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1 Introduction

Despite impressive recent progress in structural macro modeling, policy makers often resort

to heuristics to decide on policy; combining insights from different models and relying heavily

on judgment calls and instincts.1 This practical approach has benefits in terms of robustness

to model mis-specification, but a major downside is that it can be difficult to identify the most

appropriate course of policy. Without a specific economic model, how can a policy maker

be confident that a policy decision is appropriate? For instance, how to determine that the

magnitude and timing of a fiscal package is well calibrated, or that the monetary stance is

appropriate, e.g., in a “Goldilocks zone” that best balances inflation and unemployment.

In this paper, we show that it is not necessary to know the full structure of the economy

to evaluate a macro policy decision. Instead, only two statistics are sufficient to detect, and

often correct, non-optimal policies, i.e., policies that do not minimize the loss function.

Our approach is based on the gradient of the loss function with respect to policy shocks.

Although little studied in the literature, this gradient has two key attractive properties: (i)

it is informative about the optimality of a policy decision, and (ii) it is relatively easy to

compute, depending only on two well-known statistics.

First, for a large class of models —linear models, models with state dependent effects of

policy, and even models with multiple policy regimes—, the gradient with respect to policy

shocks must be zero under an optimal policy. From this necessary condition it follows that

this gradient is sufficient to evaluate a policy decision, i.e., to detect a non-optimal policy.

Moreover, for a smaller yet still very large class of models —linear models, models with

state dependent effects of policy, but not models with multiple policy regimes—, setting the

gradient to zero yields the optimal policy, such that the gradient is necessary and sufficient

to characterize the optimal allocation. In other words, for that class of models, the gradient

is also sufficient to compute the optimal policy.

Second, for a large class of loss functions the gradient with respect to the policy shocks is

entirely determined by two simple statistics (i) forecasts for the policy objectives conditional

on the policy decision, and (ii) the effects of policy shocks on the policy objectives. These

two statistics are already central and well understood concepts for policy makers (e.g., Or-

phanides, 2019). Our contribution is to show that these two statistics alone can be used to

rigorously evaluate and even set policy.

Importantly, the two sufficient statistics can be estimated without relying on a specific

structural model. First, a large forecasting literature has shown how one can construct su-

perior forecasts by combining large and disparate information sources, multiple (imperfect)

models and possibly judgment (e.g. Stock and Watson, 2002b; Lawrence et al., 2006; Man-

1See e.g., Svensson (2003), Mishkin (2010) and Blinder (2020).
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ganelli, 2009; Geweke and Amisano, 2012; Giacomini and Ragusa, 2014; Cheng and Hansen,

2015). In fact, policy makers already rely on that literature to construct such conditional

forecasts as part of their decision making procedure. Second, a large macro-econometric

literature has shown how to estimate the effects of policy shocks with minimal modeling

assumptions, notably by using zero-, long-run, or inequality restrictions (e.g. Sims, 1980;

Blanchard and Quah, 1989; Faust, 1998; Uhlig, 2005), or by using past exogenous variations

as instrumental variables (e.g. Mertens and Ravn, 2013; Stock and Watson, 2018), see Ramey

(2016) for a detailed review.

To formally implement our policy evaluation framework, we do not work directly with

the gradient but instead with its rescaled version: the Optimal Policy Perturbation (OPP).

Like the gradient, the OPP is entirely determined by the two sufficient statistics, but it also

has a direct economic interpretation. The OPP is the adjustment to the policy instruments

that exactly corrects an optimization failure when the loss function is quadratic and the

(unspecified) underlying model is linear.2

Uncertainty in the estimates of the sufficient statistics has two notable effects. First,

our evaluation of a policy choice will resemble a hypothesis test: a statement that the

policy is not optimal at some confidence level. Increasing uncertainty will not invalidate

our approach, but it will reduce the power of the test. Second, with uncertainty in the

causal effect of policy, the OPP estimate faces an attenuation bias that echoes the Brainard

(1967) conservatism principle familiar to policy makers: faced with uncertainty in the policy

multipliers, policy makers should refrain from fully utilizing their instrument, and the OPP

estimate will suggest a smaller policy adjustment than would be the case under certainty.

To illustrate our sufficient statistics approach to macro policy evaluation, we study US

monetary policy decisions. We start from the Fed’s dual inflation–unemployment mandate,

and we estimate/recover the sufficient statistics underlying the OPP. We estimate causal

effects using high-frequency monetary surprises as instrumental variables (e.g. Eberly, Stock

and Wright, 2019), and we use as conditional forecasts the FOMC Survey of Economic

Projections —the policy makers’ own forecasts—.

While the contemporaneous fed funds rate has not been set exactly at its optimal level

since 1990, the optimal adjustment (in absolute value) is overall small, averaging only 25 basis

points over the full sample. There are however some noteworthy instances of non-optimal

policies. Most notably, during the Great Recession the zero-lower bound (ZLB) kept the

contemporaneous policy rate too high by about 1 percentage point. Moreover, given the

information available in real time, we conclude that the Fed should have lowered the fed

funds rate faster in early 2008, when the ZLB was not yet binding. Finally, we find that a

2This includes linearized New-Keynesian (NK) models, notably Heterogeneous Agents NK models (e.g.,
Auclert et al., 2021).
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more active manipulation of the expected policy path could have improved the conduct of

policy. During the Great Recession, the OPP calls for a more active use of forward guidance

to lower the slope of the expected path of the fed funds rate, a conclusion echoing that of

Eberly, Stock and Wright (2019).

The remainder of this paper is organized as follows. We continue the introduction by

relating the OPP approach to existing approaches in the literature. In the next section we

provide a simple example that informally explains how we can evaluate macro policy using

sufficient statistics. Section 3 formally introduces the general environment and Section 4

presents the OPP statistic and its properties. Section 5 discusses the econometric details for

computing the OPP statistic and its distribution. In Section 6 we apply our methodology

to empirically study monetary policy decisions in the US. Section 7 extends the properties

of the OPP for non-linear models, and section 8 concludes and provides potential avenues

for further research.

Relation to literature

In the wake of the Lucas (1976) critique, the macroeconomic literature has built increasingly

elaborate micro-founded models in order to study, inter alia, the design of optimal policy

rules; rules that specify once-and-for-all how the policy instruments should be set at all dates

and states.3 In this paper, we show that it is often not necessary to know the full structure

of the economy to evaluate a policy decision and even compute the optimal policy.

Our sufficient statistics approach to macro policy evaluation naturally shares impor-

tant similarities with the sufficient statistic approach that originated in public finance (e.g.

Chetty, 2009). Both methods exploit the fact that the welfare consequences of a policy can

be derived from high-level elasticities, allowing for policy evaluation without making para-

metric assumptions or estimating the structural primitives of fully specified models. One

feature specific to our macro focus is that we postulate a loss function at the macro level,

consistent with the fact the loss function is often determined by political factors or by statu-

tory requirement. For instance, it is the US Congress that mandates the Federal Reserve to

seek stable inflation and full employment. That said, our approach can equally be applied

to problems with micro-founded loss functions.

Our treatment of uncertainty around the OPP shares similarities with the robust-control

approach. In particular, OPP inference can be seen as developing a robust framework for

handling parameter uncertainty and model mis-specification, similarly to the approach fol-

lowed in the context of structural models, see Hansen and Sargent (2001), Onatski and Stock

(2002), Onatski and Williams (2003) and Hansen and Sargent (2008), among others.

3See e.g., Chari, Christiano and Kehoe (1994); Woodford (2010); Michaillat and Saez (2019).
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From a general macro perspective, our paper uncovers an important but so far overlooked

link between the structural impulse response literature (e.g. Ramey, 2016) and the optimal

policy literature. While impulse response estimates have primarily been used as a guide

for model building (e.g., Ramey, 2016), our paper provides a novel and important role for

impulse response estimates: as a testbed for the optimality of policy.4 In fact, our paper

formalizes how two core econometric tasks —economic forecasting and dynamic causal effects

estimation— are crucial ingredients for macro policy making, as they deal exactly with

the estimation of the two sufficient statistics underlying our approach to policy evaluation.

Progress in estimation precision and in forecasting performance will directly improve the

ability to detect and improve policy decisions with minimal structural assumptions on the

underlying model.

Finally, our sufficient statistics approach to policy evaluation can be seen as a key input

in the context of forecast-targeting (e.g., Svensson, 2019). Forecast targeting is a general

approach to policy making that consists in selecting a policy path so that “the forecasts of

the target variables look good, meaning appears to best fulfill the mandates and return to

their target at an appropriate pace” (Svensson, 1999). However, unless the forecast targeting

rule is tied to a specific model (Woodford, 2010; Giannoni and Woodford, 2017), a “looking

good” criterion is imprecise and leaves the policy maker uncertain about the optimality of

the policy choice. Our sufficient statistics approach to policy evaluation precisely fills this

gap.

2 A simple example

Before formally describing our general framework, we first present a simple example to

illustrate how two key statistics are sufficient to evaluate and improve macro policies. The

example is based on Gaĺı (2015, Section 5.1.1), which discusses the optimal policy problem

under discretion in the baseline New Keynesian model.5

Consider a central bank with loss function

Lt =
1

2
(π2

t + x2t ) , (1)

4In recent work subsequent to ours, McKay and Wolf (2022) add to this insight that structural impulse
responses can also be used to construct policy rule counter-factuals provided that the model coefficients do
not change with the parameters of the policy rules. An important contribution of their work is the realization
that our approach also holds in modern macro models, most notably HANK models.

5In the web-appendix we show that the an alternative example can be formulated for the optimal policy
problem under commitment in the same baseline New Keynesian model (e.g. Gaĺı, 2015, Section 5.1.2). We
focus on the discretionary case as it simplifies the exposition, but our sufficient statistics approach applies
independently of the nature of the optimization problem, i.e., whether under discretion or under commitment.
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with πt the inflation gap and xt the output gap. The central bank has only one instrument:

the nominal interest rate it.

The log-linearized baseline New-Keynesian model is defined by a Phillips curve and an

intertemporal (IS) curve given by

πt = Etπt+1 + κxt + ξt , (2)

xt = Etxt+1 −
1

σ
(it − Etπt+1) , (3)

with ξt an iid cost-push shock.

The optimal targeting rule

The optimal allocation can be characterized by minimizing the loss function with respect

to πt, xt and it subject to the Phillips curve and (IS) curve constraints. This gives the

well-known optimal targeting rule

xt = −κπt . (4)

Since the optimization problem is convex, the optimal targeting rule is necessary and suffi-

cient to characterize the optimal policy which we denote by ioptt .

A limitation of this approach to characterize the optimal policy is that it requires the

full underlying model, that is the exact specification and coefficients of the Phillips and (IS)

curves. As we discussed in the introduction, this information requirement is unlikely to be

met for policy makers in practice.

An alternative characterization of the optimal targeting rule

We will now see that there is an alternative approach to characterize the optimal targeting

rule and the optimal policy; an approach that does not require knowing the details of the

model.

Consider a simple instrument policy rule augmented with a policy shock εt, i.e.,

it = φπt + εt , (5)

with φ > 1 to guarantee a unique equilibrium. As shown in e.g., Gaĺı (2015), the optimal

allocation can be implemented with that rule by setting φopt = κσ and εt = 0.6

6We posit κσ > 1 to ensure a unique equilibrium. Our argument does not rely on this parameter
restriction, and we only make it for clarity of exposition. Provided that the functional form of the rule is
unrestricted, there exists an optimal instrument rule that can deliver a unique equilibrium; for instance, a
rule of the form it = φππt + φξξt (Gaĺı, 2015, page 133).
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Under the assumption that the rule (5) leads to a unique equilibrium we can combine

(2), (3) and (5) to solve the model, i.e., express the endogenous variable Yt = (πt, xt)
′ as a

function of the structural shocks. We have

Yt = Rεt + Cξt (6)

with

R =

[
−κ/σ

1+κφ/σ
−1/σ

1+κφ/σ

]
and C =

[
1

1+κφ/σ
−φ/σ

1+κφ/σ

]
,

where R captures the effect of a policy shock on the policy objectives.

We can now establish our main result: the optimal targeting rule can be derived by

setting the gradient of the loss function with respect to policy shocks to zero. Formally, we

have the equivalence:

it = ioptt ⇐⇒ ∂Lt
∂εt

∣∣∣∣
it

= R′Yt = 0 , (7)

where R′Yt = 0 is the optimal targeting rule.

To prove the result, use (6) to compute the effect of a policy shock on the gradient of the

loss function:

∂Lt
∂εt

∣∣∣∣
it

= R′Yt

=
1

σ + κφ
(−κ,−1) (πt, xt)

′

=
−1

σ + κφ
(κπt + xt) . (8)

The term in parenthesis is zero under the optimal targeting rule (4): xt = −κπt, which

establishes the equivalence.

The equivalence (7) states that setting the gradient of the loss function with respect to a

policy shock to zero is necessary and sufficient to characterize the optimal policy and optimal

targeting rule. In other words, a policy is optimal if and only if the policy maker has no

incentive to deviate from it with a policy surprise, i.e., a shock.

Intuitively, for a linear system the optimal allocation can be attained by a linear policy

rule. As a result, at the optimal policy, there should not exist any deviation from that linear

rule —including surprise deviations— that can improve the allocation: the gradient of the

loss function with respect to policy shocks must be zero. Moreover, since the problem is

convex, that gradient condition is also sufficient to characterize the optimal solution.

The equivalence relation has two specific implications: First, the =⇒ relation implies that
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R′Yt = 0 forms a testable condition to evaluate whether a given policy decision is optimal.

Second, the ⇐= relation can be exploited to correct a non-optimal policy using only R and

Yt.

Policy evaluation with sufficient statistics

We first illustrate how the two statistics R and Yt can be used to evaluate a policy decision.

Consider a policy maker following the rule (5) and proposing the policy i0t given by the

pair (φ0, ε0t ). The policy can be non-optimal for two reasons: φ0 6= φopt or ε0t 6= 0. For i0t to

be optimal, we just saw that the gradient of the loss function evaluated at i0t must be zero,

i.e., that
∂Lt
∂εt

∣∣∣∣
i0t

= R0′Y 0
t = 0 , (9)

where R0 is the effect of policy shocks under φ0, and Y 0
t is the allocation under i0t . Equation

(9) forms a testable condition to evaluate policy decisions: if R0′Y 0
t 6= 0, we can conclude

that i0t is not optimal.

A key benefit of this approach to policy evaluation is that it is possible to construct

estimates of R0 and Y 0
t , even if the full model structure is unknown. For that purpose, we

can rely on recent advances in the econometrics literature. First, a large macro-econometric

literature has focused on estimating causal effects R0 with minimal modeling assumptions,

notably using past exogenous variations in policy as instrumental variables (e.g. Ramey,

2016; Stock and Watson, 2018). Second, Y 0
t , the allocation at i0t , is simply a conditional

oracle forecast, i.e., the expectation of Y 0
t conditional on the policy i0t .

7 To estimate Y 0
t ,

a large forecasting literature has shown how one can construct superior forecasts by com-

bining multiple (imperfect) models, shrinkage methods, judgment and large and disparate

information sources (e.g. Stock and Watson, 2002b; Lawrence et al., 2006; Manganelli, 2009;

Geweke and Amisano, 2012; Giacomini and Ragusa, 2014; Cheng and Hansen, 2015). In

fact, policy makers heavily rely on that literature to construct conditional forecasts as part

of their decision making procedure.

With both R0 and Y 0
t known with uncertainty, the gradient can only be computed with

uncertainty, and our evaluation of the optimality of a policy choice will resemble a hypothesis

test: a statement that the policy is not optimal for some confidence level.

Policy improvement with sufficient statistics

Should the gradient be non-zero, we can go further and use R0 and Y 0
t to find the magnitude

of the adjustment to i0t that restores optimality, that is we can combine R0, Y 0
t and i0t to

7In this simple static example, we slightly abuse the term “forecasting” in anticipation of our general
treatment where dynamics will figure prominently.
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compute the optimal policy ioptt .

Let δt denote a fixed deterministic adjustment to the policy choice i0t , that is consider

changing the policy to i0t + δt. Proceeding similarly to our derivation of (6) and solving the

model, the effect of the adjustment δt on the allocation is given by

Yt = R0(ε0t + δt) + C0ξt
= Y 0

t +R0δt .

Thus the effect of a policy adjustment on Yt is the same irrespective of the nature of the

adjustment, i.e., whether it is random (a shock) or deterministic: in both cases, the effect is

given by R0.

To compute the optimal policy, the idea is to find the policy adjustment δ∗t that ensures

that R′Yt = 0 holds, as the ⇐= relation in (7) would then imply that i0t + δ∗t is the optimal

policy. Specifically, we have

R0′Yt = R0′(Y 0
t +R0δ∗t ) = 0 ⇐⇒ δ∗t = −

(
R0′R0

)−1
R0′Y 0

t . (10)

The statistic δ∗t is what we call the Optimal Policy Perturbation (OPP). Clearly, the OPP

has the same property as the gradient — δ∗t = 0 implies i0t = ioptt —. In addition, starting

from the initial policy choice i0t , we just saw that i0t + δ∗t = ioptt : the OPP δ∗t allows us to

compute the optimal policy with sufficient statistics alone.

Importantly, we emphasize that δ∗t is not a shock and does not introduce any new exoge-

nous variation into the policy decision. To see that, let us express the policies ioptt and i0t as

functions of the structural shocks. Proceeding as with the derivation of (6), we have

ioptt = Θopt
ξ ξt and i0t = Θ0

ξξt + Θ0
εε

0
t (11)

with

Θε =
1

1 + κφ/σ
and Θξ =

φ

1 + κφ/σ
, for φ =

{
φ0, φopt

}
(12)

where Θopt
ξ is the effect of the cost-push shock under the optimal rule φopt and Θ0

ξ is the

effect under the rule φ0.

The OPP δ∗t = ioptt − i0t can then be written as

δ∗t = (Θopt
ξ −Θ0

ξ)ξt −Θεε
0
t . (13)

This shows that the OPP corrects the two possibles sources of optimization failure: (i) an

exogenous policy mistake (ε0t 6= 0), or (ii) a non-optimal policy rule (Θ0
ξ 6= Θopt

ξ ), and we can
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see the OPP adjustment as consisting in (i) removing the effect of the policy mistake ε0t , and

(ii) changing the policy rule from φ0 to φopt.8

In sum, this simple example shows that it is possible to assess and improve a policy

proposal without having complete knowledge of the underlying structure of the economy.

The underlying property is the equivalence (7): in a linear model, setting the gradient of

the loss function with respect to the policy shock to zero is necessary and sufficient to

characterize the optimal allocation. The next sections generalize this insight for a general

dynamic macro environment that includes the majority of macro models encountered in the

literature but without committing to a particular one.

3 General framework and objectives

In this section, we describe the policy problem, the generic economic environment and we

formalize our objectives.

3.1 The policy problem

Consider a policy maker at time t who aims to stabilize the expected path of the policy

objectives Yt = (y′t, y
′
t+1, . . .)

′ where yt = (y1,t, . . . , yMy ,t)
′ is a vector of stationary variables.

The policy maker can form expectations about the future paths of Yt, based on the time t

information set Ft. We denote the expectation operator by Et(·) = E(·|Ft).
The objective of the policy maker is to minimize the expected loss function

Lt =
1

2
EtY′tWYt , (14)

where W = diag(β ⊗ λ) denotes a diagonal matrix of preferences with λ = (λ1, . . . , λMy)′

capturing the weights on the different variables and β = (β0, β1, . . .)
′ the discount factors for

the different horizons. While we consider a quadratic loss function in the baseline treatment,

the web-appendix shows that our approach can be easily modified to accommodate any

convex loss function.

To minimize the loss function the policy maker can set Mp policy instruments at time

t, denoted by pt = (p1,t, . . . , pMp,t)
′. In addition, the policy maker can set the time-t ex-

pected values for pt+1, pt+2, . . ., etc... We denote by Pe
t = Et(p′t, p′t+1, . . .)

′ the corresponding

expected future policy path as a function of the time-t information set.

8We have it + δ∗t = Θopt
ξ ξt = φoptπopt

t from (6), (12) and using φopt = κσ.
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3.2 Environment

We consider a linear environment which can be justified for small fluctuations around a

steady-state, but we will later consider more general treatments that relax this assumption.

A generic model for the non-policy block of the economy at time t is given by{
AyyEtYt − AywEtWt −AypPe

t = ByxX−t + ByξEtΞt

AwwEtWt −AwyEtYt −AwpPe
t = BwxX−t + BwξEtΞt

, (15)

where Wt = (w′t, w
′
t+1, . . .)

′ is a path for additional endogenous variables, the vector X−t =

(y′t−1, w
′
t−1, p

′
t−1, y

′
t−2, . . .)

′ captures the initial conditions as summarized by the history of the

variables yt, wt and pt, and Ξt = (ξ′t, ξ
′
t+1, · · · )′ denotes the path of the structural shocks ξt.

The linear maps A.. and B.. are conformable. After taking expectations we can interpret

EtΞt as shocks (including news shocks) to the fundamentals of the economy that are released

at time t (e.g. Chahrour and Jurado, 2018).

This model is general and it accommodates a large class models found in the literature,

not only standard New-Keynesian (NK) models (e.g., Smets and Wouters, 2007), but also

modern heterogeneous agents NK models (Auclert et al., 2021). Numerous specific examples

can be found in Woodford (2003) and Walsh (2017).

3.3 Optimal policy

The optimal policy can be characterized by considering a planner who chooses the paths

Yt,Wt and Pt in order to minimize the loss function, i.e.,

min
Yt,Wt,Pt

Lt s.t. (15) . (16)

Denote by P
eopt
t the corresponding optimal policy. Note that the problem defines the entire

optimal policy path as a function of the information available at time t.

3.4 Objectives

Our aim is to evaluate policy decisions, that is to detect and possibly correct policy choices

that deviate from the optimal policy P
eopt
t .

Without loss of generality, a policy decision can be written as the sum of two terms,

a component determined in response to the state of the economy captured by all time-t

measurable variables —the policy rule— and an exogenous component. Specifically, we
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write a generic model for the policy block with

AppPe
t −ApyEtYt −ApwEtWt = BpξEtΞt + BpxX−t + εet , (17)

where εet = Etεt are shocks to the expected policy paths, where εt = (ε′t, ε
′
t+1, . . .) denotes

shocks to the policy path with εt = (ε1,t, . . . , ε
′
Mp,t

)′. In other words, by taking the expected

value of εt, we transform these policy shocks into “policy news shocks” revealed at time t,

i.e. time-t shocks to Pe
t . These policy news shocks εet are assumed to be uncorrelated with

the initial conditions and all other structural shocks.

We collect all the elements of the policy rule in φ = {App,Apy,Apw,Bpx,Bpξ}. A policy

choice Pe
t is then determined by a pair (φ, εet ).

Consider a policy maker who proposes the expected policy path P
e0
t which is determined

by the pair (φ0, εe0t ).9 Our objective is to evaluate whether the path P
e0
t corresponds to the

optimal path P
eopt
t as defined in (16). Formally, we are interested in testing

H0 : P
e0
t = P

eopt
t vs H1 : P

e0
t 6= P

eopt
t . (18)

In addition, if P
e0
t is not optimal, we would like to improve the policy choice such that it

becomes closer to P
eopt
t .

4 Policy evaluation with sufficient statistics

In this section we show how, for the generic class of model captured by (15), we can test H0

using only sufficient statistics. To do so we make two assumptions:

Assumption 1. The optimal policy P
eopt
t is unique.

Assumption 2. The rule φ0 underlying the proposed policy path P
e0
t leads to a unique and

determinate equilibrium.

The first assumption simplifies the exposition, but is not essential. In fact, our main

results continue to hold when replacing P
eopt
t with a set of optimal policies for which each

element of the set solves (16)

The second assumption imposes that the proposed policy rule φ0 leads to a unique and

determinate equilibrium. This is a necessary condition for the existence of the gradient with

respect to policy shocks and thus the OPP statistic. Note that explicit knowledge of φ0

9We do not take a stance on the specific formulation that led to P
e0
t , clearly multiple reaction functions

(i.e., multiple φ0) can lead to the same path P
e0
t .
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is not required. Given that our underlying policy rule (17) is unrestricted, we view this

assumptions as very mild.

Under Assumptions 1 and 2 we have the following characterization of the optimal policy.

Proposition 1. Given the generic model (15)-(17) and Assumptions 1-2, we have the equiv-

alence

P
e0
t = P

eopt
t ⇐⇒ ∇εtLt|Pe0

t
= R0′WEtY0

t = 0 (19)

where EtY0
t is the allocation under P

e0
t and R0 captures the causal effects of policy shocks

under the rule φ0 with

Y0
t = R0εe0t + Υ0

t , E(εe0t Υ0′

t ) = 0 . (20)

All proofs are stated in the appendix.

The proposition shows that the equality P
e0
t = P

eopt
t holds if and only if the gradient

of the loss function with respect to policy shocks is equal to zero. The term Υ0
t is a linear

combination of the structural shocks, initial conditions and future errors Y0
t − EtY0

t . The

exact expression is shown in the appendix, but for our purposes it is sufficient to note that

Υ0
t is orthogonal to the policy shocks which allows to identify R0 from (20).

The proposition generalizes our equivalence (7) for the simple NK model. The same

mechanism is at play —relying on the linearity of the underlying model—, and we do not

repeat the intuition.

4.1 The OPP statistic

Building on Proposition 1, we can now establish how two statistics —R0 and EtY0
t—are

sufficient to detect, even correct, a non-optimal policy decision P
e0
t , i.e., a decision where

P
e0
t 6= P

eopt
t . To formally implement this, we will not work directly with the gradient of

Proposition 1 but instead with its rescaled version: the Optimal Policy Perturbation (OPP).

Like the gradient, the OPP is entirely determined by the two statistics, R0 and EtY0
t but it

also has a direct economic interpretation.

We define the optimal policy perturbation (OPP) statistic as the gradient of the loss

function at P
e0
t rescaled by the inverse Hessian or

δ∗t = (− ∇2
εtLt

∣∣
P

e0
t

)−1 ∇εtLt|Pe0
t

= −(R0′WR0)−1R0′WEtY0
t . (21)

The OPP statistic is analog to the version introduced for the simple example, see equation

(10). The only differences are the dimensions and the weighting of the policy objectives. It

13



is clear that the OPP depends only on the two statistics R0 and EtY0
t . The OPP has the

following properties

Proposition 2. Given the generic model (15)-(17) and Assumptions 1-2, we have that

1. δ∗t = 0 ⇐⇒ P
e0
t = P

eopt
t

2. P
e0
t + δ∗t = P

eopt
t .

The formal proof is in the Appendix, but the properties of the OPP essentially derive

from the equivalence results stated in Proposition 1: to characterize the optimal policy, it

is necessary and sufficient to ensure that the gradient with respect to shocks is zero. The

same intuition presented in Section 2 is at work, and we do not repeat it here. Instead, we

propose three perspectives —an optimization perspective, an econometrics perspective, and

an economics perspective— on how the OPP (instead of the gradient alone) can allow to

compute the optimal policy starting from some initial (non-optimal) policy.

Intuition: an optimization perspective First, notice that the OPP is the first-step of a

gradient descent algorithm, specifically Newton’s method. Since the gradient depends only

on the two sufficient statistics R0 and EtY0
t , we can use gradient-descent to improve the

policy choice. When the problem is linear-quadratic as in generic model (15)-(17), Newton’s

algorithm can be used to exactly get to the optimum in one step.10 The OPP is precisely

that first-step, starting from P
e0
t .

Intuition: an econometrics perspective Relatedly, the OPP formula looks like the

formula of a weighted least squares regression: δ∗t is minus the coefficient estimate of a

regression of EtY0
t on R, weighted by W . To see why, consider adjusting the policy choice

from P
e0
t to P

e1
t ≡ P

e0
t + δ∗t : an OPP policy adjustment. Such adjustment can also be

viewed as an adjustment to εe0t . This implies that we can use Proposition 1 to compute the

effect of this policy adjustment on the policy objectives and get EtY1
t = EtY0

t +R0δ∗t with

EtY1
t the allocation under the new policy P

e1
t . Rewriting, this gives

EtY0
t = −R0δ∗t + EtY1

t . (22)

The goal of the OPP adjustment δ∗t can then be seen as follows: use R0 —the causal effects

of an OPP adjustment— in order to minimize the (weighted) sum-of-squares of EtY1
t , the

10Newton’s algorithm is a search algorithm designed to solve optimization problems, and it works by
approximating the optimization problem with its linear-quadratic approximation (which has a closed-form
solution).
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expected paths for the policy objectives after the OPP adjustment. This is nothing but a

regression of EtY0
t on −R0.11

Intuition: an economics perspective From an economics perspective, we will now see

that the OPP adjustment corrects a non-optimal policy by changing the policy maker’s

reaction function (and making it optimal).

The mechanism is similar to that of the New-Keynesian model described in Section 2 and

in equation (13). To see that more formally, first assume that there exists a rule that underlies

P
eopt
t , say φopt, that leads to a unique equilibrium. Then, together with Assumption 2, we

can write both P
e0
t and P

eopt
t as functions of (i) the initial conditions and (ii) the current

and expected future shocks, that is

P
eopt
t = Θopt

ξ EtSt and P
e0
t = Θ0

ξEtSt + Θ0
εε
e0
t , (23)

where St = (Ξ′t,X
′
−t)
′ and Θopt

ξ , Θ0
ξ and Θ0

ε are conformable matrices for which specific

expressions are given in the appendix.

For P
eopt
t , the map Θopt

ξ captures the policy maker’s optimal response to the state of the

economy EtSt. For P
e0
t , expression (23) captures the two possible reasons for a non-optimal

policy: (i) the policy maker does not respond appropriately to the state of the economy

(Θ0
ξ 6= Θopt

ξ ), or (ii) the policy maker makes exogenous policy mistakes (εe0t 6= 0).

We can then establish the following corollary

Corollary 1. Given the generic model (15)-(17) and Assumptions 1-2, if there exists a rule

φopt underlying P
eopt
t that leads to a unique equilibrium, we have that

δ∗t =
(
Θopt
ξ −Θ0

ξ

)
EtSt −Θ0

εε
e0
t . (24)

Expression (24) shows that the OPP statistic corrects the two possible sources of opti-

mization failures: (i) a non-optimal reaction function (Θ0
ξ 6= Θopt

ξ ), or (ii) policy mistakes,

i.e., non-zero exogenous policy shocks (εe0t 6= 0). The OPP adjustment then corrects the non-

optimal policy by canceling out the policy shocks and by changing how the policy maker

responds to the state of the economy, i.e., by changing Θ0
ξ to Θopt

ξ .

4.2 Subset OPP

In practice, computing the entire matrix of causal effects R0 can be infeasible as identifying

shocks to any element of the expected policy path can be hard. To avoid stringent iden-

11In other words, δ∗t is minus the coefficient estimate of a regression of EtY0
t on R, because the goal of

the OPP adjustment is not to best fit the path for EtY0
t with R0, but instead to best “undo” it.
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tification assumption we modify our objective and outline an approach for evaluating and

improving any subset of the proposed policy path. Specifically, let P
e0
a,t denote the subset or

linear combination of the proposed policy path for which the corresponding policy shocks

εe0a,t can be identified. The subset of the causal effects R0
a measures the effect of εe0a,t on the

policy objectives.12

The optimality of the proposed subset path P
e0
a,t can then be evaluated using the following

subset-OPP statistic

δ∗a,t = −(R0′

aWR0
a)
−1R0′

aWEtY0
t . (25)

The main benefit of the subset OPP statistic over the OPP statistic is its smaller information

requirement —R0
a is a subset of the full matrix of causal effects R0—, which will prove useful

in empirical applications.

The subset-OPP statistic is able to detect non-optimal policies and adjusting by the

subset statistic can bring the policy closer to optimality.

Corollary 2. Given the generic model (15)-(17) and Assumptions 1-2, we have that

1. δ∗a,t 6= 0 =⇒ P
e0
t 6= P

e0
t

2. Lt(P
e1
t ) ≤ Lt(P

e0
t ), where P

e1
t replaces P

e0
a,t with P

e0
a,t + δ∗a,t in P

e0
t .

Similar as in proposition 2, if the subset OPP statistic is non-zero the policy P
e0
t is non-

optimal. Indeed, for an optimal policy the gradient with respect to the policy news shocks

should be zero in all directions, i.e., for any element of Pt there should be no adjustment

possible. Moreover, adjusting the subset of the proposed policy by the subset OPP lowers

the loss function, but will generally not give the optimal allocation obtained with P
eopt
t .

5 Econometrics of the OPP

Section 4 derived attractive properties of the population (subset) OPP statistic. Thanks to

the OPP, it is in theory not necessary to know the full structure of the economy to evaluate

a macro policy decision: only sufficient statistics are required to detect and correct non-

optimal policies. In practice of course, such statistics need to be estimated and section will

formalize inference for the OPP based on estimated sufficient statistics. We will focus on

the subset-OPP statistic (25) as it is the more empirically relevant statistic —requiring only

the causal effects of shocks to a subset of the policy path—. For convenience we restate the

subset-OPP statistic

δ∗a,t = −(R0′

aWR0
a)
−1R0′

aWEtY0
t ,

12Formally, starting from (20) we have that Y0
t = R0εe0t + Υ0

t which we decompose as Y0
t = R0

aε
e0
a,t +

R0
a⊥ε

e0
a⊥,t + Υ0

t , where εe0a,t denotes the subset or linear combination of policy shocks that can be identified.

16



which relies on the causal effects R0
a and the oracle forecasts EtY0

t . We impose the following

high-level assumption.

Assumption 3. The underlying economic model is unknown, but one can construct esti-

mates for R0
a and EtY0

t , denoted by R̂0
a and Ŷ0

t , that satisfy

� EtY0
t = Ŷ0

t + Uy
t and Uy

t
a∼ FY 0

t

� R0
a = R̂0

a + U
R0

a
t and U

R0
a

t
a∼ FR0

a

with FY 0
t

and FR0
a

some known or estimable distribution functions.

Note that Assumption 3 is weaker than typically imposed in the literature. Unlike the

rest of the literature, we do not assume that the model is explicitly known (in the case

of model (15), that the matrices A.. and B.. are known). Instead, we only impose that it

is possible to estimate the dynamics causal effect R0
a and to produce a forecast Ŷ0

t that

approximates EtY0
t .

We think Assumption 3 is reasonable for two reasons. First, the assumption is in line with

the reality of policy making. Policy makers do not rely on one specific model, but they do

center the decision making process around the two statistics EtY0
t and R0

a. In the language

of policy makers, the estimate of EtY0
t is often referred to as the economic outlook, while

the estimate of R0
a, the effect of the policy instruments on the objectives, is often referred to

as the policy multiplier. The statistics are routinely estimated (or at least extensively dis-

cussed) as part of their decision making process (e.g. Orphanides, 2019).13 Second, a large

econometrics literature has shown that it is possible to estimate these sufficient statistics

without relying on a specific economic model, i.e., without assuming that the underlying

model is fully specified. We now discuss these points in more detail.

Causal effects. To estimate the causal effects (R0
a), one can rely on a large macro-

econometric literature on the estimation of impulse responses to policy shocks. Different

approaches can be considered, and we do not take a specific stand on which method should

be used. The review of Ramey (2016) provides a wealth of options ranging from local

projection (LP) methods to structural VAR methods and outlines a number of possible

identification strategies. Generally, the estimation of impulse responses requires three types

of assumptions: (i) an identification assumption, (ii) an assumption on the class of reduced

form econometric models (e.g., a linear model) and (iii) some regularity conditions. Calling

a suitable estimator R̂0
a and defining r̂a = vec(R̂0

a) and r0a = vec(R0
a), we can construct

r0a
a∼ N(r̂a, Σ̂a) , (26)

13That said, the two statistics have not been explicitly used in the context of policy assessment, and thus
not fully exploited, as we show in this paper.
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where Σ̂a is the estimate for the variance of r̂a.
14

Forecasts. Turning to EtY0
t , a large forecasting literature has studied how one can con-

struct superior forecasts by combining multiple (imperfect) models, judgment and large and

disparate information sources (e.g. Stock and Watson, 2002a,b; Lawrence et al., 2006; Man-

ganelli, 2009; Geweke and Amisano, 2012; Giacomini and Ragusa, 2014; Cheng and Hansen,

2015). Denoting such point forecast by Ŷt, we also need to approximate the distribution of

model uncertainty: the distribution of EtY0
t − Ŷt, the difference between the oracle forecast

EtY0
t and the observed point forecast Ŷt. To estimate the distribution of model uncertainty,

a conservative approach consists in approximating the distribution of EtY0
t − Ŷt by the

distribution of the historical forecast errors {Ys − Ŷs}ts=t0 . Using this sequence one can

estimate the historical bias and variance and use these to upper-bound the distribution of

model misspecification error (i.e., model uncertainty) using a normality assumption.15 This

approach yields an approximation for the distribution of EtY0
t − Ŷt which we denote by

EtY0
t − Ŷt

a∼ FY 0
t
. (27)

Computing the subset OPP. After obtaining the approximating distributions of the

dynamic causal effects and the oracle forecasts, we can compute the distribution of the OPP

using simulation methods for a given preference matrixW . Specifically, we simulate dynamic

causal effects from (26) and forecasts misspecification errors from (27) and compute δja,t the

simulated OPP statistic. We repeat this for a large number of draws j = 1, . . . , Sd, and

report the average OPP and the confidence interval for some α ∈ (0, 1):

δ̂a,t =
1

Sd

Sd∑
j=1

δja,t and
[
δ
(αSd)
a,t , δ

((1−α)Sd)
a,t

]
, (28)

where δ
(k)
a,t denotes the (element wise) kth largest draw of {δja,t, j = 1, . . . , Sd}.

Policy evaluation and improvement. Based on Corollary 2 we will conclude that a

policy Pe0
t is not optimal whenever the confidence bands of δ∗a,t exclude zero at any desired

level of confidence. Moreover, we can improve the policy choice by adjusting P
e0
t with the

14This approximation can follow from both frequentist and Bayesian arguments. For instance, in a fre-
quentist setting many estimators, under suitable assumptions, are asymptotically normal implying that
√
n(r̂a − r0a)

d→ N(0,Σa). Given that such a result applies and that the asymptotic variance can be consis-
tently estimated, we can obtain the approximation (26).

15Forecast errors mix two sources of uncertainty: (i) misspecification, i.e., model uncertainty, and (ii) future
uncertainty. As a result, the variance of forecast errors will upper-bound the variance of mis-specification
uncertainty.
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subset OPP mean δ̂a,t. In fact, we have

δ̂a,t = (R̂0′
aWR̂0

a + Ωa)
−1R̂0′

aW(Ŷ0
t + Ūy

t ) , (29)

where Ωa is a function ofW and the variance-covariance matrix of the distribution FR0
a
, and

Ūy
t is the bias in the forecast.

Note how δ̂a,t does not correspond to (R̂0′WR̂0)−1R̂0′WŶ0
t , a naive plug-in estimator

of δ∗a,t, where we would use the point-estimates for R0
a and EtY0

t . There are two reasons

for that. First, the term Ωa can be thought of as capturing an attenuation bias coming

from uncertainty in our knowledge of the effect of policy (uncertainty in R0
a). This result

goes back to the seminal Brainard (1967) conservatism principle. Brainard’s principle states

that in the face of parameter uncertainty, a policy maker should be more conservative in its

use of the policy instruments and refrain from fulling minimizing the loss function. Exactly

the same happens when the policy maker uses the OPP mean estimate (29) to update the

proposed policy, i.e. P
e0
a,t + δ̂a,t is a conservative adjustment to policy.

Second, the possibly of a non-zero bias in the forecast Ūy
t affects the policy adjustment.

If the bias is estimable (as we assumed in Assumption 3), say from historical forecast errors,

one simply corrects the point forecast Ŷ0
t by adding the bias term Ūy

t . Alternatively, if the

bias Ūy
t cannot be estimated but one can impose a bound on the magnitude of the bias, it is

possible to consider a worst case scenario where Ūy
t is chosen to minimize the OPP statistic.

This would correspond to a minimax rule in the spirit of Hansen and Sargent (2008).

6 Illustration: US monetary policy

In this section we illustrate how the OPP statistic can be used in practice to evaluate

and improve monetary policy decisions. As loss function we posit the dual inflation-full

employment mandate imposed by the US Congress on the Fed:

Lt = ‖Πt‖2 + λ ‖Ut‖2 , (30)

with Πt = (πt−π∗t , . . . , πt+H−π∗t )′ the vector of inflation gaps and Ut = (ut−u∗t , . . . , ut+H−
u∗t )
′ the vector of unemployment gaps. We truncate the paths at a horizon of H = 5 years,

and the discount rate is implicitly set to βh = 1 for all h. Since the Fed publicly announced

that it follows a balanced approach to its dual mandate, i.e., λ = 1 (Bernanke, 2015), our

baseline results are based on λ = 1. In the web-appendix, we discuss the choice of λ and

show results for a range of λ over [0.2, 2].16

16Arguably, the main beneficiaries of a sufficient statistic approach to policy evaluation are the policy
makers themselves, as we discussed in the introduction. In that case, λ (or β) is a preference parameter, i.e.,
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We evaluate Fed decisions over 1990-2018. After discussing the construction of the OPP

statistic (and associated distribution), we present and discuss the sequence of OPP statistics

over 1990-2018 —a systematic study of all policy decisions over that sample period—, and

we then focus on three specific decisions: 1990M6, 2008M4 on the eve of the Great Recession,

2010M4 in the middle of the Great recession—.

6.1 Computing the subset OPP

We first describe how we construct the subset OPP statistics (and associated distributions).

The subset OPP To assess policy decisions, we will compute a subset OPP vector with

two elements, each corresponding to a specific policy “experiment”: (i) a short-rate OPP

corresponding to an innovation to the contemporaneous fed funds rate and (ii) a slope OPP

corresponding to an innovation to the slope of the fed funds rate path. In other words, the

short-rate OPP will capture the optimal adjustment to the contemporaneous fed funds rate

and the slope OPP will capture the optimal adjustment to the slope of the fed funds rate

path.

Estimating dynamic causal effects To estimate the impulse responses to these policy

shocks, we follow Kuttner (2001) and Eberly, Stock and Wright (2019) and assume that the

Fed’s reaction function was stable over 1990-2018 (such that the matrix Ra is constant over

that period),17 and we use as instrumental variables the monetary policy surprises measured

around the FOMC announcements within a 30 minute window. First, we use surprises

to the fed funds rate —the difference between the expected fed funds rate (as implied by

current-month federal funds futures contracts) and the actual fed funds rate— to identify

the effects of a shock to the contemporaneous fed funds rate. Second, we use surprises to the

ten-year on-the-run Treasury yield (orthogonalized with respect to surprises to the current

fed funds rate) to identify the effects of shocks to the slope of the expected fed funds rate

path. We then use these surprises as instrumental variables in local projections to compute

the dynamic causal effects R̂0
a.

18

a choice for the policy maker. But for a retrospective and external analysis of policy decisions, presenting
results for a range of values for λ is useful to understand which alternative values for λ could explain some
decisions. In the web-appendix, we also propose a conservative (i.e., robust) approach to elicit λ. Specifically,
the procedure consists in picking the λ that is least favorable to rejecting that a policy was optimal.

17In the web-appendix, we test this assumption by testing the stability of our Ra estimates using the
structural change tests proposed in Hall, Han and Boldea (2012). We find no evidence of parameter insta-
bility.

18Using SVAR-IV (e.g. Montiel Olea, Stock and Watson, 2020) gives similar results, see the online Ap-
pendix. As in Eberly, Stock and Wright (2019), the effect of shocks to the fed funds rate is estimated over
1990-2007, which avoids the zero-lower bound period, and the effect of shocks to the slope of the yield curve
is estimated over 2008-2018, the period during which the Fed was actively trying to affect that slope.
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Measuring EtY0
t For the conditional forecasts Ŷt, we use the median FOMC forecasts

reported in the Survey of Economic Projections (SEP).19 Since the SEP forecasts only extend

up to three years out, we complement them with the median FOMC estimates for long-run

inflation and unemployment, and we posit that these long-run values are reached after 5

years. Since SEP projections are annual, we linearly interpolate them in order to project

them on the estimated effects of the policy instruments (available at a quarterly frequency).

As long-run targets u∗t and π∗t , we again use the FOMC estimates for long-run inflation and

unemployment. To capture the uncertainty around these point forecasts, we use the Board

staff assessment of forecast uncertainty, as reported in the Tealbook.

The OPP statistics Based on R̂0
a, and Ŷt, we compute the mean subset OPP statistics

δ̂a,t and construct confidence bands as described in Section 5. The subset OPP δ̂a,t is a

vector with two elements: (i) the short-rate OPP denoted by δ̂i,t, and (ii) the slope OPP

denoted by δ̂∆,t.

In terms of confidence interval, we will report both the 68% confidence bands and the

95%.20 Importantly, we note that the objective of a policy optimality test is different from

the traditional objective of statistic learning. Specifically, from the perspective of the policy

maker it is not clear that high significance is the most interesting/appropriate criteria. Con-

sider the main outcome of the OPP test: “With X% confidence, the proposed policy choice

is not optimal”. A policy maker particularly averse to making a non-optimal decision may

want to change the proposed policy choice at a relatively low X level, say 68% instead of the

usual 95%, as she may want to discard a policy that is non-optimal with a 68% probability.

A trade-off however is that too low a threshold may lead a policy maker to change policy

course too often. While such a decision problem is outside the scope of this paper, it high-

lights that for the OPP test the classical dichotomy of hypothesis testing (i.e. preference for

type 1 vs type 2 errors) really depends on the preference of the policy maker, e.g., making

non-optimal decisions vs. changing course frequently. In the empirical application, we will

thus show the rejection probability for different significance levels.

6.2 A retrospective analysis of US monetary policy

Figure 4 displays the time series for the two elements of the subset OPP —the short-rate

OPP and the slope OPP— along with their confidence intervals, as implied by both impulse

response and model uncertainty.

19As an alternative to the SEP, we explored using the Board staff Greenbook forecasts. The results were
very similar.

20Macroeconomic forecasts are typically noisy, and many policy makers report 68% confidence bands
(instead of say 95%), see for instance the discussion on page 549 in Stock and Watson (2011).
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While the contemporaneous fed funds rate has not been set exactly at its optimal level

since 1990, the optimal adjustment (in absolute value) is overall relatively small averaging

only 25 basis points over the full sample. There is however a few interesting cases of non-

optimal policies.

We start with the short-rate OPP, which evaluates the optimality of the contemporaneous

fed funds rate, the traditional tool of monetary policy.

First, notice the large negative short-rate OPP during the Great Recession: the contem-

poraneous fed funds rate was about 1 percentage point too high over 2009-2013. This is not

an optimization failure per se since the fed funds rate was stuck at the zero lower bound, but

it conveys the magnitude of the ZLB constraint, i.e., by how much the ZLB was restraining

the Fed’s ability to stabilize the economy with its traditional tool.

Second, on the eve of the Great Recession (when the ZLB was not yet binding), the

short-rate OPP indicates (based on solely on real time information) that the FOMC should

have lowered rates faster in early 2008.

Third, another case of a suboptimal fed funds rate occurs in the late 1990s, when the

short-rate OPP indicates that the fed funds rate was too low by about .25ppt. This finding

echoes earlier arguments that the Fed may have found itself falling behind the curve in the

late 1990s tightening cycle (e.g., Blinder and Reis, 2005).

The slope OPP, which assesses the optimality of the slope of the policy path, confirms the

conclusion of the short-rate OPP. During the Great Recession for instance, the slope OPP

indicates that forward-guidance could have been used more aggressively, a conclusion echoing

that of Eberly, Stock and Wright (2019). In 2009, the slope OPP drops rapidly to about

-1ppt and only slowly revert back to zero. In fact, the slope OPP remains significantly

different from zero over the whole 2009-2013 period. Overall, these results indicate that

a more active manipulation of the expected policy path through forward guidance holds

considerable promise for improvements in the conduct of policy.

To better understand these results and also to illustrate the workings of the OPP, we

consider three instructive case studies: June 1990 where the OPP is essentially zero with the

Fed successfully balancing conflicting objectives, (ii) April 2008 where a non-optimal policy

is detected by the short-rate OPP at the onset of the Great Recession, (iii) April 2010 where

a non-optimal policy path is detected by the slope OPP.

6.3 Three case studies

Fed funds rate policy as of June 1990 In the first case study, we evaluate the optimality

of the contemporaneous fed funds rate as of June 1990. In June 1990, the FOMC was

confronted with a classic inflation-unemployment trade-off: while it would have liked to
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lower the fed funds rate to fight excess unemployment, it was prevented to do so by the high

and on-going inflation (Bluebook, June 2006). The question for the policy maker at the time

(and thus for the OPP) is whether the level of the fed funds rate optimally balanced that

trade-off.

Figure 1 depicts graphically all the information needed to construct the short-rate OPP

δ̂i,t. The top-left panel reports the FOMC conditional expected path for the inflation gap,

that is it reports Π̂t. The bottom-left panel reports R̂0π
i , the estimated effect of a 1ppt

shock to the contemporaneous fed funds rate on inflation. The right column reports the

same information for unemployment: Ût and R̂0u
i . For illustration purposes, in this first case

study we omit confidence bands and treat the causal effect estimates and forecasts as fixed.

To illustrate the workings of the OPP, we first consider the case of a strict inflation

targeter with λ = 0. In the top-left panel, the red empty-circles display how the expected

path for inflation would change if we adjusted the fed funds rate by δ̂πi,t, the OPP for a

strict inflation targeter that did not care about the path of unemployment (λ = 0). With

δ̂πi,t ≈ 0.7 > 0, the short-rate OPP calls for a more contractionary policy in order to bring

down inflation faster (empty red circles). To understand the workings of the OPP, recall

that the effect of a policy adjustment δt can be obtained by simply adding (or subtracting)

to the baseline inflation forecast the impulse response of inflation to a fed funds rate shock

(scaled by the magnitude of the policy adjustment).21 The goal of the OPP —the optimal

adjustment— when λ = 0 is then to best “use” the impulse response of inflation in order

to best stabilize the forecast for the inflation gap. Because of the lag in the effect of policy,

the Fed can do little about the contemporaneous burst of inflation but it can bring down

inflation in two years by raising rates today.

In the top-right panel, the blue empty-circles plot a similar counter-factual exercise but

for a strict unemployment targeter that ignores the path of inflation (λ = ∞). This time,

the OPP statistic calls for a more expansionary policy (δ̂ui,t ≈ −0.2 < 0) in order to use the

(negative of) impulse response of unemployment to bring down unemployment faster.

With a dual inflation–unemployment mandate (λ = 1), the FOMC is facing an inflation-

unemployment trade-off, as the two OPP statistics δ̂πi,t and δ̂ui,t call for opposite policies.22

Intuitively, when computing the dual-mandate OPP, the goal is to best use both impulse

responses of inflation and unemployment in order to best stabilize both the inflation and the

unemployment forecasts. Given that the impulse responses of inflation and unemployment

21As we saw in Section 4, we have EtY1
t = EtY0

t +R0δt with EtY1
t the allocation after the δt adjustment.

22We can re-write δ∗i,t as a weighted-average of the OPP for each mandate with

δ∗i,t = (1− ω)δπ∗i,t + ωδu∗i,t , (31)

with δv∗i,t = −(R0v
′

i R0v
i )−1R0v

′

i EtV 0
t the OPP for a single mandate with Vt = (vt − v∗, . . . , vt+H − v∗)′ for

v = π or u, and ω = 1
1+κ2/λ .
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move in opposite direction, it is not possible to simultaneously lower both inflation and

unemployment: the Fed is facing a trade-off, and an optimization failure —a non-zero OPP

δ̂t— can come from a failure to appropriately balance conflicting objectives, in this case

δ̂πi,t > 0 but δ̂ui,t < 0.

We find δ̂i,t = −0.11 (see Table 1), meaning that the two mandates were roughly balanced

and the departure from optimality is economically small. Moreover, taking estimation and

model uncertainty into account, the 68 percent confidence interval includes zero, and we

cannot discard that the contemporaneous fed funds rate was set optimally.

Fed funds rate policy as of April 2008 In the second case study, we evaluate the

fed funds rate policy as of April 2008, in the early stage of the financial crisis: Lehman

Brothers was still 6 months away from failing, unemployment was only at 5 percent, and few

anticipated the magnitude of the recession that was going to ensue. In fact, the fed funds

rate was still at 2.25ppt so the Fed still had room to use conventional policies to stimulate

activity.23 At that meeting, the fed funds rate was lowered by .25ppt to 2 percent, but it

remained at that level until October 2008, i.e., until the collapse of Lehman brothers.

As is clear from the April Tealbook and forecast narratives reported by the FOMC, the

central bank was facing two conflicting issues in April 2008: (i) a marked deterioration in the

growth outlook due declining housing prices and tensions in the financial market, and (ii)

upside risks to inflation coming from “persistent surprises to energy and commodity prices”

(Kohn, 2008).

An interesting question in hindsight is thus whether the 2008-M4 decision was optimal.

Figure 2 has the same structure as Figure 1 except that we now report the confidence intervals

for the impulse response estimates, as well as the confidence intervals capturing the model

uncertainty surrounding the Fed’s forecast, as judged by the Board staff in the April 2008

Tealbook.

The two issues of the time —poor economic outlook and inflationary pressures from high

energy prices— are visible in the FOMC forecasts in the first row of Figure 2.

The short-rate OPP comes out at δ̂i,t = −0.37 (Table 1), calling for an additional 25 or

50 basis points cuts (depending on rounding). The 68% confidence interval excludes zero,

indicating that there is a less than 32 percent chance that the policy i0t was optimal, i.e.,

balanced the expected paths of the inflation and unemployment gaps. The unfilled dots plot

the counter-factual expected paths for the policy objectives after adjusting the policy path

with the short-rate OPP. We can see that the FOMC could have brought down expected

unemployment faster at a small inflationary cost. Indeed, the effect of monetary policy on

23By the end of 2008 however, unemployment had reached 7.3 percent, and the Fed had dropped the fed
funds rate by almost 2ppt (to the zero lower bound) in the span of only three months (September-December)
following the failure of Lehman Brothers in September 2008.
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inflation is so delayed that the extra expected inflation caused by a lower fed funds rate will

only materialize two years later, i.e., after the commodities-driven burst in inflation has died

down.

Slope (QE) policy as of April 2010 It is interesting to contrast the 2008-M4 situation

with that of two years later; in 2010-M4. There, the Fed funds rate was stuck at zero but

the Fed could have further used forward-guidance to better stabilize the economy. To test

this possibility, we can use the slope OPP statistic.

Figure 3 displays the situation in 2010-M4 where the bottom panels show the effects on

inflation and unemployment of a 1ppt shock to the slope of the yield curve. In Table 1

we find that the mean estimate of the slope OPP is given by δ̂∆,t = −0.90, calling for a

substantial decline in the slope of the expected policy path (Figure 4, top-right panel). The

deviations from targets are so large that we can easily discard optimality even at the 95

percent confidence level.

The unfilled dots plot the counter-factual expected paths for the policy objectives after

adjusting the policy path with the slope OPP. The FOMC could have brought down expected

unemployment faster in exchange for a small overshoot in expected inflation in 2011.

7 Generalizing the OPP approach

So far we have developed our sufficient statistics approach for policy evaluation in the context

of linear models that can be written as in (15). In this section we explore for which other

classes of models the statistics R and EtY0
t are sufficient to evaluate, and possibly improve,

policy decisions. Key examples that we consider are models with state dependence (e.g.

Auerbach and Gorodnichenko, 2013) and models with multiple policy regimes (e.g. Sims

and Zha, 2006).

Recall that the properties of the OPP derive from the equivalence

P
e0
t = P

eopt
t ⇐⇒ ∇εtLt|Pe0

t
= 0 , (32)

which we have shown to hold for linear models of the generic form (15). In fact, the equiv-

alence holds for all models that can be viewed as conditionally linear. In the web-appendix

we provide a high level framework that exactly spells out the necessary conditions on the

underlying economy that ensure that our sufficient statistics approach applies.

Here we keep the discussion concrete, and we will make two specific points. First, as

long as the model is linear conditional on time-t predetermined variables, the equivalence

continues to hold and all our previous results hold. This case notably includes models of state
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dependent policy effects that are often considered in the empirical literature (e.g. Auerbach

and Gorodnichenko, 2013). Second, in a model with multiple regimes conditioned by the

policy rule (e.g. Sims and Zha, 2006) as long as the economy can only be in a finite number

of regimes, the equivalence no longer holds, but a non-zero gradient still implies that the

proposed policy choice is non-optimal. In other words, the two statistics R0 and EtY0
t are

still sufficient to evaluate a policy decision, but adjusting the policy choice with the OPP is

no longer guaranteed to yield a superior policy decision.

7.1 State dependence

Numerous works have documented evidence for various forms of state dependence in the

effects of fiscal and monetary policy, where the state dependence is governed by some time-

t pre-determined variable that is independent of the policy decision.24 Our main results

continue to hold in this setting, and the two statistics R0 and EtY0
t are sufficient to detect

and correct non-optimal policy decisions. The only difference is that the statistic R0 needs

to be conditioned on the state of the economy. As an illustration, consider the specification

of Auerbach and Gorodnichenko (2013) where the economy can be in two states, depending

on the value of some state variable zt. In that case, the generic model is modified in that

the maps A.. and B.. become functions of zt, i.e., A..(zt) and B..(zt).
With two states, each map can be written as A..(zt) = F (zt)A..(1)+(1−F (zt))A..(2) where

F (zt) can be interpreted as a measure of probability of being in state 1 at time t based on

some time t predetermined variable zt.
25 The effects of policy shocks will then be given by

on the state and can take two values R0
(1) or R0

(2).

The corresponding state dependent OPP statistic can be written as

δ∗t (zt) = −(R0(zt)
′WR0(zt))

−1R0(zt)
′WEtY0

t ,

where R0(zt) = F (zt)R0
(1) + (1 − F (zt))R0

(2). As shown formally in the web-appendix, the

state dependent OPP inherits all properties of the baseline OPP: δ∗t (zt) 6= 0 implies that

P
e0
t is non-optimal, and P

e0
t + δ∗t (zt) corrects the optimization failure.

24See e.g., Auerbach and Gorodnichenko (2012, 2013); Ramey and Zubairy (2018); Barnichon, Debortoli
and Matthes (2021) for studies on whether fiscal policy is more or less effective when the economy is in a high
unemployment state, and Tenreyro and Thwaites (2016); Ascari and Haber (2021); Eichenbaum, Rebelo and
Wong (2022) for studies on whether monetary policy is more or less effective when unemployment is high.

25A popular functional form for F (.) is F (zt) = exp(−γzt)/[1 + exp(−γzt)] with γ a tuning parameter.
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7.2 Multiple policy regimes

Next, we consider an economy with a finite number of policy regimes, where the model

coefficients (equations (15)) can depend on the policy regime. To give a concrete and relevant

example in monetary policy, inflation expectations can be “anchored” —fixed at some value—

or “unanchored”, in that inflation expectations depend the state of the economy (expectation

formation could be e.g., rational or adaptive), and the anchoring of inflation expectations

likely depends on the central bank’s policy rule or objective function (e.g., Bernanke, 2007).

In this type of model, the policy rule can affect the coefficients of the non-policy block

(15). In that case, we can still use the OPP to detect optimization failures, but there is no

longer any guarantee (without additional structural assumption) that an OPP adjustment

would improve policy. In other words, the two statistics R0 and EtY0
t are still sufficient to

evaluate a policy decision, but they may not be sufficient to correct a non-optimal policy

decision.

To see that, consider an economy described by N regimes indicated by ϑ ∈ {ϑ1, . . . , ϑN}.
The regime is determined by the policy rule φ chosen by the policy maker. In each regime

the effects of policy shocks can be different, and R0(ϑi) captures the causal effect of policy

shocks under regime ϑi. Given a policy proposal P
e0
t , implied by a rule φ0, which correspond

to the regime ϑ0 ∈ {ϑ1, . . . , ϑN}, the regime specific OPP statistic is

δ∗t (ϑ
0) = −(R0(ϑ0)′WR0(ϑ0))−1R0(ϑ0)′WEtY0

t .

The regime specific OPP retains the property that δ∗t (ϑ
0) 6= 0 implies that P

e0
t is non-

optimal: R0(ϑ0) and EtY0
t are still sufficient to evaluate a policy decision.

Intuitively, our detection of a non-optimal policy relies on the gradient being non-zero,

and the gradient captures the effect of an infinitesimally small change in policy. Such in-

finitesimally small change in the reaction function will not trigger a regime change, as in

our our example of anchored vs. unanchored inflation expectations. In that case, the two

statistics are still sufficient to detect a non-optimal policy.

However, adjusting the policy by the OPP is no longer guaranteed to give the optimal

policy. Indeed, recall from Corollary 1 that an OPP adjustment amounts to a change in

the reaction function. Thus adjusting P
e0
t by δ∗t (ϑ

0) could lead to a new regime, call it ϑ1,

where the effect of policy shocks R0(ϑ1) is different. In that case, the two statistics R0(ϑ0)

and EtY0
t are no longer sufficient to improve policy.

Intuitively, with multiple policy regimes the optimization problem is no longer linear-

quadratic, as the model is no longer linear with respect to the coefficients of non-policy

block. As a result, the problem may not be convex, and the first-order condition of optimality

may not be sufficient: the gradient could be zero, because the policy choice is only a local
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minimum.

8 Conclusion

In this work, we show that it is possible to evaluate macro policy decisions from two sufficient

statistics that determine the gradient of the loss function with respect to policy shocks. The

two sufficient statistics are (i) the dynamic causal effects of the policy instruments on the

policy objectives —the policy multiplier—, and (ii) forecasts for the policy objectives con-

ditional on the policy decision —the economic outlook—. These statistics can be estimated

without a specific economic model. The Optimal Policy Perturbation (OPP) is the gradient

of the loss function (rescaled by the Hessian) and we show how the OPP is sufficient to

detect, and often correct, non-optimal policies.

Importantly, the monetary policy setting considered in this paper is only one of many

potential applications of a sufficient statistics approach to evaluating macro policy problems.

Other fruitful uses include the many areas where macro policy makers must balance difficult

trade-offs in complex settings: fiscal policy (e.g., balancing growth considerations with risks

to debt sustainability), exchange rate management (balancing monetary independence with

exchange rate stability), foreign-reserve management (e.g., balancing the cost of holding

reserves with the insurance against sudden stops in capital flows), or even climate change

policy (e.g., balancing the costs of climate change with the costs of preventive actions),

among others.

28



References

Ascari, Guido, and Timo Haber. 2021. “Non-Linearities, State-Dependent Prices and
the Transmission Mechanism of Monetary Policy.” The Economic Journal,
132(641): 37–57.
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Appendix

Proof of Proposition 1. We first characterize the optimal policy that is defined as the solution
to the planners problem (16), that is

min
Yt,Wt,Pt

Lt s.t. (15) . (33)

The Lagrange function for this problem is given by

Lt =Et
{

1

2
Y′tWYt + µ′1(AyyYt − AywWt −AypPt − ByxX−t − ByξΞt)

+µ′2(AwwWt −AwyYt −AwpPt − BwxX−t − BwξΞt)} ,

where µ1 and µ2 denote the Lagrange multipliers. The first order conditions for Yt,Wt,Pt

are given by

0 =WEtYt +A′yyµ1 −A′wyµ2

0 = −A′ywµ1 +A′wwµ2

0 = −A′ypµ1 −A′wpµ2 ,

and from Assumption 1 it follows that this system of equations implies a unique solution
P

eopt
t .

Next, we consider the fictitious policy problem of a policy maker considering deviating
from the fixed rule φ0 with some sequence of policy shocks εt.

min
Yt,Wt,Pt,εt

Lt s.t. (15) and (17) . (34)

The Lagrange function for this problem is given by

Lft =Et
{

1

2
Y′tWYt + µ′1(AyyYt − AywWt −AypPt − ByxX−t − ByξΞt)

+µ′2(AwwWt −AwyYt −AwpPt − BwxX−t − BwξΞt)

+µ′3(A0
ppPt −A0

pyYt −A0
pwWt − B0

pxX−t − B0
pξΞt − εt)

}
,

which leads to the first order conditions for Yt,Wt,Pt, εt given by

0 =WEtYt +A′yyµ1 −A′wyµ2 −A0′

pyµ3

0 = −A′ywµ1 +A′wwµ2 −A0′

pwµ3

0 = −A′ypµ1 −A′wpµ2 +A0′

ppµ3

0 = µ3 .

Since µ3 = 0, it is easy to verify that the first order conditions of the fictitious policy problem
(34) are identical to the first order conditions of the planner’s policy problem (33). Since
both optimization problems are convex, this means that the two optimization problems have
the same solution P

eopt
t .
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Next, note that Assumption 2 imposes that the rule φ0 underlying the proposed policy
leads to a unique equilibrium. Hence under this rule we can write the solution as EtYt

EtWt

Pe
t

 =

 Ayy −Ayw −Ayp
−Awy Aww −Awp
−A0

py −A0
pw A0

pp

−1  Byx Byξ 0
Bwx Bwξ 0
B0
px B0

pξ I

 X−t
EtΞt

εet


=

 C0x C0ξ R0

C0wx C0wξ C0wε
C0px C0pξ C0pε

 X−t
EtΞt

εet

 , (35)

where the expressions for the coefficients, e.g. C0x, C0ξ ,R0, can be derived explicitly from
inverting the map, but we will not require such expressions: existence as imposed by As-
sumption 2 is sufficient for our purposes. This representation shows that the fictitious policy
problem can be alternatively stated (by substituting out the variables Wt,Pt in terms of
the shocks and initial conditions) as

min
εt
Lt s.t. EtYt = R0εet + C0xX−t + C0ξEtΞt .

This leads to the first order condition

R0′WEtYt = 0 .

This shows that the optimal policy allocation P
eopt
t can be characterized by the condition

R0′WEtYt = 0. Since, P
eopt
t is unique we have that P

e0
t = P

eopt
t if and only if R0′WEtY0

t =
0. The final observation in the theorem follows directly as under Pe0

t we have

Y0
t = R0εe0t + C0xX−t + C0ξEtΞt + Yt − EtY0

t︸ ︷︷ ︸
Υ0

t

,

and since the time t news shocks εe0t are orthogonal to the initial conditions and all other
shocks we have that E(εe0t Υ0′

t ) = 0.

Proof of Proposition 2. Part 1: From Proposition 1 it follows that P
e0
t = P

eopt
t if and only

if R0′WEtY0
t = 0. Since, δ∗t = −(R0′WR0)−1R0′WEtY0

t we have that δ∗t = 0 if and only
if P

e0
t = P

eopt
t . Part 2: First, if δ∗t = 0 the claim follows immediately from Part 1. Hence,

suppose that δ∗t 6= 0 which implies that R0′WEtY0
t 6= 0. From Proposition 1 it follows

that Y0
t = R0εe0t + Υ0

t . Now consider adjusting εe0t by δt such to ensure that the first order
condition holds. Specifically we solve

R0′WEt
(
R0(εe0t + δt) + Υ0

t

)
= 0 ,

for δt. This gives
δ∗t = −(R0′WR0)−1R0′WEtY0

t ,

i.e. the OPP statistic sets the gradient condition to zero and thus imposes that the policy
choice εe0t + δ∗t is optimal. Finally, note that adding δ∗t to ε∗t is equivalent to adding δ∗t to
P

e0
t as the model is linear.
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Proof of Corollary 1. First from Assumption (2), (35) implies that we can write P
e0
t as

P
e0
t = C0pxX−t + C0pξEtΞt + Cpεεe0t

= Θ0
ξEtSt + Θ0

εε
e0
t

where Θ0
ξ = [C0pξ, C0px], Θ0

ε = C0pξ and St = (Ξ′t,X
′
−t)
′. Second, as —φopt leads to a unique

equilibrium— we can use the same reasoning and write

P
eopt
t = Θopt

ξ EtSt ,

where we note that the definition of the optimal policy P
eopt
t in (16) implies that Etεt = 0

under the optimal rule. The corollary now follows directly from proposition (2) part 2:

δ∗t = P
eopt
t −P

e0
t

= Θopt
ξ EtSt −Θ0

ξEtSt −Θ0
εε
e0
t

= (Θopt
ξ −Θ0

ξ)EtSt −Θ0
εε
e0
t .

Proof of Corollary 2. Part 1: From Proposition 1 it follows that R0′WEtY0
t = 0 if and only

if P
e0
t = P

eopt
t . Since, R0

a is a subset (or linear combination) of the columns of R0 it follows
that R0′

aWEtY0
t 6= 0 implies that P

e0
t 6= P

eopt
t . Part 2: Using Proposition 1 we can partition

Y0
t = R0εe0t + Υ0

t

= R0
aε
e0
a,t +R0

a⊥ε
e0
a⊥,t + Υ0

t ,

where R0
a⊥ denotes the causal effects that cannot be identified. Using this notation we can

characterize δ∗a,t as follows

δ∗a,t = argmin
δa,t

Lt s.t Yt = Y0
t +R0

aδa,t .

Indeed solving this problem gives δ∗a,t = −(R0′
aWR0

a)
−1R0′

aWEtY0
t . This implies that

Lt(P
e0
t ) =

1

2
EtY0′

t WY0
t

≥ 1

2
Et(Y0

t +R0
aδ
∗
a,t)
′W(Y0

t +R0
aδ
∗
a,t)

= Lt(P
e1
t )

where P
e1
t replaces P

e0
a,t with P

e0
a,t + δ∗a,t.

35



Figure 1: Fed funds rate policy in June 1990
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Notes: Top panel: median FOMC forecasts for the inflation and unemployment gaps as of 1990-M6. Filled
circles denote the forecasts conditional of the policy choice P

e0
t , and empty circles denote the forecasts after

an OPP adjustment. In the left panel, the counter-factual path (red empty circles) is for a policy maker

aiming to stabilize only inflation (λ = 0) and adjusting its policy with δ̂πi,t (labeled OPPπ). In the right panel,
the counter-factual path (blue empty circles) is for a policy maker aiming to stabilize only unemployment

(λ→∞) and adjusting its policy with δ̂ui,t (labeled OPPu). Bottom panel: impulse responses of the inflation
and unemployment gaps to a fed funds rate shock.

36



Figure 2: Fed funds rate policy in April 2008
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2008-M4 (in red
and blue) along with the 68 percent confidence bands. Filled circles denote the forecasts conditional of

the policy choice P
e0
t , and empty circles denote the forecasts after the short-rate OPP adjustment δ̂i,t, the

optimal adjustment for a policy maker with a dual inflation–unemployment mandate (λ = 1). Bottom
panel: impulse responses of the inflation and unemployment gaps to a fed funds rate shock with 95 percent
confidence intervals.
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Figure 3: Slope policy in April 2010
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2010-M4 (in red and
blue) along with the 68 percent confidence bands uncertainty. Filled circles denote the forecasts conditional

of the policy choice P
e0
t , and empty circles denote the forecasts after the slope OPP adjustment δ̂∆,t, the

optimal adjustment for a policy maker with a dual inflation–unemployment mandate (λ = 1). Bottom
panel: impulse responses of the inflation and unemployment gaps to a slope policy shock with the 95 percent
confidence intervals.
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Figure 4: A sequence of OPP for Fed monetary policy (1990-2019)
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Notes: Top panels: the fed funds rate (“FFR”, left-panel) and the difference between the 10-year bond yield
and the fed funds rate (“Slope of yield curve”, right panel). The yellow shaded area denotes the zero-lower
bound (ZLB) period. Bottom panels: time series for the two elements of the subset OPP: the short-rate
OPP (labeled “OPP for current FFR”, left panel) and the slope OPP (labeled “OPP for slope of FFR path”,
right panel) over 1990-2019 for a policy maker with a dual inflation–unemployment mandate (λ = 1). The
grey areas capture impulse response and model uncertainty at 68% (darker shade) and 95% (lighter shade)
confidence. The three case studies are marked as 3 points: June 1990 (green), April 2008 (red) and April
2010 (blue).
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Table 1: OPP estimates for case studies

FFR 1990M6 2008M4 Slope 2010M4

δ̂i,t -0.11 -0.37 δ̂∆,t -0.90
[-0.3−0.5 ,0.2 0.5] [-0.6−0,9,-0.10.1] [-1.2−1.7,-0.6−0.1]

δ̂πi,t 0.7 0.1 δ̂π∆,t -0.1

δ̂ui,t -0.2 -0.4 δ̂u∆,t -1.3

Notes: Top row: δ̂i,t and δ̂∆,t denote the mean estimates for the fed funds OPP and the slope OPP for a

policy maker with a dual inflation–unemployment mandate (λ = 1). In brackets, the 68 percent confidence

intervals (95 percent in lower case) from impulse response and model uncertainty. Bottom rows: δ̂πi,t and δ̂π∆,t
denote resp. the mean short-rate OPP estimate and the slope OPP estimate for a strict inflation targeter

(λ = 0). Similarly, δ̂ui,t and δ̂u∆,t denote resp. the mean short-rate OPP estimate and the mean slope OPP

estimate for a strict unemployment targeter (λ→∞).
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