the cTTC rule is ig-dropping-proof.
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Proof. We prove the result in four steps.
Step 1. If n ≤ 3, then the cTTC rule is dropping-proof.
If n = 2 the result follows trivially. Let n = 3 and let N = {a, b, c}. Fix a preference profile. We
show that a cannot manipulate the cTTC rule by dropping. We can assume that each agent finds
at least one other good acceptable (otherwise we are essentially back in the case n = 2). Then,
there is a unique top trading cycle in the first round of cTTC.

Suppose a is not involved in the first top trading cycle. Suppose a plays a dropping strategy.
Then the first top trading cycle remains unchanged. But then, as in the second round we are left
with at most two agents, the result follows.

Now suppose a is involved in the first top trading cycle with only one other agent, say with
b. Then a or b gets saturated in the first round, i.e., fills her capacity, and leaves the market. If
agent a gets saturated then she received qa units of her favorite good, so she cannot be better off
in any other circulation. If it is agent b (but not a) who becomes saturated in the first round, then
a receives qb units of her favorite good and she is left with c in the second round of cTTC, where
she gets min{qa − qb, qc} units of c, provided that c finds a acceptable (and a finds c acceptable;
otherwise, a cannot be better off by dropping b). It is not difficult to see that a cannot benefit
from dropping b or c, since if she drops c then she just receives qb units of b as a final bundle; if
she drops b then only when a and c are mutually acceptable she gets (min{qa, qc} units of) good
c, which by responsiveness, is worse than her final bundle when she tells the truth.

Finally, suppose all three agents are involved in the first top trading cycle, say in order (a, b, c).
Suppose that a is saturated in the first round, i.e., qa ≤ min{qb, qc}. Then, she gets as many
units of her favorite good as her capacity. Hence, she cannot benefit from any dropping strategy.
Suppose now that b is saturated in the first round, i.e., qb ≤ min{qa, qc}. In this case, the final
allocation of a is qb of b and if a finds c acceptable, also min{qa, qc} − qb units of good c. If a
drops c then a gets qb of b only. If a drops b then a gets min{qa, qc} units of good c only (if a
finds c acceptable), which by responsiveness is worse than her bundle under truth-telling. Finally,
suppose that c is saturated in the first round, i.e., qc ≤ min{qa, qb}. If b finds a unacceptable, then
a cannot manipulate by dropping for sure. Suppose now that b finds a acceptable. Then, since
a gets the bundle that consists of min{qa, qb} units of good b, dropping c does not yield a more
preferred bundle. By dropping b, a would get the bundle that consists qc units of c (assuming c is
acceptable for a), which by responsiveness does not yield a more preferred bundle.
Step 2. If all agents have the same capacity, then the cTTC rule is dropping-proof.
If all agents have the same capacity, then the capacity configuration is irreducible. Then, by
Corollary 2, the cTTC rule is strategy-proof and hence dropping-proof.
Step 3. Let n ≥ 4. Then, there are capacity configurations for which the cTTC rule is not
dropping-proof.
Without loss of generality assume that N = {a, b, c, d}. (Otherwise, let any additional agent find
all goods (but her own good) unacceptable.) Let qa = qb = qc = 1 and qd = 2. Consider the class
of preferences P ′ ⊂ P such that the preferences over individual goods are as follows:

≻a: b ≻a a
≻b: c ≻b d ≻b b
≻c: d ≻c c
≻d: a ≻d c ≻d b ≻d d
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Let P ∈ P ′. Let x = f(P ). In the first round of the cTTC algorithm there is a top trading
cycle that consists of a, b, c, and d, which yields xab = xbc = xcd = xda = 1. In the second (and
final) round, d keeps the remaining unit of her good.

Now let agent d report preferences such that

≻d: c ≻′
d b ≻′

d d,

which is a dropping of the original preferences of d. Then, in the first round of the cTTC algorithm
there is a (unique) top trading cycle that consists of c and d, which yields x′

cd = x′
dc = 1. In

the second round there is a (unique) top trading cycle that consists of b and d, which yields
x′
bd = x′

db = 1. In the third (and final) round, a keeps her good. Let P ∈ P ′ be such that d has
additive preferences with ud(b)+ud(c) > ud(a). Then d strictly prefers x′

d to xd. Hence, the cTTC
rule is not dropping-proof.
Step 4. For any capacity configuration, the cTTC rule is ig-dropping-proof.
Suppose the cTTC rule is not ig-dropping-proof. Then there is a market (N, q, P ) such that for
some i ∈ N , Pi is lexicographic and there is P ′

i with τi(P
′
i , P−i)Pi τi(P ) and ≻′

i is a dropping of
≻i (these being the preferences over individual goods induced by P ′

i and Pi, respectively). Let
x = τ(P ) and x′ = τ(P ′

i , P−i).
If ≻′

i is obtained from ≻i by only dropping one or several goods k with xik = 0, then x = x′,
which contradicts x′

iPixi. So, ≻′
i is obtained from ≻i by dropping some good k∗ with xik∗ > 0

(and possibly dropping one or several goods k with xik = 0). Let k∗∗ be the most preferred good
with xik∗∗ > 0 and that is dropped in ≻′

i. Then, for all goods l that are strictly preferred to
k∗∗, xil = x′

il. Then, since xik∗∗ > 0 = x′
ik∗∗ and preferences Pi are lexicographic, xiPix

′
i, which

contradicts x′
iPixi.

4.4 A characterization of cTTC and an (almost) impossibility result

We are now ready to characterize the cTTC rule.

Theorem 1. For any capacity configuration, the cTTC rule is the unique circulation rule that is
individually rational, ig-Pareto-efficient, and ig-dropping-proof.

Proof. The cTTC rule is individually rational by construction, ig-Pareto-efficient by Proposition 3,
and ig-dropping-proof by Proposition 6.

It remains to prove that the cTTC rule is the unique rule that satisfies the three properties.
Let f be a circulation rule that is individually rational, ig-Pareto-efficient, and ig-dropping-proof.
We will show that for any profile of lexicographic preferences P , f(P ) = τ(P ). Since f and τ are
individual-good-preference based, then for any profile of preferences P , f(P ) = τ(P ).

We will show by induction that for any integer l ∈ N++, if P is a profile of lexicographic
preferences such that cTTC requires k ≥ l rounds, then the circulation induced by the union of
the top trading cycles (and their flows) in rounds 1, . . . , l are contained in circulation f(P ).

We first prove the statement for l = 1. Let P be a profile of lexicographic preferences and
let x = f(P ). Let ≻≡≻P be the induced preferences over individual goods. Let Z ⊆ N be a
top trading cycle coalition20 in the first round of the cTTC algorithm applied to P . Let q be

20More precisely, a top trading cycle coalition is a set of agents that constitute some cycle in the cTTC algorithm.
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the minimum capacity among the members of Z. Suppose that there exists some agent a ∈ Z
such that for a’s most preferred good, say good b, we have xab < q. Let P ′

a be any lexicographic
preferences such that the induced preferences over individual goods are given by dropping ≻′

a: b, a.
Let x′ = f(P ′

a, P−a). Individual rationality of f implies that x′
a� = x′

ab. Since ≻′
a is a dropping

of ≻a, it follows from ig-dropping-proofness of f that a does not strictly prefer x′
a to xa. Hence,

x′
ab ≤ xab and thus x′

ab < q. Then, from the balancedness of circulation x′ at a it follows that for
agent c ∈ Z that points in the top trading cycle to a, x′

ca ≤ x′
a� = x′

ab < q.
Note that by construction P ′ is a profile of lexicographic preferences such that Z ⊆ N is also a

top trading cycle coalition in the first round of the cTTC algorithm applied to P ′ and, as we have
just shown, x′

ca, x
′
ab < q. Hence, we can repeat the same arguments to the next predecessors in the

top trading cycle coalition Z until we are back in a. At that moment we have constructed a profile
of lexicographic preferences, say P ∗, in which each agent of Z only finds acceptable the good she
was pointing to in the top trading cycle associated with Z (and her own good). By construction,
at f(P ∗) the agents in Z (only) circulate their goods suboptimally, since the flow is strictly below
the maximum q, i.e., all agents in Z are unfilled at f(P ∗). But then f(P ∗) is not Pareto-efficient
at P ∗: all agents in Z would be strictly better off if the flow in the associated cycle would be
increased. This shows that for any profile of lexicographic preferences P , if Z is a top trading
cycles coalition with flow q in the first round of cTTC applied to P , then each agent a ∈ Z, who
points to b ∈ Z say, obtains at f(P ) a quantity of good b that is weakly larger than q. So, for any
profile of lexicographic preferences P , the circulation induced by the union of top trading cycles
(and their flows) that are generated in round 1 of cTTC applied to P are contained in circulation
f(P ).

We now prove the statement for l = 2. Let P be a profile of lexicographic preferences such
that cTTC requires k ≥ l rounds. Let x = f(P ). The result for l = 1 implies that if we take x and
subtract the circulation induced by the union of the top trading cycles from round 1 we obtain a
(feasible) circulation y. Let Z ⊆ N be a top trading cycle coalition in the second round of the
cTTC algorithm applied to P . Let q be the minimum remaining capacity among the members of
Z at the beginning of the second round. (Some or all members of Z can have been members of
top trading cycles in the first round, but Z itself cannot have been a top trading cycle coalition in
the first round.)

Suppose that there exists some agent a ∈ Z such that for the good to which a now points, say
good b, we have yab < q. Let P ′

a be any lexicographic preferences such that the induced preferences
over individual goods are given by the dropping ≻′

a: b, a if a did not receive any good in round 1 of
cTTC or received some units of good b in round 1; and the dropping ≻′

a: d, b, a if a received some
units of good d ̸= b, a in round 1. Let x′ = f(P ′) where P ′ = (P ′

a, P−a). Note that by definition
of cTTC the top trading cycles in rounds 1 and 2 of cTTC are the same at P and P ′. The result
for l = 1 implies that if we take x′ and subtract the circulation induced by the union of the top
trading cycles from round 1 we obtain a (feasible) circulation y′. Next we show that y′a� = y′ab and
y′ab < q.

Suppose that in round 1 of cTTC at P and P ′ agent a did not receive any good (zero amount
at both P and P ′) or received some units of good b (the same amount at P and P ′). Then, by
individual rationality of f , y′a� = y′ab, and so by ig-dropping-proofness of f , y′ab ≤ yab < q.

Suppose now that in round 1 of cTTC at P and P ′ agent a received some units of good d ̸= b, a.
Since a received some units of good d ̸= b in the first round of cTTC and some units of good b
in the second round of cTTC, it follows that d was filled in the first round of cTTC. Then, since
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the top trading cycles from round 1 are the same for x and x′, it follows that xad = x′
ad. Then, by

individual rationality and ig-dropping-proofness of f , x′
ab ≤ xab. Hence, y′ab = x′

ab ≤ xab = yab < q.
From the capacity constraint for d, y′ad = 0. Then, from the individual rationality of f , y′a� = y′ab.

Let c ∈ Z be the agent that points to a in the top trading cycle Z (in the second round, which
is common to P and P ′). Then, from the balancedness of circulation y′ at a, y′a� = y′ab, and y′ab < q
we have that y′ca ≤ y′a� = y′ab < q.

Note that by construction P ′ is a profile of lexicographic preferences such that Z ⊆ N is also
a top trading cycle coalition in the second round of the cTTC algorithm applied to P ′ and, as we
have just shown, y′ca, y′ab < q. Hence, we can repeat the same arguments to the next predecessors
in the top trading cycle coalition Z until we are back in a. Let P ∗ be the profile of lexicographic
preferences that has been sequentially constructed until this moment. Let y∗ be the circulation
obtained from f(P ∗) by subtracting the circulation induced by the union of the top trading cycles
from round 1. By construction, Z ⊆ N is also a top trading cycle coalition in the second round of
the cTTC algorithm applied to P ∗, and for each agent z ∈ Z, y∗zw < q where w is the good that
agent z points to in the top trading cycle defined by Z. But then f(P ∗) is not Pareto-efficient
at P ∗: all agents in Z would be strictly better off if the flow in the associated cycle would be
increased. This, together with the statement for l = 1, shows that for any profile of lexicographic
preferences P , the circulation induced by the union of top trading cycles (and their flows) that are
generated in rounds 1 and 2 of cTTC applied to P are contained in circulation f(P ).

The statement for l > 2 can be proved with similar arguments.

Remark 3. The properties in Theorem 1 are logically independent. First, multi-serial-IR rules
in Biró et al. [4] are individually rational and Pareto-efficient, and thus also ig-Pareto-efficient.
Second, multi-serial-rules in Biró et al. [4] are Pareto-efficient and strategy-proof (see footnote 14 on
dispensing with (resp-3)). Finally, all Segmented Trading Cycle rules of Section 5 are individually
rational and strategy-proof, and thus also ig-dropping-proof. ⋄

We now state and prove our (almost) impossibility theorem.

Theorem 2. There is a circulation rule that is individually rational, Pareto-efficient, and strategy-
proof if and only if the capacity configuration is irreducible. For irreducible capacity configurations,
the cTTC rule is the unique circulation rule that satisfies all three properties.

Proof. The “only if” part of the first statement follows from Proposition 2. The “if” part of the
first statement follows from Corollaries 1 and 2.

Regarding the second statement, Corollaries 1 and 2 show that the cTTC rule satisfies the
three properties. The uniqueness follows from Theorem 1.

In light of the results that we present in the next section, see also the revisited version of
Theorem 2 in subsection 5.3.

5 Segmented Trading Cycle rules
The cTTC rule generalizes the classical Top Trading Cycle (TTC) rule and allows for exchange in
the overall market. While not fully efficient, it is ig-Pareto-efficient, but it lacks strategy-proofness.
We now consider a different approach in order to find strategy-proof rules, following Pápai [19]:
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we first distribute the agents’ endowments over a number of smaller markets (the so-called market
segments), then apply the classical Top Trading Cycle algorithm within each market segment,
and finally aggregate the circulations. This class of “Segmented Trading Cycle” (STC) rules are
strategy-proof but in general do not satisfy ig-Pareto-efficiency, unlike cTTC. We also identify one
notable member of this class of rules, which we refer to as the SSTC rule, as the main alternative to
the cTTC rule, and characterize it in order to shed some light on the tradeoffs between the cTTC
rule and the SSTC rule. Both the cTTC and SSTC rule boil down to the classical TTC rule in the
original Shapley-Scarf market, and we will show that more generally in multi-unit Shapley-Scarf
markets with an irreducible capacity configuration the two rules coincide and are characterized by
individual rationality, Pareto-efficiency, and strategy-proofness.

5.1 Market Segmentation and Uniqueness

Let qmax ≡ maxi∈N qi. We create qmax market segments such that each agent has at most one
unit of her good in each market segment. For all t = 1, . . . , qmax, let Wt denote the set of goods in
market segment t. Then, for all i ∈ N and all t = 1, . . . , qmax, |Wt

⋂
ei| ≤ 1 and

⋃qmax
t=1 Wt =

⋃
i∈N ei.

For each market segment t = 1, . . . , qmax and each preference profile P ∈ P , let Dt = (Nt, At) be
the directed graph such that Nt = {i ∈ N : |Wt

⋂
ei| = 1}, and for all i, j ∈ Nt, (i, j) ∈ At if and

only if (i, j) ∈ A(P ).
A Segmented Trading Cycle (STC) rule is obtained by applying the following algorithm

to each preference profile. In each market segment t, carry out the TTC algorithm, given the
restrictions imposed by Dt. Thus, for each given market segment t, in the first step of the algorithm
let each agent point to her most preferred potential trading partner in Dt. If there is no such trading
partner then the agent points to herself. We get at least one top trading cycle. Let the agents in
each top trading cycle trade their goods (one unit for each agent). If an agent points to herself then
she receives her own endowment in this market segment. We remove each agent in top trading
cycles from the market (i.e., we remove the corresponding nodes from the graph Dt), and repeat
the same process in the remaining market until all agents are removed. The aggregation of the
circulations obtained in all qmax market segments yields the final circulation at the preference
profile in question.

As we will see, a Segmented Trading Cycle rule can only achieve full Pareto-efficiency for
irreducible capacity configurations. In order to avoid further and unnecessary efficiency losses, we
require “compactness” of the market segments by restricting the number of segments to at most
qmax, which is the minimum number of possible market segments. Note that, in general, not all
Pareto-efficient circulations can be reached under this restriction, but this is already true for the
original Shapley-Scarf housing markets.21 However, subject to the trade restrictions imposed by
the trading segments, a Segmented Trading Cycle rule is as efficient as possible. That is, there is
no Pareto-improving trade that can be carried out within any market segment, since the classical
TTC rule is Pareto-efficient. We can think of this as an “efficiency-on-the-range” property, which

21There are capacity configurations and preference profiles such that some Pareto-efficient circulation can only
be reached by allowing a market segmentation with strictly more than qmax segments. For instance, consider the
Shapley-Scarf market given by N = {a, b, c}, q = (1, 1, 1), and preferences b ≻a c ≻a a, a ≻b b, and a ≻c c. If there
is only qmax = 1 market segment, then the unique Segmented Trading Cycle rule is equivalent to the classical TTC
rule and yields the circulation where a and b swap their single units. The circulation where a and c swap is also
Pareto-efficient, but it requires two market segments: {a, c} and {b}.
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requires that the circulation outcome at any preference profile is not Pareto-dominated by another
circulation that is obtained by the rule at a different preference profile. Since “efficiency-on-the-
range” becomes more demanding when more trade can take place, this property of Segmented
Trading Cycle rules explains why keeping the number of market segments to a minimum helps to
improve the efficiency of these rules.

Observe that a Segmented Trading Cycle rule depends on how the initial endowments are
partitioned into market segments, and consequently there is a class of Segmented Trading Cycle
rules in which each member is determined by W = (Wt)t=1,...,qmax .

We will refer to the following set of capacity configurations as quasi-irreducible: the capacity
configuration is either irreducible or satisfies

(rd2*) n ≥ 4, N = {i1, i2, . . . , in}, and qi1 < qi2 = qi3 = . . . = qin .

Thus, quasi-irreducible capacity configurations include all irreducible capacity configurations and
a subclass of (rd2) reducible capacity configurations,22 as defined in Section 3.

Proposition 7. There is a unique Segmented Trading Cycle rule if and only if the capacity con-
figuration is quasi-irreducible.

Proof. This statement is obvious for n = 2, and in the case where all agents have the same
capacities. Thus, we only have to consider the case where qi1 < qi2 = qi3 = . . . = qin with
N = {i1, i2, . . . , in} and n = |N | ≥ 3. In this case there is a unique Segmented Trading Cycle rule
as the market segmentation is unique up to isomorphism (i.e., permutations of complete market
segments).

Suppose that the capacity configuration does not fall under any of the previous cases. Then
there are at least two agents whose capacities are strictly less than the maximum capacity qmax
among all agents, which implies that the market segmentation is not unique (not even up to
isomorphism). One easily verifies that in this case there are at least two different Segmented
Trading Cycle rules.

In the next proposition we show that the uniqueness of the Segmented Trading Cycle rule does
not necessarily make it identical to the cTTC rule for all quasi-irreducible capacity configurations.
In fact, the two rules only coincide for irreducible capacity configurations but not for (rd2*)
configurations. This makes intuitive sense, since the irreducible capacity configurations are the
exceptions in the impossibility theorem (Theorem 2).

Proposition 8. If the capacity configuration is irreducible, then the unique Segmented Trading
Cycle rule is identical to the cTTC rule. If the capacity configuration satisfies (rd2*), then the
unique Segmented Trading Cycle Frule is not identical to the cTTC rule.

Proof. The first statement is obvious for n = 2 and in the case where all agents have the same
capacities. Thus, we only have to consider the case where qa < qb = qc with N = {a, b, c} and
|N | = 3. Here, the unique segmentation is to have qa segments with all agents and qb−qa segments
with {b, c} only. If the first round of the cTTC involves a cycle with all agents then they trade in
the same way in cTTC as in the 3-agent segments of the Segmented Trading Cycle rule, and later

22Notice that (rd2) only requires that there are at least 3 (i.e., not necessary n− 1) different agents that have a
common capacity that is strictly larger than the capacity of some other agent.
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the agents {b, c} trade in the cTTC in the same way as in the 2-agent segments of the Segmented
Trading Cycle rule. Similar arguments apply if in the first round of the cTTC there is no top
trading cycle that involves all agents. Hence, the unique Segmented Trading Cycle rule is identical
to the cTTC rule.

To prove the second statement, let N = {a, b, c, d} with |N | = 4 and qa < qb = qc = qd
(for |N | > 4, let any additional agent find all goods (but her own good) unacceptable). Con-
sider any preference profile P such that the preferences over individual goods ≻=≻P are as follows:

≻a: b ≻a a
≻b: c ≻b d ≻b b
≻c: a ≻c d ≻c c
≻d: c ≻d b ≻d d

One can easily verify that the unique STC rule yields at P the circulation given by xab = xbc =
xca = qa and xcd = xdc = qc − qa. However, the cTTC rule yields at P the circulation given by
xab = xbc = xca = qa, xcd = xdc = qc − qa, and xbd = xdb = min{qa, qb − qa} > 0. Hence, the unique
Segmented Trading Cycle rule is not identical to the cTTC rule.

5.2 Properties of Segmented Trading Cycle rules

Definition 7. A circulation rule f is nonbossy23 if for all i ∈ N , Pi, P
′
i ∈ Pi, and P−i ∈ ×j ̸=iPj,

fi(P
′
i , P−i) = fi(P ) implies f(P ′

i , P−i) = f(P ). ⋄

Since the classical TTC rule is strategy-proof and nonbossy24 for each market segment and
since preferences are responsive, we obtain the following result.

Proposition 9. For any capacity configuration, Segmented Trading Cycle rules are strategy-proof
and nonbossy.

Proof. Since preferences are responsive, it is easy to verify that Segmented Trading Cycle rules are
strategy-proof, given that the classical TTC rule is strategy-proof. In order to verify nonbossiness,
we will first show that if an agent is assigned the same bundle of goods when the agent reports
different preferences then each individual good in the bundle has to come from the same market
segment. Suppose, to the contrary, that agent i is assigned the same set of goods but some of
the assigned goods were obtained in different market segments depending on agent i’s reported
preferences. Specifically, assume without loss of generality that in market segment tv agent i gets
good av when reporting ≻i, and good av+1 (modulo k) when reporting ≻′

i, that is, we have a simple
cycle permutation of the assigned goods (which may include i’s own good) considering the market
segments that they come from when we compare two preference profiles that only differ in i’s report.
Then, by the strategy-proofness of the classical TTC rule, given that both goods av and av+1 can be
assigned to agent i in segment tv depending on i’s report, we have that a1 ≻i a2 ≻i . . . ≻i ak ≻i a1.
This is a contradiction since ≻i is transitive. Therefore, if fi(P ) = fi(P

′
i , P−i) then i is assigned

the same good in each segment at both profile P and (P ′
i , P−i), and thus the nonbossiness of the

classical TTC rule implies that the Segmented Trading Cycle rules are nonbossy.
23Satterthwaite and Sonnenschein [26] were the first to introduce and study nonbossiness. We refer to Thom-

son [33] for a comprehensive overview and discussion on nonbossiness.
24See Ma [14], Svensson [32] and Miyagawa [16].
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As a corollary to Propositions 8 and 9 we obtain Corollary 2: the cTTC rule is strategy-proof
(and nonbossy) for irreducible capacity configurations.

In view of the result above, we will consider more demanding notions of strategy-proofness.
For any P ∈ P and any S ⊆ N , denote PS ≡ (Pi)i∈S and P−S ≡ (Pi)i∈N\S.

Definition 8. A coalition S ⊆ N can manipulate circulation rule f at P ∈ P via deviation
P ′
S ∈ ×i∈SPi if, for all i ∈ S, fi(P ′

S, P−S)Rifi(P ) and, for some j ∈ S, fj(P ′
S, P−S)Pjfj(P ). A

circulation rule f is (necessarily) group-strategy-proof if no coalition can manipulate f at any
P ∈ P . A circulation rule f is ig-group-strategy-proof if no coalition can manipulate f at any
profile of lexicographic preferences P ∈ PL.25 ⋄

When allocating a single unit of an indivisible good to each agent (e.g., in the original Shapley-
Scarf housing markets), strategy-proofness and nonbossiness are equivalent to group-strategy-
proofness (see Lemma 1 in Pápai [17]). In our context where agents can receive multiple types
and units of indivisible goods, strategy-proofness and nonbossiness do not imply group-strategy-
proofness. We will show that in fact a weaker property, which we call self-enforcing group-strategy-
proofness, is equivalent to the two axioms. Before establishing this result, we demonstrate first
that there exist capacity configurations for which all Segmented Trading Cycle rules violate group-
strategy-proofness. Specifically, we show that even for (ird2) irreducible capacity configurations
the unique Segmented Trading Cycle rule is not group-strategy-proof. On the other hand, for
(ird1) and (ird3) capacity configurations, that is, when n = 2 and when all agents have identical
capacities, respectively, it is clear that the unique Segmented Trading Cycle rule (or, equivalently,
the cTTC rule) is group-strategy-proof.

Proposition 10. Even for some irreducible capacity configurations, the unique Segmented Trading
Cycle rule (or, equivalently, the cTTC rule) is not group-strategy-proof.

Proof. To prove the statement, consider the market (N, q, P ) where N = {a, b, c} with qa < qb = qc
and preferences P are such that the underlying preferences over individual goods are as follows:

≻a: c ≻a a
≻b: a ≻b b
≻c: a ≻c b ≻c c

Assume also that preferences are additive such that qaub(a) + (qb − qa)ub(c) > 0 and qcuc(b) >
qauc(a).

Consider the unique Segmented Trading Cycle rule induced by qa segments of {a, b, c} and
qb − qa segments of {b, c}. Then, at profile P , agent b keeps the qb units of her own good, while
agent c receives qa units of good a and keeps qc− qa units of her own good. Suppose agents b and c
now report preferences P ′

b and P ′
c such that the underlying preferences over individual goods are:

≻′
b: a ≻b c ≻b b

≻′
c: b ≻c c

25Since circulation rules are individual-good-preference based, equivalent definitions of group-strategy-proofness
and ig-group-strategy-proofness are obtained by additionally demanding that the deviation P ′

S be a profile of
lexicographic preferences.
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Then, at profile (Pa, P
′
{b,c}), the unique Segmented Trading Cycle rule gives qa units of good a and

qb−qa units of good c to agent b, while it gives qc units of good b to agent c. Given the assumptions
on the preferences of agents b and c, the rule is not group-strategy-proof.

Definition 9. A coalition S ⊆ N can manipulate circulation rule f at P ∈ P in a self-
enforcing manner if S can manipulate f at P ∈ P via deviation P ′

S and, in addition, for all
i ∈ S, fi(P

′
S, P−S)Rifi(Pi, P

′
S\{i}, P−S). If coalition S can manipulate f at P ∈ P via deviation

P ′
S then S is a minimal manipulating coalition at P via P ′

S if there is no S̄ ⊊ S such that S̄
can manipulate f at P via deviation P ′

S̄
. A circulation rule f is self-enforcing group-strategy-

proof if no minimal manipulating coalition can manipulate f in a self-enforcing manner at any
P ∈ P .26 ⋄

A manipulation by coalition S is self-enforcing if members of S have no incentive to revert
back unilaterally to the true preferences at the manipulation profile (P ′

S, P−S). These manipu-
lations are self-enforcing in the sense that no member of the manipulating coalition is strictly
better off by reporting his true preferences when all other members of the coalition report their
manipulation preferences. Self-enforcing group-strategy-proofness is a weaker version of group-
strategy-proofness.27 It does not rule out all manipulations by coalitions, but it rules out any
self-enforcing manipulation by minimal manipulating coalitions.

Proposition 11. For any capacity configuration, a circulation rule is strategy-proof and nonbossy
if and only if it is self-enforcing group-strategy-proof.

Proof. It is easy to see that self-enforcing group-strategy-proofness implies strategy-proofness. We
will show that self-enforcing group-strategy-proofness also implies nonbossiness. Suppose that a cir-
culation rule f is self-enforcing group-strategy-proof and bossy. Then there exist P ∈ P , i, j,∈ N ,
and P ′

i ∈ Pi such that fi(P ) = fi(P
′
i , P−i) and fj(P ) ̸= fj(P

′
i , P−i). Let S = {i, j} and let P ′

j = Pj.
Then (P ′

S, P−S) = (P ′
i , P−i) and fi(P

′
S, P−S)Rifi(P ) holds. Moreover, since fj(P

′
S, P−S) ̸= fj(P ),

we can assume without loss of generality that fj(P
′
S, P−S)Pjfj(P ). This proves that S = {i, j}

is a manipulating coalition at P via deviation (P ′
i , P

′
j). Since f is self-enforcing group-strategy-

proof, it is also strategy-proof, which implies that S = {i, j} is a minimal manipulating coali-
tion at P via deviation (P ′

i , P
′
j). Finally, note that fi(P

′
S, P−S)Rifi(Pi, P

′
j , P−{i,j}) is equivalent to

fi(P
′
S, P−S)Rifi(P ), and fj(P

′
S, P−S)Rjfj(P

′
i , Pj, P−{i,j}) is equivalent to fj(P

′
S, P−S)Rjfj(P

′
S, P−S),

both of which are satisfied. Thus, S = {i, j} is a minimal manipulating coalition that can manip-
ulate in a self-enforcing manner at P , which contradicts our assumption that f is self-enforcing
group-strategy-proof.

We will show next the converse statement: if f is strategy-proof and nonbossy then it is self-
enforcing group-strategy-proof. Suppose that there exists a coalition S ⊆ N that can manipulate
f at P ∈ P via deviation P ′

S ∈ ×i∈SPS in a self-enforcing manner such that S is a minimal
manipulating coalition at P via P ′

S. Let j ∈ S such that fj(P ′
S, P−S)Pjfj(P ). Note that S \ {j} ≠

∅ since f is strategy-proof. Let i ∈ S \ {j}. Then fi(P
′
S, P−S)Rifi(Pi, P

′
S\{i}, P−S). Since f

26Since circulation rules are individual-good-preference based, an equivalent definition of self-enforcing group-
strategy-proofness is obtained by additionally requiring that the deviation P ′

S be a profile of lexicographic prefer-
ences.

27Related concepts are studied by Barberà et al. [3] and Serizawa [28].
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is strategy-proof, this implies that fi(P
′
S, P−S) = fi(Pi, P

′
S\{i}, P−S) and thus, by nonbossiness,

f(P ′
S, P−S) = f(Pi, P

′
S\{i}, P−S). Let T = S \ {i}. Then, since j ∈ T , coalition T is a manipulating

coalition at P via P ′
T . Therefore, S is not a minimal manipulating coalition at P via P ′

S, which is
a contradiction.

Proposition 11 provides a counterpart to the equivalence shown in Lemma 1 in Pápai [17], one
that also applies to markets with multiple units of each type of good.

Proposition 12. For any capacity configuration, Segmented Trading Cycle rules are self-enforcing
group-strategy-proof.

Proof. As stated in Proposition 9, Segmented Trading Cycle rules are strategy-proof and nonbossy.
Then Proposition 11 implies that Segmented Trading Cycle rules are self-enforcing group-strategy-
proof.

We can see that in the market specified in the proof of Proposition 10 the manipulation by
coalition {b, c} is due to preferences over bundles and, in particular, agent c’s preferences are not
lexicographic. For an illustration that Segmented Trading Cycle rules are self-enforcing group-
strategy-proof, one can check that the manipulation by coalition {b, c} in the same market is not
self-enforcing. In fact, it is similar to a Prisoner’s Dilemma situation, since each of agents b and c
is strictly better off by reporting her true preferences rather than her manipulation preferences, re-
gardless of whether the other one reports truthfully or goes ahead with reporting the manipulation
preferences.28

Another relaxation of group-strategy-proofness is ig-group-strategy-proofness, which requires
group-strategy-proofness for lexicographic preferences (see Definition 8). The next result demon-
strates that Segmented Trading Cycle rules are not ig-group-strategy-proof in general.

Proposition 13. There are capacity configurations for which some Segmented Trading Cycle rules
are not ig-group-strategy-proof.

Proof. Consider the market (N, q, P ) where N = {a, b, c, d, e}, qa = qb = qc = 2 and qd = qe = 3.
Let preferences P be lexicographic such that the underlying preferences over individual goods are
as follows:

≻a: c ≻a e ≻a b ≻a a
≻b: a ≻b d ≻b c ≻b b
≻c: b ≻c d ≻c a ≻c c
≻d: b ≻d c ≻d d
≻e: a ≻e e

Let the Segmented Trading Cycle rule be given by W1 = {a, b, d, e}, W2 = {b, c, d, e},
W3 = {a, c, d, e}. Then this Segmented Trading cycle rule yields circulation x at profile P with

28For an illustration, let qa = 1 < 2 = qb = qc = qd. Assume agents a and d report their preferences truthfully.
If b tells the truth, then c gets bundle {a, c} if she tells the truth and bundle {b, c} if she lies. If b lies, then c gets
bundle {a, b} if she tells the truth and bundle {b, b} if she lies. If c tells the truth, then b gets bundle {d, d} if she
tells the truth and bundle {c, d} if she lies. If c lies, then b gets bundle {a, d} if she tells the truth and bundle {a, c}
if she lies.
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xae = 2, xbd = 2, xcd = 1, and xcc = 1. Suppose agents a, b and c now report preferences P ′
a, P

′
b

and P ′
c such that the underlying preferences over individual goods are:

≻′
a: c ≻a b ≻a a

≻′
b: a ≻b c ≻b b

≻′
c: b ≻c a ≻c c

Then, at profile (P ′
{a,b,c}, P{d,e}), the above Segmented Trading Cycle rule yields circulation x′ with

x′
ac = 1, x′

ba = 1, and x′
cb = 1. Since preferences are lexicographic, this rule is not ig-group-

strategy-proof.

Remark 4. If a circulation rule is group-strategy-proof then it is both ig-group-strategy-proof and
self-enforcing group-strategy-proof. Since Segmented Trading Cycle rules are self-enforcing-group-
strategy-proof (Proposition 12) but not ig-group-strategy-proof in general (Proposition 13), self-
enforcing-group-strategy-proofness does not imply ig-group-strategy-proofness. We can also verify
that ig-group-strategy-proofness does not imply self-enforcing group-strategy-proofness. This can
be demonstrated by the following variation on the cTTC rule, which we will refer to as the Single-
cTTC rule: run the cTTC algorithm, but remove agents from the market after they participated
in any one round of trading (which may involve multiple units). As a result, each agent may
obtain at most one other agent’s goods (but possibly more than one unit). The Single-cTTC rule
is ig-group-strategy-proof, which follows from the group-strategy-proofness of the classical TTC
rule. To see this, observe that if a coalition successfully manipulates the Single-cTTC rule then
each manipulating agent who strictly gains would have to get either some units of a higher-ranked
good or more units of the same good that she is receiving without manipulation, provided that
these agents’ preferences are lexicographic. Obtaining any units of a higher-ranked good is ruled
out by group-strategy-proofness of the classical TTC rule, and receiving more units of the same
good via a single trading cycle is not feasible, since the number of units exchanged in each trading
cycle is bounded by the lowest-capacity agent(s) in the cycle. However, the Single-cTTC rule is
manipulable when preferences are not lexicographic, since more units of a lower-ranked good may
be preferred to fewer units of the good that is received. Therefore, the Single-cTTC rule is not
strategy-proof, and hence it is not self-enforcing group-strategy-proof, given Proposition 11. ⋄

Note that it follows from Propositions 8 and 12 that for irreducible capacity configurations
the cTTC rule is self-enforcing group-strategy-proof. While the cTTC rule is not necessarily
strategy-proof for reducible capacity configurations (Proposition 6), the cTTC rule is strategy-
proof for irreducible capacity configurations (Corollary 2), in which case it coincides with the
unique Segmented Trading Cycle rule (Proposition 8). The cTTC rule is also ig-group-strategy-
proof for irreducible capacity configurations, which is proved below.

Proposition 14. For any irreducible capacity configuration, the cTTC rule (or, equivalently, the
unique Segmented Trading Cycle rule) is ig-group-strategy-proof.

Proof. First note that, by Proposition 7, there is a unique Segmented Trading Cycle rule when the
capacity configuration is irreducible and, by Proposition 8, it is the same as the cTTC rule. The
statement on ig-group-strategy-proofness is obvious for n = 2 and in the case where all agents have
the same capacities, that is, for (ird1) and (ird3) irreducible capacity configurations, respectively.
Indeed, for these irreducible capacity configurations the cTTC rule (or, equivalently, the unique
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Segmented Trading Cycle rule) is group-strategy-proof, which implies ig-group-strategy-proofness.
Thus, we only need to consider (ird2), the case where n = 3 with N = {a, b, c} and qa < qb = qc.
Suppose that there exists some (ird2) capacity configuration for which the cTTC rule (or the unique
Segmented Trading cycle rule) f is not ig-group-strategyproof. Note that the unique segmentation
is given by qa segments of {a, b, c} and qb−qa segments of {b, c}. We will refer to the identical market
segments with a as Wa segments, and the identical market segments without a as W−a segments.
Since f is not ig-group-strategy-proof, there exists a coalition S ⊆ N that can manipulate f at
P ∈ PL via deviation P ′

S ∈ ×i∈SPi. Without loss of generality, let S be a manipulating coalition.
Since the cTTC rule is Pareto-efficient for irreducible capacity configurations (Corollary 1), the
coalition of all three agents cannot be a manipulating coalition, so we only need to check coalitions
of two agents, given that individual manipulations are ruled out by Corollary 2. Since the classical
TTC rule is group-strategy-proof, there exists i ∈ S who gets a strictly worse assignment in Wa

segments at (P ′
S, P−S) than at P , which implies that i gets a strictly better assignment in W−a

segments at (P ′
S, P−S) than at P , since fi(P

′
S, P−S)Rifi(P ). Similarly, there exists j ∈ S \ {i} who

gets a strictly worse assignment in W−a segments at (P ′
S, P−S) than at P , which implies that j

gets a strictly better assignment in Wa segments at (P ′
S, P−S) than at P . Since agent a does not

participate in W−a segments, this implies that S = {b, c}.
Assume without loss of generality that b is strictly worse off in Wa segments and strictly better

off in W−a segments at (P ′
S, P−S) than at P , which implies that c is strictly worse off in W−a

segments and strictly better off in Wa segments at (P ′
S, P−S) than at P , given the true preferences

Pb ∈ PL
b and Pc ∈ PL

c . Let ≻≡≻P and ≻′≡≻(P ′
S ,P−S). Since W−a segments consist of agents b

and c and the cTTC rule only assigns acceptable goods to agents, b can only be strictly better off
in these market segments at the manipulation profile if c ≻b b, c ≻c b, and b ≻′

c c. Then, given
that c is strictly better off in Wa segments at (P ′

S, P−S) than at P , it must be the case that a ≻c c,
since otherwise c has no acceptable good according to ≻c, and thus the cTTC rule cannot assign
any other good but her own at P , and agent c cannot be strictly better off at (P ′

S, P−S) than at
P in any segment. Therefore, a ≻c c ≻c b. Therefore, in order for c to be strictly better off in
Wa segments at (P ′

S, P−S) than at P , c has to obtain a in Wa segments at (P ′
S, P−S) but not at P .

Then, given that ≻c ranks a first, it cannot be that case that ≻a ranks c first, so it must rank b
first. The only other option would be that a ranks her own good first, but then c could not obtain
any units of a at the manipulation profile. Thus, b ≻a c and b ≻a a. Then, since c does not obtain
a at P , ≻b cannot rank c first. Given c ≻b b, this implies that ≻b ranks a first and thus a ≻b c ≻b b.
This implies that xba = qa and x′

ba = 0, where x ≡ f(P ) and x′ ≡ (P ′
S, P−S). Since preferences Pb

are lexicographic, it follows that fb(P )Pbfb(P
′
S, P−S), which is a contradiction.

There is a unique Segmented Trading Cycle rule if and only if the capacity configuration is
quasi-irreducible (Proposition 7). If the capacity configuration is irreducible, then the unique
Segmented Trading Cycle rule coincides with the cTTC rule (Proposition 8), which in this case is
also ig-group-strategy-proof (Proposition 14).

For the quasi-irreducible but not irreducible capacity configurations the cTTC rule is not
strategy-proof. This is because in these cases the cTTC may still reduce the capacity configuration
in some round of the procedure to a configuration that is not quasi-irreducible. For example, if
|N | = 4 with N = {a, b, c, d}, qa = 1 and qb = qc = qd = 2, then a top trading cycle of coalition
{a, b, c} reduces the capacity configuration to qa = 0, qb = qc = 1, and qd = 2, which is not a
quasi-irreducible capacity configuration. This explains intuitively why the irreducible capacity
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configurations are the only exceptions in the impossibility theorem (Theorem 2) whenever the
market segmentation is unique both for the entire problem and for all of its “reduced” problems that
can be reached via top trading by the cTTC, the unique Segmented Trading Cycle rule coincides
with the cTTC rule (see Proposition 8), which allows for combining strategy-proofness with Pareto-
efficiency. As explained earlier, this happens only if the capacity configuration is such that when
we reduce the available units for any non-singleton subset of the agents by the same number and
at least one of these agents reaches exactly zero units, we still get an irreducible configuration.
This holds only in the restricted cases when the capacity configuration is irreducible, and does not
hold for quasi-irreducible configurations in general. Therefore, in the quasi-irreducible cases that
are not irreducible, even though the Segmented Trading Cycle rule is unique, it is not identical to
the cTTC rule, and this precludes the reconciliation of strategy-proofness and Pareto-efficiency.

5.3 The Sequentially Segmented Trading Cycle rule

We now define a specific member of the class of Segmented Trading Cycle rules which sequentially
fills up the market segments with objects as much as possible, first segment 1, then segment 2,
and so on. We call this rule the Sequentially Segmented Trading Cycle rule. More formally, the
Sequentially Segmented Trading Cycle (SSTC) rule is obtained if market segments are such
that W1 to Wq1 contain one unit of each good, where q1 denotes the minimum capacity among all
agents, Wq1+1 to Wq2 contains one unit of each good that is still available, where q2 denotes the
minimum capacity among the remaining agents who can participate in segment q1 + 1, and so on.
Note that Proposition 10 also proves that the SSTC rule is not group-strategy-proof in general,
while Proposition 14 shows that it is ig-group-strategy-proof for irreducible capacity configurations.

We will characterize the SSTC rule using the axiom of top unanimity, which ensures that
whenever there is an agreement among a set of agents regarding their respective first choices,
in the sense of a feasible trade as in the classical TTC rule, this trade is carried out with the
highest possible flow. Top unanimity calls for trading goods in an intuitive manner, and while
it is not implied by Pareto-efficiency, it guarantees the most obvious individually rational and
Pareto-improving trades corresponding to top-ranked choices. This is in contrast to the incentive
properties of strategy-proofness, nonbossiness, and the three discussed versions of group-strategy-
proofness, all of which are compatible with not trading any units, even if trade is mutually desired
by all respective parties.

Definition 10. A circulation rule f is top unanimous if for all P ∈ P and S ⊆ N such that S is
a top trading cycle coalition at P (that is, S = {i1, i2, . . . , ik} such that for all t = 1, . . . , k, modulo
k, it’s top-ranked good is it+1), f(P ) reflects the corresponding trade for S with the maximum flow
(that is, the volume of the exchange corresponds to the capacity of the minimum-capacity agent
in S). More precisely, for all i ∈ N , if there is a top trading cycle coalition S at P such that i ∈ S
and i is assigned k units of good j in this top trading cycle then xij ≥ k, where x = f(P ).

Top unanimity means that the circulation assigned to each preference profile is consistent with the
first round of the cTTC rule, which makes at least one of the trading agents filled. It is easy to see
that not only the cTTC rule satisfies top unanimity, but also the SSTC rule, since the sequentially
filled segments give rise to the same first-round trades in segments which contain a unit of good
from each agent.
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We show next that the cTTC rule and the SSTC rule are only identical for irreducible capacity
configurations. This is not a coincidence, since this equivalence is closely related to the main
impossibility result and characterization stated in Theorem 2, as we will see at the end of this
section.

Proposition 15. The cTTC rule and the SSTC rule are identical if and only if the capacity
configuration is irreducible.

Proof. Given the proof of Proposition 8, it suffices to show that if the capacity configuration is in
the (rd1) category then the two rules are not identical. That is, if there exist distinct a, b, c ∈ N
with qa ≤ qb < qc, then there exists some preference profile to which the cTTC and the SSTC
assign different circulations. Let ≻ satisfy the following: c ≻a a, c ≻b b, and a ≻c b ≻c c. Then
{a, c} is a top trading cycle in the first round and thus, by the top unanimity of both the cTTC
and SSTC, a and c trade units corresponding to the maximum flow qa. Thus, in the cTTC rule
{b, c} is a top trading cycle coalition in the next round of the procedure, and b and c then trade
units corresponding to the maximum flow which is given by min{qb, qc−qa}. However, in the SSTC
rule coalition {b, c} trades qb − qa units only. Since qa > 0 and qb < qc, qb − qa < min{qb, qc − qa}.
Therefore, the cTTC and the SSTC rules assign different circulations to ≻.

Given Proposition 15, we now revisit and further refine the statement of Theorem 2 as follows.

Theorem 2 (revisited). There is a circulation rule that is individually rational, Pareto-efficient,
and strategy-proof if and only if the capacity configuration is irreducible. For irreducible capacity
configurations, the SSTC rule, which is identical to the cTTC rule, is the unique circulation rule
that satisfies all three properties.

Proposition 16. For any capacity configuration, if a circulation rule is top unanimous and
strategy-proof then it is also individually rational.

Proof. Suppose that a circulation rule f is top unanimous and strategy-proof, but there exists
P ∈ P such that individual rationality is violated at P by f . Then there exists i ∈ N such that
for the null bundle 0i, 0iPifi(P ). Let P ′

i ∈ Pi such that at ≻P ′
i all goods j ̸= i are unacceptable.

Then top unanimity implies that fi(P
′
i , P−i) = 0i. Thus, fi(P

′
i , P−i)Pifi(P ), which contradicts

strategy-proofness. Therefore, f is individually rational.

Our final main result is a characterization of the SSTC rule by top unanimity and self-enforcing
group-strategy-proofness. Note that Proposition 16 makes individual rationality a redundant prop-
erty for this characterization, although the SSTC rule satisfies it.

Theorem 3. For any capacity configuration, the SSTC rule is the unique circulation rule that is
top unanimous and self-enforcing group-strategy-proof.

The proof of Theorem 3 is in Appendix B. We know that the SSTC rule is top unanimous and
have already shown that it is self-enforcing group-strategy-proof (Proposition 12), and thus the
proof demonstrates the converse, namely that the only top unanimous and self-enforcing group-
strategy-proof rule is the SSTC rule. The proof proceeds in several steps. We show first that
each circulation can be decomposed into market segments and that each circulation assigned to a
preference profile by a top unanimous and self-enforcing group-strategy-proof rule has the same
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market segment decomposition at each preference profile. Moreover, given top unanimity, this
market segment decomposition is the same as the market segment decomposition of the SSTC rule.
Then we show that strategy-proofness is satisfied within each market segment, and this combined
with individual rationality and top unanimity implies that the classical TTC outcome is assigned
within each market segment at each preference profile, completing the proof. The last step also
provides a new characterization of the classical TTC rule using individual rationality, top unanimity
and strategy-proofness (replacing Pareto-efficiency by top unanimity in the characterization of
Ma [14]).

Remark 5. Self-enforcing group-strategy-proofness and top unanimity are logically independent
properties. To see this note that, by definition, the cTTC rule is top unanimous. Moreover,
it follows from Proposition 6 that for reducible capacity configurations the cTTC rule is not
necessarily strategy-proof. Thus, by Proposition 11, the cTTC rule is not self-enforcing group-
strategy-proof. Therefore, the cTTC rule is top unanimous but not self-enforcing group-strategy-
proof. On the other hand, the no-trade rule, or any Segmented Trading Cycle rule other than the
SSTC rule, is self-enforcing group-strategy-proof (Propositions 11 and 12) but does not satisfy top
unanimity. ⋄

Note that the SSTC rule is not ig-group-strategy-proof for all capacity configurations,29 and
thus this axiom cannot replace self-enforcing group-strategy-proofness in the characterization of
the SSTC rule. However, since the Single-cTTC rule is top unanimous by definition and satisfies
ig-group-strategy-proofness (see Remark 4), these two axioms are compatible. Indeed, these prop-
erties of the Single-cTTC rule also imply that we cannot substitute ig-group-strategy-proofness for
self-enforcing group-strategy-proofness in Theorem 3.

As a corollary to Theorem 3 and Proposition 11, we obtain the following alternative character-
ization of the SSTC rule.

Corollary 3. For any capacity configuration, the SSTC rule is the unique circulation rule that is
top unanimous, strategy-proof, and nonbossy.

Another corollary to Theorem 3, using Proposition 10 and the fact that group-strategy-
proofness implies self-enforcing group-strategy-proofness, is the following.

Corollary 4. There are capacity configurations for which there exists no circulation rule that is
top unanimous and group-strategy-proof.

We can now describe the tradeoffs regarding the two main proposed circulation rules, cTTC and
SSTC, more precisely. While both rules satisfy individual rationality, top unanimity, and nonbossi-
ness, cTTC does better in terms of efficiency since it is ig-Pareto-efficient, while SSTC satisfies the
weak efficiency property of “efficiency-on-the-range.”30 On the other hand, SSTC satisfies strategy-
proofness (in fact, it satisfies the more demanding self-enforcing group-strategy-proofness prop-
erty), while cTTC is only ig-dropping-proof, a weaker incentive property than strategy-proofness.

29Proposition 10 demonstrates that the SSTC rule is not group-strategy-proof. A larger example is required than
the one in the proof of this proposition to show that the SSTC rule does not satisfy ig-group-strategy-proofness
either (assuming that the capacity configuration is not irreducible, since for irreducible capacity configurations it is
ig-group-strategy-proof, by Proposition 14). Such an example is available from the authors upon request.

30Note that “efficiency-on-the-range” is not implied by ig-Pareto-efficiency (but, clearly, implied by Pareto-
efficiency), and is in fact not satisfied by the cTTC rule.
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To conclude, we use the two characterization theorems (Theorems 1 and 3) to give a short
intuitive proof of the impossibility result stated in Proposition 2, showing that the three main
axioms in the classical characterization result of the TTC by Ma (1994) cannot be reconciled for
multiple-unit Shapley-Scarf markets when the capacity configuration is reducible.

Proof of Proposition 2. Let a circulation rule f be individually rational, Pareto-efficient and
strategy-proof. Then f is ig-Pareto-efficient and ig-dropping-proof, and thus by Theorem 1 f must
be the cTTC rule for any capacity configuration. This implies that f is also top unanimous and
nonbossy, since the cTTC rule satisfies these properties. Then, given that f is also strategy-proof
and thus self-enforcing group-strategy-proof for any capacity configuration, as shown by Propo-
sition 11, Theorem 3 implies that f must be the SSTC rule for any capacity configuration. By
Proposition 15, the cTTC and the SSTC rules are only identical for irreducible capacity configu-
rations, and therefore we get a contradiction when the capacity configuration is reducible. This
implies that if the capacity configuration is reducible then there is no circulation rule that is
individually rational, Pareto-efficient and strategy-proof. □

6 Extensions and future research
Instead of (or besides) the agent-capacities we could have link-capacities on the number of units
the agents can send to others through specific links (arcs in D(N,A(P ))). This is a very typical
setting for circulation problems in graph theory, and some practical applications do have this kind
of requirement, e.g., in the Erasmus exchange program the number of students from university U
that visit university V is bounded by the specifications in the bilateral contract between U and V .
We opted for defining our model through node-capacities to easily relate it to existing models on
the exchange of indivisible goods. However, any arc-capacitated market can always be transformed
into a node-capacitated market under responsive preferences by introducing nodes for each arc, as
follows. For each (i, j) ∈ A(P ), let ij be a new node with the same capacity as the original arc.
Let j be replaced by ij in i’s preference list and let node ij only find j acceptable. The feasible
circulations are in one-to-one correspondence in the two markets. Moreover, the original agents
evaluate any circulation in the same way in the two markets. Finally, since the new nodes do not
have any strategic role in the extended market (they only have one partner to trade with), the
manipulability of any circulation rule does not change from one setting to the other.

If agents have heterogeneous goods instead of homogeneous goods then some aspects of the
circulation problem can still be studied in our model, although the strategic issues will be different.
We can reduce the model with heterogeneous goods to our circulation model as follows. Let each
good of the heterogeneous case be an artificial agent with unit capacity in our circulation model,
and let her only find the original owner acceptable. Let all original agents preferences with respect
to the new artificial agents be consistent with their original preferences. A generalization of the
TTC rule for the heterogeneous case, which was introduced and studied in Fujita et al. [8], is
equivalent to our cTTC rule for the reduced circulation market with homogeneous goods. The
new artificial agents cannot manipulate the cTTC rule, as they have unit capacity. However, since
these artificial agents are “owned” by the original agents, the strategic manipulations are different.
For instance, a manipulation in which an agent in the heterogeneous goods market hides some of
her goods corresponds to a group manipulation in the reduced market. The precise connections
between the two markets and the properties of the circulation rules could be pursued in future
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research.
One could also consider different input for circulation rules. In this paper we only elicited

the ordinal preferences of the agents over the goods, but circulation rules could also be based on
agents’ cardinal utilities of goods (see, e.g., Aziz et al. [2]), linear preferences over bundles, or
some choice functions on the set of bundles. Different input for circulation rules would also make
it possible to investigate more general preference domains, e.g., substitutable choice functions.

Another future line of research could focus on a relaxation of our assumption on acceptable
bundles. We have assumed that a bundle is acceptable if and only if it does not contain any unac-
ceptable good. A relaxation of this assumption could be of interest for some real-life applications
and the results might turn to out be quite different from ours.

Finally, in our main impossibility result we characterize the capacity configurations for
which individual rationality, Pareto-efficiency, and strategy-proofness are incompatible. It could
be interesting to carry out a similar exercise for other combinations of desiderata.

Appendix

A Proof of Proposition 2
Proposition 2. If the capacity configuration is reducible, then there is no circulation rule that is
individually rational, Pareto-efficient, and strategy-proof.

Proof. We first note that all preferences considered in the proof are assumed to satisfy (resp-3).
In particular, it can be easily verified that all preferences that are constructed can indeed satisfy
(resp-3). Throughout the proof we only consider individually rational circulations and circulation
rules. However, to not further increase the length of the proof we very often do not explicitly refer
to individual rationality. We prove the result for the two classes of reducible capacity configurations
separately.
Case 1: there are different a, b, c ∈ N with qb > qc ≥ qa (rd1). Without loss of generality we may
assume that N = {a, b, c}. (Any additional agents can be assumed to prefer the empty bundle to
any other bundle.) We show that any Pareto-efficient circulation rule is not strategy-proof. We
first provide the set of Pareto-efficient circulations for 4 different types of preference profiles (types
I, II, III, and IV).
Type I: P ∈ P is such that for ≻≡≻P we have b ≻a a,

31 c ≻b a ≻b b, and a ≻c b ≻c c.
Figure 2 depicts the underlying preferences and the resulting graph D(N,A(P )).32

Claim 1. For any P ∈ P of Type I, a circulation x is Pareto-efficient if and only if
(i). xca + xba = qa;
(ii). xca + xcb = qc;
(iii). qc + qa − qb ≤ xca.

31In particular, a ≻a c. Because of individual rationality we always omit unacceptable goods from the description
of the preferences.

32Edges correspond to acceptable goods. Continuous edges denote most preferred goods and discontinuous edges
denote second most preferred goods.
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Figure 2: ≻P and D(N,A(P )) of Type I

Proof. Let x be a Pareto-efficient circulation. We show that it satisfies (i), (ii), and (iii).
Suppose (i) does not hold. Then, by balancedness and feasibility, xa� = xab + xac = xca + xba <

qa, i.e., a is unfilled at x. Suppose xcb = 0. Then, xc� = xca ≤ xca + xba < qa ≤ qc and
xb� = x�b = xab ≤ qa < qb. Hence, b and c are unfilled at x. But then x is Pareto-dominated by
only increasing the flow in cycle (b, c) until b or c becomes filled.33 Suppose now xcb > 0. Let x′ be
the circulation obtained from x by decreasing the flow in cycle (b, c) by δ = min{qa − xa�, xcb} > 0
and increasing the flow in cycle (a, b, c) by δ. Then, agents a and c will be strictly better off at x′,
while agent b gets the same bundle at x and x′. Hence, x′ Pareto-dominates x. So, (i) holds (and
a is filled at x).

Suppose (ii) does not hold. Then, by balancedness and feasibility, xc� < qc, i.e., c is unfilled
at x. Suppose xba = 0. Then, xb� = xbc ≤ x�c = xc� < qc < qb, i.e., b is unfilled at x. Hence, x
is Pareto-dominated by increasing the flow in cycle (b, c). Suppose now xba > 0. Let x′ be the
circulation obtained from x by decreasing the flow in cycle (a, b) by δ = min{qc − xc�, xba} > 0
and increasing the flow in cycle (a, b, c) by δ. Then, agents b and c will be strictly better off at x′,
while agent a gets the same bundle at x and x′. Hence, x′ Pareto-dominates x. So, (ii) holds (and
c is filled at x).

By individual rationality, xac = 0. Hence, by feasibility at b and balancedness at a, qb ≥ x�b =
xab + xcb = (xab + xac) + xcb = (xca + xba) + xcb. By (i), xca = qa − xba, and by (ii), xcb = qc − xca.
Hence, qb ≥ (qa − xba) + xba + (qc − xca) = qa + qc − xca, which proves (iii).

Let x be a circulation that satisfies (i), (ii), and (iii). Suppose x is not Pareto-efficient. Then,
since there is a finite number of goods, x is Pareto-dominated by some Pareto-efficient circulation
y. In particular, y satisfies (i), (ii), and (iii).

Suppose yca = xca. Then, from (i) and (ii) for y and balancedness of y it follows that x = y,
which contradicts that y Pareto-dominates x.

Suppose yca < xca. At x, agent c’s bundle consists of xcb = qc − xca units of b and xca units of
a (her most preferred good). At y, agent c’s bundle consists of ycb = qc − yca units of b and yca
units of a. Hence, agent c strictly prefers xc to yc, which contradicts that y Pareto-dominates x.

Suppose yca > xca. At x, agent b’s bundle consists of xba = qa − xca units of a and xbc =
xca+xcb = xca+(qc−xca) = qc units of c. Similarly, at y, agent b’s bundle consists of yba = qa−yca
units of a and ybc = qc units of c. Hence, agent b strictly prefers xb to yb, which contradicts that y
Pareto-dominates x.

Hence, x is Pareto-efficient.
33More precisely, “increasing the flow in a cycle” means that all agents in the cycle consume an additional and

same amount of good of the next agent in the cycle. We will use similarly the expression “decreasing the flow in a
cycle.”
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Type II: P ∈ P is such that for ≻≡≻P we have b ≻a a, a ≻b c ≻b b, and a ≻c b ≻c c.
Figure 3 depicts the underlying preferences and the resulting graph D(N,A(P )).

b

a c

xab
xba

xca

xcb
xbc

Figure 3: ≻P and D(N,A(P )) of Type II

Claim 2. For any P ∈ P of Type II, a circulation x is Pareto-efficient if and only if
(i). xca + xba = qa;
(ii). xba + xbc = qb or xca + xcb = qc;
(iii). xcb = min{qb − (xca + xba), qc − xca} = min{qb − qa, qc − qa + xba}.

Proof. Let x be a Pareto-efficient circulation. We show that it satisfies (i), (ii), and (iii).
Suppose (i) does not hold. Then, by feasibility, xca + xba < qa, i.e., a is unfilled at x. Suppose

xcb = 0. Then, xc� = xca ≤ xca + xba < qa ≤ qc and xb� = x�b = xab ≤ qa < qb. Hence, b and c
are unfilled at x. But then x is Pareto-dominated by increasing the flow in cycle (b, c). Suppose
now xcb > 0. Let x′ be the circulation obtained from x by decreasing the flow in cycle (b, c) by
δ = min{qa−xa�, xcb} > 0 and increasing the flow in cycle (a, b, c) by δ. Then, agents a and c will be
strictly better off at x′, while agent b gets the same bundle at x and x′. Hence, x′ Pareto-dominates
x. So, (i) holds (and a is filled at x).

Suppose (ii) does not hold. Then, both b and c are unfilled at x. But then x is Pareto-dominated
by increasing the flow in cycle (b, c). So, (ii) holds.

We now prove (iii). Note that xcb + xab ≤ qb is equivalent to xcb ≤ qb − xab = qb − (xca + xba).34

Similarly, xcb + xca ≤ qc is equivalent to xcb ≤ qc − xca. In particular, b is filled if and only
if xcb = qb − (xca + xba) and c is filled if and only if xcb = qc − xca. Since (ii) holds, b or c
is filled at x, and hence xcb = min{qb − (xca + xba), qc − xca}. By (i), xca = qa − xba. Hence,
xcb = min{qb − (qa − xba + xba), qc − (qa − xba)} = min{qb − qa, qc − qa + xba}. This proves (iii).

Let x be a circulation that satisfies (i), (ii), and (iii). Suppose x is not Pareto-efficient. Then,
x is Pareto-dominated by some Pareto-efficient circulation y. Note y satisfies (i), (ii), and (iii).

Suppose yba = xba. Then, from (i), yca = xca. By balancedness at a, yab = yba+yca = xba+xca =
xab. Moreover, by (iii), xcb = ycb. By balancedness at c, ybc = yca + ycb = xca + xcb = xbc. Hence,
y = x, which contradicts that y Pareto-dominates x.

Suppose yba < xba. At x, agent b’s bundle consists of xba units of a (her most preferred good)
and xbc = xca + xcb = xca +min{qb − (xca + xba), qc − xca} = min{qb − xba, qc} units of c. Similarly,
at y, agent b’s bundle consists of yba units of a and ybc = min{qb − yba, qc} units of c. Hence, agent
b strictly prefers xb to yb, which contradicts that y Pareto-dominates x.

Suppose yba > xba. At x, agent c’s bundle consists of xca = qa − xba units of a (her most
preferred good) and xcb = min{qb − qa, qc − qa + xba} units of b. Similarly, at y, agent b’s bundle

34Here we use that x is an individually rational circulation and that preferences satisfy (resp-3).
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consists of yca = qa − yba units of a and ycb = min{qb − qa, qc − qa + yba} units of b. Hence, agent c
strictly prefers xc to yc, which contradicts that y Pareto-dominates x.

Hence, x is Pareto-efficient.

Type III: P ∈ P is such that for ≻≡≻P we have b ≻a a, a ≻b b, and a ≻c b ≻c c.
Figure 4 depicts the underlying preferences and the resulting graph D(N,A(P )).

b
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xab
xba
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Figure 4: ≻P and D(N,A(P )) of Type III

Claim 3. For any P ∈ P of Type III, a circulation x is Pareto-efficient if and only if xba = qa.

Proof. The only cycle in D(N,A(P )) is (a, b). Hence, a circulation x is Pareto-efficient if and only
if (a, b) has maximum flow, i.e., qa.

Type IV: P ∈ P is such that for ≻≡≻P we have b ≻a a, c ≻b a ≻b b, and a ≻c c.
Figure 5 depicts the underlying preferences and the resulting graph D(N,A(P )).
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Figure 5: ≻P and D(N,A(P )) of Type IV

Claim 4. For any P ∈ P of Type IV, a circulation x is Pareto-efficient if and only if xba = 0 and
xca = qa.

Proof. Let x be a circulation with xba > 0. Since xba + xca ≤ qa ≤ qc, it follows that δ =
min{qc−xca, xba} > 0. Let x′ be the circulation defined by x′

ba = xba−δ, x′
bc = xbc+δ, x′

ca = xca+δ,
and x′

ab = xab. Then, x′ Pareto-dominates x.
Let x be a circulation with xba = 0, i.e., there is only flow through cycle (a, b, c). Then, x is

Pareto-efficient if and only if there is maximum flow through (a, b, c), i.e., xca = qa.

We can now prove the result for Case 1. Suppose that f is a circulation rule that is both
Pareto-efficient and strategy-proof.

Let P ∈ P be of Type I such that c’s preferences are lexicographic. Let x = f(P ). Suppose
xca < qa. Then, agent c can submit preferences P ′

c such that P ′ = (P−c, P
′
c) is of Type IV. Let

x′ = f(P ′). Since c’s preferences Pc are lexicographic, it follows from Claim 4 that agent c strictly
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prefers x′
c to xc, which contradicts strategy-proofness of f . Therefore xca = qa. Then, by Claim

1(i,ii),
xba = 0 and xbc = xca + xcb = qc.

Let P ∈ P be of Type I. Let x = f(P ). Since circulation rules are individual-good-preference
based, i.e., only take into account the underlying ordinal preferences over individual goods (see (2)
in Section 2), it follows from the above that

xba = 0 and xbc = xca + xcb = qc. (3)

Let P ∈ P be of Type II such that b’s preferences are lexicographic. Let y = f(P ). Suppose
yba < qa. Then, agent b can submit preferences P ′

b such that P ′ = (P−b, P
′
b) is of Type III. Let

y′ = f(P ′). Since b’s preferences Pb are lexicographic, it follows from Claim 3 that agent b strictly
prefers y′b to yb, which contradicts strategy-proofness of f . Therefore yba = qa.

Let P ∈ P be of Type II. Let y = f(P ). From the above and the fact that f is individual-
good-preference based, it follows that

yba = qa. (4)

Moreover, ybc = ycb + yab − yba = min{qb − (yca + yba), qc − yca} + yab − yba by Claim 2(iii). By
Claim 2(i) and (4), we have yca = 0. Then, yab = yba + yca = qa + 0 = qa. Hence,

ybc = min{qb − qa, qc}+ qa − qa = min{qb − qa, qc}. (5)

Let P ∈ P be of Type I such that b’s preferences are additive and

1 <
ub(c)

ub(a)
<

min{qb, qa + qc}
qc

. (6)

By stating the truth, it follows from (3) that agent b’s total sum of utility is qcub(c). Agent b can
submit preferences P ′

b such that P ′ = (P−b, P
′
b) is of Type II. From (4) and (5) it follows that in

that case she obtains a bundle of at least qa + min{qb − qa, qc} = min{qb, qc + qa} units of goods
which gives her a total sum of utility of at least min{qb, qc + qa}ub(a). From (6) it follows that
agent b can manipulate f at P , which contradicts the strategy-proofness of f . Therefore, there is
no circulation rule that is both Pareto-efficient and strategy-proof.

Case 2: there are different a, b, c, d ∈ N with qb = qc = qa > qd (rd2). With slight abuse of
notation denote q = qa. Without loss of generality we may assume again that N = {a, b, c, d}. Let
f be a circulation rule that satisfies Pareto-efficiency. We will show that it is not strategy-proof.
Suppose, to the contrary, that f is strategy-proof. We first study 4 different types of preference
profiles (types 1–9).

Type 8: P ∈ P is such that for ≻≡≻P we have d ≻a a, a ≻b c ≻b b, a ≻c c, and c ≻d d.
Figure 6 depicts the underlying preferences and the resulting graph D(N,A(P )).

Claim 5. For any P ∈ P of Type 8, a circulation x is Pareto-efficient if and only if xca = qd.

Proof. The only cycle in D(N,A(P )) is (c, a, d). Hence, a circulation x is Pareto-efficient if and
only if (c, a, d) has maximum flow, i.e., qd.
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Figure 6: ≻P and D(N,A(P )) of Type 8
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Figure 7: ≻P and D(N,A(P )) of Type 7

Type 7: P ∈ P is such that for ≻≡≻P we have d ≻a a, a ≻b c ≻b b, a ≻c b ≻c c, and c ≻d d.
Figure 7 depicts the underlying preferences and the resulting graph D(N,A(P )).

Claim 6. Let P ∈ P be of Type 7. Let x = f(P ). Then, xca = qd.

Proof. Since f is individual-good-preference based, we may assume that agent c has lexicographic
preferences Pc. Then, if xca < qd, agent c can manipulate f at P : from Claim 5 it follows that she
can submit preferences P ′

c such that she gets qd units of a at f(P ′) where P ′ = (P−c, P
′
c). So, since

f is strategy-proof, xca = qd.

Type 6: P ∈ P is such that for ≻≡≻P we have d ≻a a, c ≻b a ≻b b, a ≻c c, and c ≻d d.
Figure 8 depicts the underlying preferences and the resulting graph D(N,A(P )).

Claim 7. For any P ∈ P of Type 6, a circulation x is Pareto-efficient if and only if xca = qd.

Proof. The only cycle in D(N,A(P )) is (c, a, d). Hence, a circulation x is Pareto-efficient if and
only if (c, a, d) has maximum flow, i.e., qd.

Type 5: P ∈ P is such that for ≻≡≻P we have d ≻a a, c ≻b a ≻b b, a ≻c b ≻c c, and c ≻d d.
Figure 9 depicts the underlying preferences and the resulting graph D(N,A(P )).

Claim 8. Let P ∈ P be of Type 5. Let x = f(P ). Then, xca = qd.
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Figure 8: ≻P and D(N,A(P )) of Type 6
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Figure 9: ≻P and D(N,A(P )) of Type 5

Proof. Since f is individual-good-preference based, we may assume that agent c has lexicographic
preferences Pc. Then, if xca < qd, agent c can manipulate f at P : from Claim 7 it follows that she
can submit preferences P ′

c such that she gets qd units of a at f(P ′) where P ′ = (P−c, P
′
c). So, since

f is strategy-proof, xca = qd.

Type 4: P ∈ P is such that for ≻≡≻P we have d ≻a b ≻a a, c ≻b a ≻b b, a ≻c c, and c ≻d d.
Figure 10 depicts the underlying preferences and the resulting graph D(N,A(P )).

Claim 9. Let P ∈ P be of Type 4. If x is a Pareto-efficient circulation, then xca = q.

Proof. Suppose xca ̸= q. Then, by feasibility, xca < q, i.e., c is unfilled.
Suppose xba = 0. Then, xb� = xbc ≤ xca < q. So, b is unfilled. Moreover, x�a = xca < q.

So, also a is unfilled. Then, x is Pareto-dominated by increasing the flow in cycle (a, b, c), which
contradicts Pareto-efficiency of x.

Now suppose xba > 0. Let δ = min{xba, q − xca} > 0. Let x′ be the circulation obtained from
x by setting x′

ba = xba − δ, x′
bc = xbc + δ, and x′

ca = xca + δ (while maintaining the other flows).
Then, each of agents b and c strictly prefers her bundle at x′ to her bundle at x, while agents a
and d are indifferent. This contradicts Pareto-efficiency of x. Hence, xca = q.
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Figure 10: ≻P and D(N,A(P )) of Type 4

Type 1: P ∈ P is such that for ≻≡≻P we have d ≻a b ≻a a, c ≻b a ≻b b, a ≻c b ≻c c, and
c ≻d d.
Figure 11 depicts the underlying preferences and the resulting graph D(N,A(P )).
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Figure 11: ≻P and D(N,A(P )) of Type 1

Claim 10. Let P ∈ P be of Type 1. Let x = f(P ). Then,
(i). d is filled, i.e., xad = xdc = qd;
(ii). xca = q;
(iii). xba = xcb = 0 and xbc = xab = q − qd.

Proof. Since f is individual-good-preference based, we may assume that agents have lexicographic
preferences. Suppose (i) does not hold. Then, by feasibility and balancedness at d, xad = xdc < qd.
Then, agent a can submit preferences P ′

a such that P ′ = (P−a, P
′
a) is of Type 5. Let x′ = f(P ′).

By Claim 8, x′
ca = qd. Then, from balancedness of x′ at a it follows that x′

ad = x′
ba + x′

ca ≥ qd. By
feasibility of x′ at d, x′

ad ≤ qd. Hence, x′
ad = qd. Since agent a has lexicographic preferences, she

prefers x′
a to xa, which contradicts the strategy-proofness of f . Hence, (i) holds.

Suppose (ii) does not hold. Then, by feasibility, xca < q. Then, agent c can submit preferences
P ′
c such that P ′ = (P−c, P

′
c) is of Type 4. Let x′ = f(P ′). By Claim 9, x′

ca = q. Since agent c
has lexicographic preferences, she prefers x′

c to xc, which contradicts the strategy-proofness of f .
Hence, (ii) holds.
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Finally, we show (iii). Since xca = q = qa = qc, it follows from feasibility and balancedness that
xcb = 0 = xba. Then, xbc = xca+xcb−xdc = q+0−qd. Similarly, xab = xca+xba−xad = q+0−qd.

Type 9: P ∈ P is such that for ≻≡≻P we have d ≻a b ≻a a, a ≻b c ≻b b, a ≻c c, and c ≻d d.
Figure 12 depicts the underlying preferences and the resulting graph D(N,A(P )).
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Figure 12: ≻P and D(N,A(P )) of Type 9

Claim 11. Let P ∈ P be of Type 9. Let x = f(P ). Then, xca ≥ qd.

Proof. Since f is individual-good-preference based, we may assume that agent a has lexicographic
preferences Pa. Suppose xca < qd. Then, xad = xdc = xca − xbc ≤ xca < qd. Agent a can submit
preferences P ′

a such that P ′ = (P−a, P
′
a) is of Type 8. Let x′ = f(P ′). By Claim 5, x′

ca = qd.
Then, together with x′

ad = x′
dc ≤ qd it follows that x′

ad = x′
ca + x′

ba = qd. Therefore, agent a can
manipulate f at P , which contradicts the strategy-proofness of f . Hence, xca ≥ qd.

Type 3: P ∈ P is such that for ≻≡≻P we have d ≻a b ≻a a, a ≻b b, a ≻c b ≻c c, and c ≻d d.
Figure 13 depicts the underlying preferences and the resulting graph D(N,A(P )).
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Figure 13: ≻P and D(N,A(P )) of Type 3

Claim 12. Let P ∈ P be of Type 3. If x is a Pareto-efficient circulation, then xba ≥ q − qd.
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Proof. Note xca ≤ xdc = xad ≤ qd. Suppose xba < q − qd. Then, xba + xca < q − qd + qd = q, i.e., a
is unfilled. Since xba < q, b is also unfilled. Then x can be Pareto improved by increasing the flow
in cycle (a, b).

Type 2: P ∈ P is such that for ≻≡≻P we have d ≻a b ≻a a, a ≻b c ≻b b, a ≻c b ≻c c, and
c ≻d d.
Figure 14 depicts the underlying preferences and the resulting graph D(N,A(P )).
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Figure 14: ≻P and D(N,A(P )) of Type 2

Claim 13. Let P ∈ P be of Type 2. Let x = f(P ). Then,
(i). d is filled, i.e., xad = xdc = qd;
(ii). xba = q − qd and xca = qd;
(iii). xab = q − qd;
(iv). xbc = xcb = min{q − qd, qd}.

Proof. Since f is individual-good-preference based, we may assume that the preferences in P are
lexicographic. Suppose (i) does not hold. From feasibility and balancedness at d, xad = xdc < qd.
Then, agent a can submit preferences P ′

a such that P ′ = (P−a, P
′
a) is of Type 7. Let x′ = f(P ′).

By Claim 6, x′
ca = qd. Then, from balancedness of x′ at a (see also Figure 7) it follows that

x′
ad = x′

ba + x′
ca ≥ qd. Hence, agent a prefers x′

a to xa, which contradicts the strategy-proofness of
f . Hence, (i) holds.

To prove (ii), we first show that xca ≥ qd. Suppose xca < qd. Agent c can submit preferences
P ′
c such that P ′ = (P−c, P

′
c) is of Type 9. Let x′ = f(P ′). By Claim 11, x′

ca ≥ qd. Hence, c can
manipulate f at P , which contradicts the strategy-proofness of f . Hence, xca ≥ qd.

We next show that xba ≥ q − qd. Suppose xba < q − qd. Agent b can submit preferences P ′
b

such that P ′ = (P−b, P
′
b) is of Type 3. Let x′ = f(P ′). By Claim 12, x′

ba ≥ q − qd. Hence, b can
manipulate f at P , which contradicts the strategy-proofness of f . Hence, xba ≥ q − qd.

Since, xba ≥ q− qd and xca ≥ qd, xba + xca ≥ q. But since xba + xca = x�a ≤ q, it follows that in
fact xba = q − qd and xca = qd (which proves (ii)).

Then, xab = xba + xca − xad = (q − qd) + qd − qd = q − qd, which shows (iii). By balancedness,
xbc + xdc = xca + xcb. Since xca = qd = xdc, xbc = xcb. Since x is Pareto-efficient, xbc = xcb is
maximal, i.e., b or c is filled. This shows that (iv) holds.
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We now complete the proof of Case 2. Let P ∈ P be of Type 1 such that b’s preferences are
additive and

1 <
ub(c)

ub(a)
<

min{2(q − qd), q}
q − qd

. (7)

It follows from Claim 10 that by stating the truth, agent b’s total sum of utility is (q − qd)ub(c).
Let agent b submit preferences P ′

b such that P ′ = (P−b, P
′
b) is of Type 2. In that case she obtains

a bundle that consists of (q − qd) +min{q − qd, qd} = min{2(q − qd), q} units of goods which gives
her a total sum of utility of at least min{2(q − qd), q}ub(a). From (7) it follows that agent b can
manipulate f at P , which contradicts the strategy-proofness of f . Therefore, there is no circulation
rule that is both Pareto-efficient and strategy-proof.

B Proof of Theorem 3
Theorem 3. For any capacity configuration, the SSTC rule is the unique circulation rule that is
top unanimous and self-enforcing group-strategy-proof.

The SSTC rule is clearly top unanimous, and Proposition 12 shows that it is self-enforcing
group-strategy-proof. In order to prove the converse statement, we first establish two lemmas.

Lemma 1. Let f be strategy-proof. Let P, P ′ ∈ P, i ∈ N , and j, j′ ∈ N \{i} such that j, j′ ≻i i and
j, j′ ≻′

i i, where ≻i ≡≻Pi
i and ≻′

i ≡≻P ′
i

i . Let x ≡ f(P ) and x′ ≡ f(P ′). Let H = {h ∈ N : h ⪰i j}
and H ′ = {h ∈ N : h ⪰′

i j
′} such that H = H ′. Then

∑
h∈H xih = m implies that

∑
h∈H′ x′

ih = m.

Proof. Suppose that
∑

h∈H′ x′
ih ̸= m. Assume without loss of generality that

∑
h∈H′ x′

ih = m′ > m.
Let Pi be additive such that for all h ∈ H, ui(h) = 1+ ϵ

khm
, where 0 < ϵ < 1 and h is khth-ranked

by ≻i. Let P ′
i be additive such that for all h ∈ H, u′

i(h) = 1 + ϵ
k′hm

, where 0 < ϵ < 1 and h is
k′
hth-ranked by ≻′

i. Then
∑

h∈H xihui(h) ≤ m
(
1 + ϵ

m

)
= m+ ϵ, and

∑
h∈H x′

ihu
′
i(h) > m′ > m+ ϵ,

given that m′ > m and ϵ < 1. Then i can manipulate at P via deviation P ′
i , which contradicts the

strategy-proofness of f .

Lemma 2. Let f be individually rational, strategy-proof and nonbossy. Fix P̄ ∈ P and let x ≡
f(P̄ ). Fix i ∈ N such that ≻i ranks j first, where ≻i ≡≻P̄i

i . Assume that xij = 0. Let ≻̂i be the
same as ≻i, except that ≻̂i does not rank j first, but otherwise the two preference orderings are the
same. Let P̂i be an extension of ≻̂i. Then f(P̄ ) = f(P̂i, P−i).

Proof. Let i ∈ N, P̄ ∈ P , x ≡ f(P̄ ), and let ≻i, ≻̂i, P̂ be defined as above. For all j ∈ N , let Pi

be a lexicographic extension of ≻i, and assume without loss of generality that P̂i is a lexicographic
extension of ≻̂i. Let x̂ ≡ f(P̂ ). Since f is individual-good-preference based, f(P ) = x. Suppose
xij > x̂ij. Then xij > 0 and i can manipulate at P̂ via deviation Pi. Now suppose xij < x̂ij. Then
x̂ij > 0 and by individual rationality xij ̸= 0. Hence, xij > 0 and thus i can manipulate at P via
deviation P̂i. Therefore, both cases contradict the strategy-proofness of f . Thus, xij = x̂ij = 0.
Then Lemma 1 implies that xi = x̂i or, equivalently, fi(P ) = fi(P̂i, P−i). Then, by nonbossiness,
f(P ) = f(P̂i, P−i). Finally, since f(P ) = f(P̄ ), f(P̄ ) = f(P̂i, P−i).

Indexed-cTTC rule
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In the proof of the converse statement we use an equivalent description of the SSTC rule in
addition to its main definition, which is not only useful in the proof but also illuminates the
relationship between the SSTC and cTTC rules, our two main competing rules. We refer to the
equivalent description of the SSTC rule as the Indexed-cTTC rule, because it uses indices for each
agent’s units which are traded in a similar fashion to trading in the cTTC rule, but with the main
difference that only units that have the same index may be traded. More precisely, each agent i’s
units are indexed from 1 to qi, corresponding to the respective market segment that each unit is
traded in, and the SSTC outcome is obtained by a cTTC-like procedure as follows. In each round,
each agent i points to agent j who has the lowest-indexed good among the agents with whom agent
i is “willing to” exchange all of her remaining common indices, in the sense that for each index
that is still held by both i and j, agent j is the highest-ranked by i among all agents who hold
this index. Note that there may be multiple agents with whom agent i is “willing to” exchange all
of the remaining common indices in this sense, all of whom must therefore hold a disjoint set of
indices (i.e., no two such agents hold the same index), and hence we specify that i points to the
agent who holds the lowest index among all these agents. Note that it is feasible for i to exchange
all of her units with a common index with all these agents, and i is going to point to all of them
in subsequent rounds.

This procedure is well-defined, since there is always an agent to whom i can point (as long as
i still holds any indices), because there must be a favorite agent for i among those agents with
whom i has at least one common index left (but note that this agent may be i herself, if all agents
with remaining common indices are unacceptable to i in some round). Observe that agent j may
not necessarily be the agent who holds the lowest index that i still has for trade. For example,
if in some round agent i holds units with indices 1, 2, 3, j holds 2 and 3, k holds 1 and 3, and
j ≻i k ≻i i, then i points to agent j, since i is not willing to trade her index 3 unit with agent k,
given that j is preferred by i to k and j still has his index 3 unit. On the other hand, if k holds
index 1 only and everything else is unchanged, then i points to k in this round. All trading cycles
are carried out simultaneously, just like in the cTTC, but each exchange involves only units of
the same index. Observe that in the first round each agent points to her unrestricted top-ranked
agent since each agent holds initially a unit indexed 1, which means that each trading cycle formed
in the first round will be carried out until some agent’s capacity is reached, hence satisfying top
unanimity. Finally, note that the equivalence of the SSTC rule and the Indexed-cTTC rule is
straightforward to verify, since agents only trade units with the same index, and an agent only
points to another agent if this agent is top-ranked by her among all agents who hold a unit with
the same index as the one to be traded.

Converse statement: The only top unanimous and self-enforcing group-strategy-proof rule is the
SSTC rule.

Proof. We prove the statement in five steps. Let g be a top unanimous and self-enforcing group-
strategy-proof circulation rule. Then g is strategy-proof and nonbossy by Proposition 11, and
individually rational by Proposition 16.

Step 1: We identify a decomposition of the circulation g(P ) into market segments at each pref-
erence profile P ∈ P.

Fix P ∈ P . Let x ≡ g(P ). Since x is a circulation and thus it is balanced, we can partition
the set of goods into market segments where market segments are defined to satisfy the following
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basic properties: a) each agent has at most one unit of her good in each market segment and
b) all one-for-one exchanges of the goods that are required to reach circulation x from the initial
endowments take place among goods within a market segment. Note that this definition of market
segments is satisfied for the market segments of STC rules. However, unlike for STC rules, in this
construction the market segments depend on the circulation, as seen from b).

For each circulation there may be multiple partitions of the set of goods into market segments
with properties a) and b), and thus we require that the market segments W 1(P ), . . . ,W z(P ) have
the following properties:

i) Let the number of the market segments be minimized, that is, combine different goods from
different exchanges, as long as no more than one unit of a good is included in a market
segment, taking into account that there may be multiple ways of decomposing a circulations
into one-for-one exchanges. For example, the exchange of one unit of good involving the
same three agents in two different ways can be carried out in two market segments, while
the equivalent pairwise trades for the three different pairs of two agents can only be carried
out in three market segments. Nonetheless, since these trades may be combined with other
trades within a markets segment, exchanges with smaller cycles may lead to fewer market
segments overall.

ii) If there are two market segments W t(P ) and W t′(P ) such that |W t(P )| > |W t′(P )| then
t < t′.

iii) There is no unit of any good that could be moved from W t′(P ) to W t(P ), where t < t′,
subject to properties a) and b).

Step 2: We show that the market segment decomposition of g(P ) is the same at each preference
profile P ∈ P.

Suppose that the market segment decomposition of g is different for two preference profiles
P, (P ′

j , P−j) ∈ P for some j ∈ N , in the sense that the same market segment decomposition cannot
lead to both g(P ) and g(P ′

j , P−j). Let P ′ ≡ (P ′
j , P−j). Let x ≡ g(P ) and x′ ≡ g(P ′

j , P−j). Then
there exist agents i, l, l̂ ∈ N such that

a) i gets a unit of l’s good in one market segment, say W t, at P , which does not have a unit of
l̂’s good;

b) i gets a unit of l̂’s good in another market segment, say at P , which does not have a unit of
l’s good;

c) at P ′ one of these market segments, say W t has both l’s and l̂’s unit, while W t̃ has neither;

d) and (including trade in other market segments) we have xil + xil̂ > x′
il + x′

il̂
.

We can assume that ≻P
i ranks l first and l̂ second (since the setup is symmetric in l and l̂) and

we can also assume that ≻P
l and ≻P

l̂
rank i first, given that if the market segment decomposition

changes at either P or P ′, due to these preference changes, such that W t and W t̃ do not have
features a) to d) above, then strategy-proofness is violated for i, l or l̂, respectively. Note that
i ̸= j since i could manipulate otherwise at P ′ via deviation Pi = Pj.
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Given that g is top unanimous, agents i and l trade min(qi, ql) of their units between themselves.
Moreover, i and l trade in market segment W t and i and l̂ trade in market segment W t̃ at preference
profile P , while only i and l trade in W t and i does not get l̂ in W t̃ at P ′. Since i and l̂ trade in
W t̃ at P , it follows that qi > ql and xil = x′

il = ql. Furthermore, xil̂ > x′
il̂
. Let Pi be lexicographic.

This implies that xiPix
′
i.

Let ≻̄l̂ rank l first and let P ′
l̂

be an extension of ≻̄l̂. Let P̄ ≡ (P̄l̂, P−l̂) and let x̄ ≡ g(P̄ ).
Note that the top unanimity of g implies that xil = ql and thus x̄l̂l = 0 by feasibility. Then
g(P̄ ) = g(P ), by Lemma 2. Now let ≻′

i rank l̂ first and l second, and let P ′
i be an extension of ≻′

i.
Let P̄ ′′ ≡ (P ′

i , P̄l̂, PN\{i,l̂}) and x̄′′ ≡ g(P̄ ′′). Then x̄il + x̄il̂ < xil + xil̂.

Observe that P̄ ′′ and P̄ only differ in agent i’s preferences, and since both ≻i and ≻′
i rank l and

l̂ as the top two most-preferred goods, Lemma 1 is violated. This is a contradiction, and therefore
the market segment decomposition of g is the same at P and at (P ′

j , P−j). Since a similar argument
holds for any two adjacent profiles which only differ in one agent’s preferences, the market segment
decomposition of g is the same at each preference profile.

Step 3: We show that the top unanimity of rule g implies that the fixed market segment decom-
position of g is identical to the market segment decomposition of the SSTC rule.

Order all agents in N from i1 to in in decreasing order of their capacities (i.e., if k < k′ then
qik ≥ qik′ ). For all t = 1, . . . , qmax, let nt denote the number of agents who have a unit of good in
market segment Wt in the SSTC rule. Then n1 = n and, for all t = 1, . . . , qmax − 1, nt ≥ nt+1.
For all t = 1, . . . , qmax, let P t ∈ P be a preference profile such that for all k = 1, . . . , nt (modulo
nt), ≻P t

ik
ranks ik+1 first. Then, given that the market segment decomposition of g(P ) is the

same at each preference profile P ∈ P by Step 2, due to the construction of the market segment
decomposition in Step 1, the top unanimity of g implies that for all t = 1, . . . , qmax, the market
segment W t consists of one unit of good of each of agents i1 to int . This means that there are
qmax market segments in the fixed market segment decomposition of g and the market segments
of g are identical to the market segments W1, . . . ,Wqmax of the SSTC rule.

Step 4: We prove that, given that rule g is top unanimous and self-enforcing group-strategy-proof
and that its fixed market segment decomposition is identical to the market segment decomposition
of the SSTC rule, g satisfies strategy-proofness within each market segment.35

Given that at each preference profile each agent receives an item in each market segment
W1, . . . ,Wqmax in which the agent has a unit of her good, as shown in Step 3, we can decompose
the circulation assigned to each preference profile P ∈ P into qmax rules, g1, . . . , gqmax , such that,
for all P ∈ P , gt(P ) is the assignment of goods within market segment t = 1, . . . , qmax. Given
Step 3, what remains to be shown is that for all t = 1, . . . , qmax, gt is the classical TTC algorithm.

We prove first in this step that for all t = 1, . . . , qmax, gt is strategy-proof. That is, there is
no agent i ∈ N who can manipulate the outcome of market segment Wt at some profile P ∈ P .
Suppose, to the contrary, that there exist t ∈ {1, . . . , qmax}, PNt ∈ ×i∈NtPi, i ∈ Nt and P ′

i ∈ Pi,
where Nt is the set of agents who have a unit of their good in market segment Wt, such that
gti(P

′
i , PNt\{i}) ≻

Pi
i gti(PN−t). Note that Step 3 implies that in each round all the exchanges that

are carried out take place within market segments, and we can determine which trading cycle
35Step 4 is somewhat reminiscent of the decomposition theorem of Le Breton and Sen [12], however their theorem

does not apply here because the underlying preferences in our model are identical for each component of the outcome,
among other differences.
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(or trading cycles) is the first one in the order of trading in the Indexed-cTTC rule that can be
manipulated by an agent in the sense that the trading cycle is carried out at P but not at (P ′

i , P−i),
and we can also determine the market segment within which this trading cycle takes place at P .
Assume without loss of generality that the manipulated trading cycle is the first one in the order of
trading in the Indexed-cTTC rule, that is, all trades in each previous round of the Indexed-cTTC
rule at profile P are such that no agent can manipulate them. Moreover, if multiple trading cycles
can be manipulated at P in the first round of the Indexed-cTTC rule in which manipulation is
possible then choose one arbitrarily, and if multiple indices are traded then fix the lowest traded
index t. Let this trading cycle coalition in market segment Wt be S = {j1, . . . , jk} ⊆ N such that
for all v ∈ {1, . . . , k}, modulo k, jv obtains a unit of jv+1 in circulation gt(P ).

Let P ′ ≡ (P ′
i , P−i). For all v ∈ {1, . . . , k}, modulo k, let P̃jv ∈ Pjv such that ≻P̃jv

j is the same as

≻Pjv
j , except that ≻P̃jv

j ranks jv+1 first. Let P̃ ≡ (P̃S, P
′
−S). Given that by assumption all trades at

P in the Indexed-cTTC rule prior to the exchange by the trading cycle coalition S are also carried
out at P ′, there exists at least one agent jv̂ ∈ S such that gjv̂Pjv̂gjv̂(P

′) and for all v ∈ {1, . . . , k},
gjv(P )Rjvgjv(P

′).
Now suppose that there exists jv̄ ∈ S such that fjv̄(P ′

jv̄ , P̃S\{jv̄}, P
′
−S)P

′
jv̄fjv̄(P̃S, P

′
−S). Assuming

that P ′
jv̄ is a lexicographic extension of ≻P jv̄

jv̄ , this is not possible, since all trades at P in the
Indexed-cTTC rule prior to the exchange by the trading cycle coalition S are also carried out at
P ′ and S is a minimal manipulating coalition at P ′ via P̃S. Therefore, coalition S can manipulate
circulation rule g at P ′ in a self-enforcing manner, which is a contradiction since g is self-enforcing
group-strategy-proof. Therefore, there is no agent i ∈ N who can manipulate the outcome of
market segment Wt at P , and thus for all t = 1, . . . , qmax, gt is strategy-proof.

Step 5: We show that since g satisfies individual rationality, top unanimity and strategy-
proofness within each market segment, it selects the TTC outcome in each market segment, and
therefore g is the SSTC rule.

By Step 4, for all t = 1, . . . , qmax, gt is strategy-proof. Since g satisfies top unanimity, it also
follows that for t = 1, . . . , qmax, gt satisfies top unanimity. We now show that for all t = 1, . . . , qmax,
gt is the classical TTC rule. Fix t ∈ {1, . . . , qmax} and let Nt ⊆ N denote the set of agents who
have a unit of their good in market segment Wt. Suppose, by way of contradiction, that there
exists a preference profile PNt ∈ ×i∈NtPi such that gt(PNt) is not the classical TTC outcome at
preference profile PNt . For all i ∈ Nt, let ≻′

i rank i’s TTC assignment first and i second, and
for all i ∈ Nt, let P ′

i be an extension of ≻′
i. Let S ⊆ Nt be a trading cycle coalition in the TTC

algorithm atPNt which has at least one member, say j ∈ S, who does not get her TTC assignment
at this profile. Assume without loss of generality that S is in the first round of the TTC algorithm
at PNt such that some member of S doesn’t get her TTC assignment. That is, agents in all
previous rounds of the TTC get their TTC assignments. Then top unanimity implies that S is
not a trading cycle coalition in the first round of the TTC algorithm. Suppose S trades in round
k of the TTC algorithm, where k ≥ 2. Since g is strategy-proof and individually rational, and j
prefers his TTC assignment to his assignment in market segment Wt at PNt , given that all agents
who trade in previous rounds of the TTC receive their TTC assignment, gj(P ′

j , PNt\{j}) = j. Let
l ∈ Nt be the agent who is assigned j′s unit in Wt at PNt . Then l is not assigned j’s unit at
gj(P

′
j , PNt\{j}) and thus, since g is strategy-proof and individually rational, gl(P ′

j , P
′
l , PNt\{j,l}) = l.

Continuing the same argument iteratively, we can show that for all i ∈ S, gi(P ′
S, PNt\S) = i. This

contradicts the fact that g satisfies top unanimity. Therefore, gt(PNt) is the classical TTC outcome
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at preference profile PNt . Since the same holds for all t = 1, . . . , qmax and for all preference profiles
PNt ∈ ×i∈NtPi, this completes the proof that g is the SSTC rule.
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