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1 Introduction

In a world admitting a fixed finite set of alternatives, an opinion is an ordered pair of
alternatives. Such a pair expresses the idea that one alternative is superior to another in
some sense, and an opinion aggregator assigns an aggregate relation on the set of alterna-
tives to every possible state of opinions. Our primary motivation is to extend the standard
model of social choice theory to a more general one in which no specific reference to agents
generating or holding opinions is needed. Many aggregators have been defined where opin-
ions reflect the goodness relations of agents. These are often assumed to satisfy additional
properties, such as completeness or transitivity, although such assumptions can be relaxed
to some extent with no harm. But not always. Consider, for example, the classical Borda
(1781) rule. This method assigns scores to the alternatives that are then used to establish
an aggregate ranking, and the way to reach these scores admits several equivalent descrip-
tions when opinions are derived from complete, transitive, and antisymmetric individual
relations. The score of an alternative can be derived by adding the weights assigned to the
positions it occupies in the goodness relations of the agents, or the number of times that
this alternative defeats another, or the size of the differences between the number of its
pairwise wins and losses. We shall argue that only the third formulation is adequate to use
in our general framework, and we will provide a characterization of it. In that case, it is
fortunate that the spirit of a classical rule can be fully maintained in the larger framework:
Borda’s method is well defined even if the origin of opinions is not attached to specific
individuals; moreover, it still satisfies properties that make it attractive and that we shall
spell out when characterizing it. Other rules are not so robust and cannot be properly ex-
tended unless individuals are well identified; this is the case, for example, for the remaining
scoring rules (Young, 1975) that assign different weights to alternatives according to their
positions in the individual rankings.

Clearly, Borda’s is not the only rule that can be defined without reference to specific
individuals. In particular, the simple majority rule advocated by Condorcet (1785) can
also be well defined in our context, along with others. And these two competing forms of
aggregating individual goodness relations also share another important characteristic that
we highlight. This is the observation that they both are based on the differences between the
number of wins and the number of losses that each alternative experiences when confronted
with others in pairwise contests. The notion that this difference is what really matters may,
on the surface, appear to be be debatable, but it is natural and unifying—and it precludes
the difficulties alluded to in the previous paragraph that emerge when only wins are taken
into consideration in defining the Borda rule. We prove that all difference-based rules share
a cancellation property that is, conceptually, familiar from earlier contributions such as that
of Young (1974). Our main results provide characterizations of the methods advocated by
Borda and by Condorcet, and they necessarily differ from the existing ones because one
can no longer use axioms that rely on the identification of those individuals who hold the
opinions to be aggregated. While the axiomatic treatment of majority is quite close to that
provided by May (1952) and reestablished by Sen (1970, Theorem 5*1), the characterization
of Borda’s rule is based on a significant departure from previous approaches that are valid
on smaller domains. It is also worth remarking that, although usually expressed in the
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context where individual relations are complete and transitive, known characterizations,
like those by Young (1974) or Nitzan and Rubinstein (1981), could be naturally extended
to avoid the use of these regularity conditions. Indeed, such properties are not needed when
applying our rules to the larger framework, and several interesting conclusions that we think
have not been previously emphasized are derived from this fact. Specifically, we show that
several important rules that only require the expression of partial information rather than
of full profiles on the part of the agents can be rephrased in our language that involves
opinions. Moreover, we prove that the plurality rule is equivalent to the use of Borda’s rule
or the Condorcet method of majority decision when translated into the opinion-aggregation
setting—and the same observation applies to approval voting and some of its variants.

In summary, we propose a new and larger framework to investigate aggregation rules,
we offer a characterization of the important class of difference-based rules, we observe that
the two most classical aggregation methods, which clearly belong to this large class, can
be naturally extended to and characterized in the framework, and we show that both are
equivalent to the plurality rule and to approval voting in the case where the individuals
who express opinions are identified but submit ballots that contain less information than
full profiles of individual goodness relations.

Although our analysis has some bearing on those cases where opinions reflect the good-
ness relations of agents in a society, it is not limited to them. In addition to this inter-
pretation, opinions can also be used to represent other forms of comparative assessments
emerging from different sources. For example, the opinion (x, y) may indicate that a book
x is better than another book y, an exam x handed in by one student deserves a better
grade than another exam y submitted by another student, a sports team x defeats another
team y, a statement x is more likely to be true than another statement y. Another inter-
esting application emerges when it comes to observed choices. If, in a repeated series of
observations, an object is chosen over another, it may very well be the case that several of
these acts of choice are performed by one and the same agent—and this is more difficult
to model if only a single goodness relation is to be assigned to each agent; note that it is
perfectly possible that the same agent chooses x over y in one instance and y over x in
another. Furthermore, there seems to be evidence that some cognitive processes operate by
aggregating different (and potentially conflicting) impulses; see, for instance, Jackson and
Yariv (2015, p. 151) for a discussion. Therefore, the opinion-based framework may serve as
an adequate model of decision-making that can be observed in the human brain. Clearly,
this list is by no means intended to be complete but serves as an indication of the broad
applicability of the notion of opinions.

A state of opinion is a function that identifies the number of times each opinion appears
in the state under consideration. The special case of the empty state of opinion—a function
that assigns the number zero to each possible opinion—is included as a possibility. We do
not assume anything about who expresses the opinions but note that we can accommodate
cases in which a single agent may express any finite number of opinions or none at all.
For instance, the standard case familiar from social choice theory where each agent can
express one and only one goodness relation is covered, and so is the possibility of each
agent merely passing judgment on a single pair of alternatives. But, as we already hinted
at, the notion of an opinion is more general because several opinions regarding the same
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pair of alternatives can be expressed by the same agent. A more detailed discussion of
the significance of states of opinion and their relationships to more conventional modeling
devices is provided once the requisite definitions have been introduced formally.

An opinion aggregator is a function that assigns a relation on the set of alternatives to
any possible state of opinion, with the convention that the universal equal-goodness relation
is associated with the empty state of opinion. The latter requirement is very natural: if no
opinion is expressed whatsoever, there are no grounds for favoring any alternative over any
other. The distinctive feature of our approach is that, unlike in the standard theories of
social choice or judgment aggregation, we do not impose initial assumptions about linkages
between the opinions that constitute a state. Nor do we require them, or the relations
into which they are aggregated, to possess a priori any form of coherence. In particular,
this implies that properties such as completeness or acyclicity are not required. See also
Fishburn (1984) and Chebotarev (1994), for instance, who dispense with the completeness
assumption but retain the basic framework phrased in terms of individual agents.

In the spirit of Borda and Condorcet, we characterize the Borda opinion aggregator and
the majority opinion aggregator as illustrations of how our framework of opinion aggrega-
tion can be put into practice. The ideas underlying Borda’s method diverge considerably
from the majoritarian ideas expressed by Condorcet. Both had supporters as well as detrac-
tors among their contemporaries. For instance, Morales (1797) was a committed advocate
of Borda, whereas Daunou (1803) favored Condorcet’s ideas and was rather critical of
Borda’s method. Daunou also formulated his own proposal of a voting method, which is
analyzed and characterized by Barberà, Bossert, and Suzumura (2021). Herrero and Vil-
lar (2021) examine a rule that represents a combination of the proposals by Borda and
Condorcet.

As elaborated on earlier, one motivation for the use of the Borda method and the ma-
jority rule is that they are widely applicable and can be defined in our general context
without the need for any further assumptions regarding the structure of the states of opin-
ion. A second important reason for our focus is that, in natural contexts where different
well-known rules can be defined, the two aggregators coincide with these rules. Consider,
for example, the case of plurality voting, and the kind of special states of opinion that
the balloting under this rule can generate. By declaring their top alternative, agents ex-
press their opinions between that alternative and any other. We show that if attention is
restricted to such states of opinion, the aggregate ranking according to the plurality rule
coincides with the aggregate ranking according to the Borda opinion aggregator and with
that according to the majority opinion aggregator. As another example, consider approval
voting where each agent submits a set of alternatives—namely, the set of approved-of alter-
natives. Approval voting ranks the alternatives on the basis of their approval scores—that
is, the number of times an alternative is approved of by an agent. A natural interpretation
is that such a ballot is represented by a state of opinions that consists of all opinions (x, y),
where x is approved of and y is not. Again, the ranking of the alternatives according to the
approval-voting rule coincides with the ranking according to the Borda opinion aggregator
and with that according to the majority opinion aggregator.

A third reason that motivates us is of a historical character. Both Borda’s (1781) own
description of his proposed voting method and its defense by Morales are very inspiring.
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In fact, the notion of an opinion appears in Morales’s (1797) Memoir on the Calculus of
Opinion—a contribution that was well-respected and appreciated not only by Borda himself
but several other contemporaries. The term opinion is used by Morales in the same way
as in our model but, in addition, Morales strongly defends this notion as a natural unit of
measurement, and he advocates the view that all opinions should count equally, no matter
who holds them. Borda’s presentation also refers to what he calls merit as a magnitude
admitting a definite and fixed value, unique up to affine scaling. In a similar manner, he
insists on the fact that the difference of merit between two successive alternatives in a
voter’s relation remains the same independently of the position they occupy. Of course,
we do not maintain this significance of differences as a starting point, but our axiomatic
characterization can be interpreted as a foundation for its ex-post defense.

We hope that the observations presented here will further underline the importance
and significance of the methods advocated by Borda and by Condorcet. As alluded to
earlier, these two methods can be defined within our framework, whereas many other
rules only make sense in the more limited context of classical social choice theory based
on profiles of individual orderings. That the Borda method does not require stringent
assumptions on individual relations is already pointed out by Young (1974, p. 51) who
states that his characterization of the classical Borda social choice function can be rephrased
in a way that applies to general profiles of individual relations that do not have to be
orderings. Likewise, Nitzan and Rubinstein (1981) characterize the Borda rule without
assuming individual goodness relations to be transitive. However, our model of collective
choice in terms of opinion aggregation has, to the best of our knowledge, not been examined
in the earlier literature. That Condorcet’s method of majority decision does not rely on
any properties of the individual inputs such as completeness or acyclicity is well-known and
follows immediately from inspecting the requisite criterion to rank the alternatives. Each
of these well-established methods of collective choice allows for a characterization in our
model of opinion aggregation. Both axiomatizations differ from analogous results in the
traditional setting in that no reference to individual agents is made here. There is, however,
a conceptual difference between our two characterizations. The majoritarian criterion only
uses information on x and y to rank any two alternatives x and y, to the exclusion of all
other alternatives. This feature is associated with a rather forceful neutrality property than
cannot but be present in some guise or other. As a consequence, our characterization of the
majority opinion aggregator shares the central features of May’s (1952) result—other than
being able to avoid all references to specific individuals. In contrast, our axiomatization
of the Borda opinion aggregator is, as we believe, considerably more novel and utilizes
the rich framework of opinion aggregation to its full advantage. See, for example, Young
(1974), Hansson and Sahlquist (1976), Nitzan and Rubinstein (1981), and Mihara (2017)
for characterizations of the Borda rule in the traditional setting.

We conclude this introduction with an informal description of the properties that we
employ in this paper. Our first formal result identifies all opinion aggregators that are
based on net wins—that is, on the difference between the number of wins and the number
of losses experienced by an alternative in a state of opinion. This is achieved by imposing a
pairwise cancellation axiom that is familiar from the earlier literature; for instance, Young
(1974) employs such a property in his characterization of the Borda social choice function.
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Intuitively, it requires that opposing opinions cancel each other out when determining the
aggregate relation.

Our first step in identifying a system of axioms that characterizes the Borda opinion
aggregator consists of strengthening the pairwise opinion cancellation alluded to in the
previous paragraph. In analogy to pairwise opinion cancellation, the property deals with
how a favorable opinion for an alternative x over a second alternative y is to be traded off
against a favorable opinion for y over a third alternative z. If x and z are one and the same
alternative, the pairwise variant of the property results. If these two alternatives differ,
however, the situation is more subtle: although a win is compensated by a loss as far as
alternative y is concerned, it must be taken into consideration that removing a favorable
opinion for x over y leaves x with one win less, and an analogous observation applies to the
removal of a loss of z against y. Thus, these changes must be accounted for in the version
of the axiom that also applies to distinct alternatives x and z. We stress that one of the
possible motivations of the axiom goes back to Morales’s (1797) view that all opinions
should count equally.

The second property we employ in axiomatizing the Borda opinion aggregator is an
opinion-monotonicity requirement. Loosely speaking, the axiom requires that if the situ-
ation of some undominated alternatives improves by adding a favorable opinion for each
of them, then they improve in the aggregate ranking while remaining equally good among
each other. A dual requirement is imposed on the response of the opinion aggregator to
the deterioration of alternatives that are not better than any of the others. This is an
intuitively appealing property that ensures a positive response to a change in a state of
opinion that unambiguously favors some of the alternatives. We note that the two axioms
just described exploit the structure of the entities being studied here—the states of opinion.

As mentioned earlier, we assume throughout that an opinion aggregator assigns the
universal equal-goodness relation to the empty state of opinion. The universal equal-
goodness relation is complete and transitive but, a priori, none of these coherence properties
need to be satisfied by other aggregate relations that emerge by applying the rule. Because
the Borda opinion aggregator generates only complete and transitive aggregate relations,
these requirements must either be imposed or implied by other axioms. It turns out that
completeness is a consequence of other conditions but transitivity is not. Therefore, the final
property we impose is that all relations generated by an opinion aggregator be transitive.

Turning to our characterization of the majority opinion aggregator, we note first that
this method always generates complete aggregate relations. Because this property is not
implied by our remaining axioms, it needs to be required explicitly for all states of opinion
other than the empty state. The other two axioms employed parallel those of May (1952).
The first is opinion neutrality, the opinion-aggregation variant of May’s (1952) well-known
strengthening of Arrow’s (1951; 1963) independence of irrelevant alternatives, and the
second is a suitably formulated version of opinion responsiveness.

2 Opinions and opinion aggregators

Consider a finite and non-empty set X of alternatives. For distinct x, y ∈ X, an opinion
on x and y is an ordered pair (x, y) ∈ D = X2 \ {(z, z) | z ∈ X}. The first element in the
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pair is the winner and the second is the loser in that opinion. A natural interpretation is
that an opinion (x, y) represents the view that x is better than y according to an agent.
However, we do not assign an individual label to an opinion, which means that if two
opinions (x, y) and (z, w) are observed, they may reflect the views of a single agent or of
two distinct agents. It is irrelevant which of these two options applies—all opinions are
treated impartially, no matter who holds them.

The absence of individuals assigned to observed opinions may be seen as a disadvantage
of our approach. A possible argument in this vein is that this feature prevents us from
disqualifying or discounting the opinions of agents whose goodness relations are inconsistent
in the sense that their opinions display violations of transitivity, for instance. Our response
to this concern is that we are somewhat reluctant to advocate an asymmetric treatment of
the agents, depending on a notion of perceived inconsistency or irrationality. For example,
violations of transitivity are well-documented in the psychology literature because they
may arise from thresholds of perception; see, for instance, Armstrong (1939), Luce (1956),
Luce and Raiffa (1957), and Fishburn (1970) for detailed discussions. Thus, phenomena of
this nature do not necessarily indicate a lack of consistency or coherence in the views of
an agent. In addition, the observation that seemingly contradictory opinions may originate
from separate brain impulses provides a further argument against the dismissal of opinions
on the grounds of what may, at first sight, appear to constitute inconsistent behavior.

A state of opinion is a function o: D → N0, where o(x, y) is the number of times the
opinion (x, y) ∈ D appears in the state of opinion o. The cardinality |o| of a state of opinion
o ∈ O is the total number of opinions that appear in o, that is, |o| =

∑
(x,y)∈D o(x, y). The

empty state of opinion o∅ ∈ O is the function defined by o∅(x, y) = 0 for all (x, y) ∈ D and
its cardinality is equal to zero.

States of opinion are very general in that they can capture scenarios that are difficult
to model in the more traditional individual-profile framework. For instance, suppose we
can repeatedly observe individual choices. This induces a state of opinion o in which each
choice of an alternative x in the presence of another alternative y is represented by an
opinion (x, y) in o. It is, of course, possible that the same pair (x, y) emerges multiple
times—and that the pair (y, x) is also observed in other acts of choice. The formulation
in terms of opinions has an advantage over the profile model because of its increased
flexibility. It is perfectly possible to accommodate seemingly contradictory choices such
that the same agent chooses x over y in one observation and y over x in another. While
it is possible to deal with such a situation in a profile setting by declaring x and y equally
good according to the goodness relation of the individual in question (thus making both
alternatives possible choices), this move requires the imposition of an additional assumption
that is not generated by the observed behavior itself. In contrast, a state of opinion can
easily accommodate the simultaneous presence of (multiple copies of) both (x, y) and (y, x)
because no explicit reference to individuals is required. In line with Morales (1797), all
opinions are treated equally, no matter who holds them—and this is the fundamental equal-
treatment assumption that underlies this approach. We note that this form of impartiality
is reflected in the definition of the aggregation procedure based on the Borda rule and in
one of our fundamental axioms that we focus on in this paper.

As already alluded to in the introduction, there is some evidence that cognitive processes
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aggregate different (and potentially conflicting) impulses in the brain; see, for instance,
Jackson and Yariv (2015) for details. In an opinion-based framework, this phenomenon is
easily accommodated because nothing prevents us from interpreting the joint presence of
the pairs (x, y) and (y, x) as being two conflicting impulses of this nature experienced by
one and the same individual. This is not possible in the context of individual goodness
relations: by definition of a betterness relation, an alternative x is better than an alternative
y if x is at least as good as y but not the reverse. As an immediate consequence, it is not
possible for x to be better than y and, at the same time, for y to be better than x from
the viewpoint of the same individual.

We now turn to the aggregation of opinions into an aggregate relation. Let B be the
set of all binary relations on X. An opinion aggregator is a function f :O → B such that
f(o∅) = X2. Thus, f(o) is the aggregate relation assigned to the state of opinion o ∈ O,
and the universal equal-goodness relation X2 on X is associated with the empty state of
opinion o∅. We use P (f(o)) and I(f(o)) to denote the asymmetric and symmetric parts of
the relation f(o).

Two opinion aggregators are of particular interest in this paper. The Borda opinion
aggregator fB ranks alternatives by comparing the differences between the numbers of wins
and losses in a state of opinion. For a state of opinion o ∈ O and an alternative x ∈ X,
the Borda opinion score b(x; o) is defined as

b(x; o) =
∑

z∈X\{x}

[o(x, z)− o(z, x)].

The Borda opinion aggregator is obtained by letting

(x, y) ∈ fB(o) ⇔ b(x; o) ≥ b(y; o)

for all o ∈ O and for all x, y ∈ X.
In the context of goodness aggregation, the Borda rule is a special case of a scoring

rule (Young, 1975). As already observed by Young (1974), the Borda rule sets itself apart
from other scoring rules because it is well-defined even if individual goodness relations
are neither complete nor transitive. Closely related to the scoring rules are the positional
voting functions analyzed in Gärdenfors (1973); see also Bossert and Suzumura (2020).

Our definition of the Borda opinion aggregator is analogous to the definition of the
traditional Borda (1781) rule for more structured voting rules that depend on individual
antisymmetric orderings as their informational basis. In this setting, the Borda rule can
equivalently be described by simply comparing the number of wins rather than the dif-
ference between the number of wins and the number of losses. This is the case because
completeness and antisymmetry together imply immediately that the number of losses is
uniquely determined once the number of wins is known. However, once completeness is no
longer assumed (as is the case in our framework), these two variants can differ dramatically.
To illustrate, consider a situation with a set of three alternatives given by X = {x, y, z}.
Suppose a state of opinion o ∈ O is given by

o(x, z) = o(y, z) = 1 and o(z, y) = 2
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and the remaining values of o are equal to zero. According to our definition, the Borda
opinion score for each alternative is given by the requisite difference between the number
of wins and the number of losses so that, in particular, b(x; o) = 1 − 0 = 1 and b(y; o) =
1 − 2 = −1. Thus, according to the Borda opinion aggregator, (x, y) ∈ P (fB(o))—that
is, x is better than y. In contrast, if we were to use the number of wins rather than the
difference between the numbers of wins and losses, x and y would be ranked as equally good
for the state of opinion o because both record a number of wins equal to one. This latter
relative ranking seems difficult to reconcile with the spirit of the Borda method because
y is beaten two times, whereas x does not suffer any such losses. The use of the Borda
opinion aggregator as defined above avoids conclusions of this nature.

The majority opinion aggregator fM is defined by letting

(x, y) ∈ fM(o) ⇔ o(x, y) ≥ o(y, x)

for all o ∈ O and for all x, y ∈ X.
As illustrated above, it is of crucial importance to employ the difference between the

number of wins and the number of losses to determine the Borda score of an alternative;
restricting attention to the number of wins leads to conclusions that go squarely against the
spirit of Borda’s method. We note that the majority opinion aggregator is also based on the
difference between the number of wins and the number of losses; this follows immediately
from rewriting its definition as

(x, y) ∈ fM(o) ⇔ o(x, y)− o(y, x) ≥ 0

for all o ∈ O and for all x, y ∈ X. We consider this exclusive reliance on the differences
between wins and losses to be the cornerstone of our approach to opinion aggregation and
provide a foundation of it by means of an intuitively appealing equivalence result the scope
of which extends well beyond the methods of Borda and of Condorcet. In particular, the
following theorem illustrates how an adaptation of a well-established cancellation condition
(see, for instance, Young, 1974) can be used to characterize a general class of opinion
aggregators that are based on the differences between wins and losses—or, in other words,
on net wins.

An opinion aggregator f is based on net wins if, for all o, o′ ∈ O,

o′(v, w)− o′(w, v) = o(v, w)− o(w, v) for all (v, w) ∈ D

implies
f(o′) = f(o).

The class of opinion aggregators that are based on net wins are characterized by means
of a pairwise cancellation axiom. The condition requires that if there is an alternative y
who loses to another alternative x according to one opinion in a state of opinion o, and
wins against x according to another opinion in o, the two opinions (x, y) and (y, x) cancel
each other out when determining the aggregate relation for the state of opinion under
consideration. That is, if the numbers of instances of (x, y) and of (y, x) are reduced by
one and no other changes occur, the aggregate relations before and after the elimination of
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these two opinions are identical. This is plausible because only x and y are affected by the
change and the win of x over y is canceled out by the loss of x against y. An analogous
property phrased in the context of profile aggregation is well-established in the literature;
it is, for instance, employed by Young (1974) in his characterization of the Borda rule.

Pairwise opinion cancellation. For all o, o′ ∈ O and for all (x, y) ∈ D, if o′(x, y) =
o(x, y)−1 and o′(y, x) = o(y, x)−1 and o′(v, w) = o(v, w) for all (v, w) ∈ D\{(x, y), (y, x)},
then

f(o′) = f(o).

We obtain

Theorem 1 An opinion aggregator f satisfies pairwise opinion cancellation if and only if
f is based on net wins.

Proof. Suppose first that f is based on net wins. Let o, o′ ∈ O and (x, y) ∈ D be
such that o′(x, y) = o(x, y) − 1 and o′(y, x) = o(y, x) − 1 and o′(v, w) = o(v, w) for all
(v, w) ∈ D \ {(x, y), (y, x)}. It follows immediately that

o′(x, y)− o′(y, x) = o(x, y)− 1− o(y, x) + 1 = o(x, y)− o(y, x)

and
o′(v, w)− o′(w, v) = o(v, w)− o(w, v) for all (v, w) ∈ D \ {(x, y), (y, x)}

and, because f is based on net wins, we obtain f(o′) = f(o) so that pairwise opinion
cancellation is satisfied.

Conversely, suppose that f satisfies pairwise opinion cancellation and that

o′(v, w)− o′(w, v) = o(v, w)− o(w, v) for all (v, w) ∈ D. (1)

Define the state of opinion o ∈ O by letting

o(v, w) = o(v, w)− o(w, v) and o(w, v) = o(w, v)− o(w, v) = 0

for all (v, w) ∈ D such that o(v, w)− o(w, v) ≥ 0. By (1), it follows that

o(v, w) = o′(v, w)− o′(w, v) and o(w, v) = o′(w, v)− o′(w, v) = 0

for all (v, w) ∈ D such that o′(v, w) − o′(w, v) = o(v, w) − o(w, v) ≥ 0. Applying pairwise
opinion cancellation o(w, v) times for each of the requisite pairs (w, v) in the case of o, and
o′(w, v) times for each of the requisite pairs (w, v) in the case of o′, it follows that

f(o) = f(o) and f(o) = f(o′)

so that
f(o′) = f(o)

and it follows that f is based on net wins.
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Another special case of apparent interest is obtained if the criterion employed in the
comparison of the members of X is additively separable, without going all the way to
the fully additive structure of the Borda opinion aggregator fB. However, the objective
of obtaining a sound characterization of such a class is likely to prove elusive, owing to
the discrete nature of the variables involved; see the seminal contribution of Kraft, Pratt,
and Seidenberg (1959). Their observations illustrate why properties such as separability or
independence that can successfully be applied in a continuum fail to generate additively
separable structures if the domain under consideration is a finite set. The difficulties
encountered in the present setting are of an analogous nature, which is why we do not
provide an axiomatization in this spirit.

3 Borda and Condorcet

This section is devoted to axiomatizations of the Borda opinion aggregator and of the
majority opinion aggregator. These results are of interest in their own right and serve to
illustrate how our proposed framework of opinion aggregation can successfully be employed.

We begin with the Borda aggregator. Although the Borda method has been character-
ized in numerous previous contributions, our axiomatization distinguishes itself in that it
relies on axioms that are specifically relevant in the context of states of opinion.

The first property that we use in our characterization of the Borda opinion aggregator
is largely motivated by Morales’s (1797) maxim that all opinions count equally, no matter
who holds them. To begin with, this view is reflected in the axiom of pairwise opinion can-
cellation defined in the previous section—which reappears as a special case of the stronger
axiom of opinion cancellation. But there also is a second (more subtle) possibility of ex-
pressing the notion of equally-valued opinions. Consider a situation in which an alternative
y loses to an alternative x in one opinion and y wins against an alternative z in another
opinion but, unlike in the pairwise case, the alternatives x and z differ. Reducing the
numbers of occurrences of the two opinions (x, y) and (y, z) by one leaves x with one win
less and the same number of losses as before and, analogously, z ends up with the number
of losses reduced by one and an unchanged number of wins. This situation can be dealt
with by adding one instance of the opinion (x, z). In this manner, the numbers of wins and
losses for x and z are preserved so that equality of the two resulting aggregate relations
can again be required. The second type of cancellation property just described represents
a distinguishing feature of the Borda opinion aggregator, whereas the pairwise version is of
more universal appeal.

Opinion cancellation. For all o, o′ ∈ O and for all x, y, z ∈ X, if o′(x, y) = o(x, y) − 1
and o′(y, z) = o(y, z) − 1 and o′(v, w) = o(v, w) for all (v, w) ∈ D \ {(x, y), (y, x), (x, z)}
and (o′(x, z) = o(x, z) + 1 if x 6= z), then

f(o′) = f(o).

If x = z, the axiom of pairwise opinion cancellation familiar from the previous section
results. We note that the formulation of opinion cancellation relies on the notion of a
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state of opinion. In the traditional profile-based setting, it may not be possible to treat
instances of betterness in isolation, as we are able to do if the entities under consideration
are opinions.

The second property employed in our characterization of the Borda opinion aggregator
is a natural monotonicity requirement the scope of which is restricted to an important
subclass of states of opinion. The members of this class distinguish themselves from other
states of opinion in that they allow us to partition the set of alternatives into three natural
groups. A state of opinion o ∈ O is trichotomous if each alternative in X is either (i) a
winner in at least one opinion in o and not a loser in any opinion in o; or (ii) not a winner in
any opinion in o and a loser in at least one opinion in o; or (iii) not a winner and not a loser
in any opinion in o. Thus, for a trichotomous state of opinion o, the set of alternatives can
be partitioned into three groups, namely, (i) those who sometimes win and never lose; (ii)
those who never win and sometimes lose; and (iii) those who never win and never lose. To
provide a precise definition of the set T ⊆ O of trichotomous states of opinion, let o ∈ O
be a state of opinion. Define W (o) ⊆ X as the set of all alternatives x ∈ X such that

{z ∈ X \ {x} | o(x, z) > 0} 6= ∅ and {z ∈ X \ {x} | o(z, x) > 0} = ∅.

Analogously, let L(o) ⊆ X be the set of all alternatives x ∈ X such that

{z ∈ X \ {x} | o(x, z) > 0} = ∅ and {z ∈ X \ {x} | o(z, x) > 0} 6= ∅.

Finally, let U(o) ⊆ X be the set of all alternatives x ∈ X such that

{z ∈ X \ {x} | o(x, z) > 0} = {z ∈ X \ {x} | o(z, x) > 0} = ∅.

The set T of trichotomous states of opinion is defined as the set of all states of opinion
o ∈ O such that

X = W (o) ∪ L(o) ∪ U(o).

Therefore, in a trichotomous state of opinion, there are no alternatives that sometimes
win and sometimes lose. This implies that, for such a state of opinion o ∈ T , the set of
alternatives can be partitioned unambiguously into the set of winners given by W (o), the
set of losers given by L(o), and the set of unclassified alternatives given by U(o). The
empty state of opinion o∅ is a trichotomous state of opinion. This is the case because, by
definition, W (o∅) = L(o∅) = ∅ and U(o∅) = X, which immediately implies

X = ∅ ∪ ∅ ∪X = W (o∅) ∪ L(o∅) ∪ U(o∅).

To illustrate the first part of the following axiom, consider any trichotomous state of
opinion o and the aggregate relation f(o) that corresponds to o according to an opinion
aggregator f . Furthermore, consider any set of alternatives Y ⊆ W (o) ∪ U(o) such that
all members of Y are best in W (o) ∪ U(o) according to the relation f(o). We note that
elements of U(o) need not be included in Y ; in fact, unless o = o∅, the entire set Y will be
composed of alternatives in W (o) when we apply the axiom in our proof. The reason why
we include elements of U(o) in the set of possible alternatives in Y is to cover the case in
which o = o∅ because, for the (trichotomous) empty state of opinion o∅, the set W (o∅) is
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empty. Now define a new trichotomous state of opinion o′ by adding one win for each of
the members of Y . Intuitively, the members of Y are alternatives that are best according
to f(o) among those in W (o) ∪ U(o), and the change from the state of opinion o to the
state of opinion o′ further improves their standing by adding another win for each of them.

We require such a move to have three consequences that we consider very intuitive.
First, note that the members of Y are equally good according to f(o) because all of them
are best elements in W (o)∪U(o) according to this relation. Adding one win for each of them
is assumed not to change their relative positions and, therefore, it seems highly plausible
to require that all alternatives in Y be equally good according to f(o′) as well. Second,
an additional win is assigned to the members of Y and no one else receives any additional
wins in the new state of opinion. Thus, it appears only natural to require that the position
of those in Y relative to those who are winners or unclassified alternatives in the new state
of opinion o′ has improved. Third, the winners and the unclassified alternatives in the new
state of opinion o′ who are not in Y did not experience any change in their numbers of
wins or losses. We therefore require that their relative rankings in the aggregate relation
remain unchanged as a consequence of the move from o to o′.

The second part of the monotonicity axiom is dual. Instead of adding a win to a set
of alternatives that are best elements in W (o) ∪ U(o) according to the aggregate relation
f(o) that corresponds to a trichotomous state of opinion, we add one loss to each member
of a subset of the worst elements in L(o) ∪ U(o) and require the three consequences that
are analogous to those detailed above.

Opinion monotonicity. (a) For all o, o′ ∈ T and for all Y ⊆ W (o)∪U(o) such that (y, x) ∈
f(o) for all y ∈ Y and for all x ∈ W (o)∪U(o), if for all y ∈ Y , there exists zy ∈ L(o)∪U(o)
with o′(y, zy) = o(y, zy)+1 and o′(v, w) = o(v, w) for all (v, w) ∈ D \{(y, zy) | y ∈ Y }, then

(y, y′) ∈ f(o′) for all y, y′ ∈ Y

and
(y, x) ∈ P (f(o′)) for all y ∈ Y and for all x ∈ W (o′) ∪ U(o′) \ Y

and
(x, x′) ∈ f(o′) ⇔ (x, x′) ∈ f(o) for all x, x′ ∈ W (o′) ∪ U(o′) \ Y.

(b) For all o, o′ ∈ T and for all Z ⊆ L(o) ∪ U(o) such that (x, z) ∈ f(o) for all
z ∈ Z and for all x ∈ L(o) ∪ U(o), if for all z ∈ Z, there exists yz ∈ W (o) ∪ U(o) with
o′(yz, z) = o(yz, z) + 1 and o′(v, w) = o(v, w) for all (v, w) ∈ D \ {(yz, z) | z ∈ Z}, then

(z, z′) ∈ f(o′) for all z, z′ ∈ Z

and
(x, z) ∈ P (f(o′)) for all z ∈ Z and for all x ∈ L(o′) ∪ U(o′) \ Z

and
(x, x′) ∈ f(o′) ⇔ (x, x′) ∈ f(o) for all x, x′ ∈ L(o′) ∪ U(o′) \ Z.

Although the above axiom may appear to be somewhat complex, its underlying idea as
outlined prior to its formal statement is very simple and intuitive. The relatively heavy

12



notation results from the necessity of having to precisely identify the scopes of the premise
and of each implication. As is the case for the opinion-cancellation axiom, it is the flexibility
of the state-of-opinion setting that allows us to phrase the monotonicity property in terms
of trichotomous states. This is a feature that we think is worth emphasizing when it comes
to comparing our approach with earlier contributions.

To motivate the final axiom that we employ, we note that the relation fB(o) is complete
and transitive for all o ∈ O. It turns out that completeness follows from our remaining
axioms but transitivity does not so that we have to impose the latter property explicitly.
Because the universal equal-goodness relation is transitive, the empty state of opinion is
already taken care of by the definition of an opinion aggregator and can thus be excluded
in the following definition.

Opinion transitivity. For all o ∈ O \ {o∅}, f(o) is transitive.

The only opinion aggregator that satisfies all of the three axioms introduced above is
the Borda opinion aggregator fB.

Theorem 2 An opinion aggregator f satisfies opinion cancellation, opinion monotonicity,
and opinion transitivity if and only if f = fB.

Proof. ‘If.’ That opinion cancellation is satisfied is a consequence of the definition of the
Borda opinion scores as the difference between the total numbers of wins and losses in a
state of opinion.

To see that opinion monotonicity is satisfied, note first that the addition of a win
(loss) to the members of a set of best alternatives in W (o) ∪ U(o) (worst alternatives in
L(o)∪U(o)) increases (decreases) their Borda opinion scores by one and, because they were
equally good before this change as a consequence of all of them being best (worst) elements
in the respective set, they continue to be equally good after the change. Moreover, any
winners (losers) whose Borda opinion scores do not increase (decrease) and all unclassified
alternatives must be worse (better) than those whose scores increase (decrease); again,
this follows from the definition of best (worst) elements. Finally, all winners (losers) and
unclassified alternatives whose Borda opinion scores are unchanged must be ranked in the
same way they are ranked according to the original profile.

That the Borda opinion aggregator satisfies opinion transitivity is immediate.

‘Only if.’ Suppose that f is an opinion aggregator that satisfies the axioms of the
theorem statement. We proceed in three steps, each of which corresponds to one of our
three axioms.

First, we employ opinion cancellation to establish that we can, without loss of generality,
focus on trichotomous states of opinion. This allows us to restrict attention to trichotomous
states in the remaining two steps.

The second step applies the axiom of opinion monotonicity (which is defined for tri-
chotomous states of opinion o ∈ T ) to identify the restriction of the aggregate ranking to
the alternatives in W (o) ∪ U(o). Starting from the (trichotomous) empty state of opinion,
we iteratively increase the number of wins for each alternative in W (o) until we reach the
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number that corresponds to its Borda opinion score in o. In accordance with the require-
ments of opinion monotonicity, the alternatives that receive an additional win in a given
round are best within the union of the set of winners and the set of unclassified alterna-
tives according to the previous round. Moreover, the corresponding losses are successively
assigned to the elements of L(o) in a way such that each member of L(o) experiences at
least one loss when the iteration terminates. Upon conclusion of the process, the Borda
opinion scores are obtained for the alternatives in W (o) ∪ U(o) and, by invoking opinion
monotonicity in each round, it follows that these alternatives must be ranked according to
the Borda opinion aggregator. This procedure takes care of the alternatives in W (o)∪U(o)
but not necessarily of those in L(o) because the one-by-one augmentation may not be in
accordance with the distribution of losses within L(o). For this reason, a dual argument
that applies to the alternatives in L(o) ∪ U(o) is invoked.

The third and final step then applies opinion transitivity to ensure that the alternatives
in W (o) are indeed better than those in L(o).

Step 1. Let o ∈ O be a state of opinion. We show that there exists a trichotomous state
of opinion o′ ∈ T such that all Borda opinion scores are the same in o and in o′ and, in
addition, f(o′) = f(o).

If o is itself trichotomous, it follows trivially that f(o′) = f(o) with o′ = o, and all
Borda opinion scores are identical for o and for o′.

If o is not trichotomous, there exist three alternatives x, y, z ∈ X such that o(x, y) > 0
and o(y, z) > 0.

If x = z, we can apply opinion cancellation to conclude that the aggregate ranking f(o)
is the same as that corresponding to the state of opinion o′ that is obtained from o by
reducing o(x, y) and o(y, x) by one. This leaves the Borda opinion scores of all alternatives
unchanged.

If x 6= z, opinion cancellation allows us to conclude that the aggregate ranking f(o) is
the same as that obtained for the state of opinion o′ that is obtained from o by reducing
o(x, y) and o(y, z) by one, and increasing o(x, z) by one. Again, this leaves the Borda
opinion scores of all alternatives unchanged.

If the state of opinion o′ is trichotomous, we are done. If not, we can apply the above-
described procedure as many times as required to arrive at a trichotomous state of opinion;
this iterative process is well-defined and converges because all states of opinion are finite
and, in each step, the cardinality of the requisite state of opinion is reduced. Thus, for any
state of opinion o, there exists a trichotomous state of opinion o′ such that b(x; o′) = b(x; o)
for all x ∈ X and f(o′) = f(o). Therefore, once it is established that f(o′) = fB(o′), it
follows immediately that f(o) = fB(o). As a consequence, it is sufficient to establish in the
remainder of the proof that the Borda opinion aggregator must apply to all trichotomous
states of opinion.

Step 2. Our next step proceeds by using opinion monotonicity to prove that, for any
trichotomous state of opinion o ∈ T , any two alternatives in the set W (o) ∪ U(o) must
be ranked by f(o) according to their Borda opinion scores. Note that, for any x ∈ W (o),
this score is given by the number o(x, z) for all z ∈ L(o) such that (x, z) ∈ o; this follows
immediately because no opinions of the form (z, x) can be in a trichotomous state of opinion
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o if x ∈ W (o).
First, note that, by definition of an opinion aggregator, we have f(o∅) = X2 = fB(o∅).

This immediately establishes the claim for the case o = o∅.
Now suppose that o ∈ T \{o∅}. Because o is a trichotomous state of opinion that is not

equal to the empty state of opinion, it follows that W (o) is non-empty. Starting out with
the empty state of opinion o0 = o∅ ∈ T , we first construct a trichotomous state of opinion
o1 by setting o1(y, z1

y) = o0(y, z1
y)+1 for all y ∈ Y 0 = W (o). The alternatives z1

y ∈ L(o) are
chosen so that as many elements in L(o) as possible are assigned at least one loss; clearly,
this assignment need not be unique but any one of them will do for our purpose because
we focus on the elements of W (o) ∪ U(o) in this iteration. No other changes are made
when moving from o0 = o∅ to o1. By definition, W (o1) = W (o). We note that all elements
in Y 0 = W (o1) = W (o) are best elements in W (o∅) ∪ U(o∅) according to f(o∅) = X2 by
definition of the universal equal-goodness relation. Part (a) of opinion monotonicity implies
that

(y, y′) ∈ f(o1) for all y, y′ ∈ Y 0 = W (o1) = W (o)

and
(y, x) ∈ P (f(o1)) for all y ∈ Y 0 and for all x ∈ W (o1) ∪ U(o1) \ Y 0

and
(x, x′) ∈ f(o1) ⇔ (x, x′) ∈ f(o) for all x, x′ ∈ W (o1) ∪ U(o1) \ Y 0.

By definition, this means that all alternatives in W (o1) ∪ U(o1) are ranked according to
their Borda opinion scores for the state of opinion o1.

If b(y; o) = 1 for all y ∈ W (o1) = W (o), our choice of the z1
y guarantees that L(o1) =

L(o) and, together with the equality W (o1) = W (o), it follows that U(o1) = U(o) by
definition of a trichotomous state of opinion. By construction, the Borda opinion score of
each alternative in W (o1) ∪ U(o1) = W (o) ∪ U(o) for o1 is identical to its Borda opinion
score for o. Thus, it follows that the alternatives in W (o1) ∪ U(o1) = W (o) ∪ U(o) are
ranked according to their Borda opinion scores not only for the state of opinion o1 but also
for o, as was to be established.

If there exists a set Y 1 ⊆ W (o1) = W (o0) of alternatives y such that b(y; o) ≥ 2, the
above procedure can be repeated with a trichotomous state o2 in place of o1, with o1 in
place of o0, with Y 1 in place of Y 0, and with o2(y, z2

y) = o1(y, z2
y) + 1 for all y ∈ Y 1,

where the z2
y are elements of L(o) chosen so that as many elements of L(o) as possible

are assigned at least one loss when combining these losing alternatives with those selected
in the previous round of the iteration. Again, it follows that W (o2) = W (o1) = W (o)
and that the trichotomous state of opinion o2 that we reach is such that all alternatives
in Y 1 ⊆ W (o2) = W (o1) = W (o) are best elements in W (o1) ∪ U(o1) according to f(o1).
Using opinion monotonicity, it follows that all alternatives in W (o2) ∪ U(o2) are ranked
according to their Borda opinion scores for the state of opinion o2.

If b(y; o) ≤ 2 for all y ∈ W (o2) = W (o1) = W (o), the choice of the z1
y and the z2

y

guarantees that L(o2) = L(o) and, again, U(o2) = U(o). As in the previous round, the
Borda opinion score of each alternative in W (o2)∪ U(o2) = W (o)∪ U(o) for o2 is identical
to its Borda opinion score for o, and it follows that the alternatives in W (o2) ∪ U(o2) =
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W (o) ∪ U(o) are ranked according to their Borda opinion scores not only for the state of
opinion o2 but also for o.

If there exists a set Y 2 ⊆ W (o2) = W (o1) = W (o) of alternatives y such that b(y; o) ≥ 3,
our finiteness assumption implies that this iteration can be continued as many times as
required until we reach a trichotomous state of opinion oK with K ≥ 3 such that each
alternative in W (oK) ∪ U(oK) = W (o) ∪ U(o) has the same Borda opinion score for oK

and for o, and these alternatives are ranked according to their Borda opinion scores for the
state of opinion o.

Using part (b) of opinion monotonicity instead of part (a), the above argument can
be applied to conclude that any two alternatives in L(o) ∪ U(o) must be ranked by f(o)
according to their Borda opinion scores for the state of opinion o.

Step 3. Because f(o) is transitive by opinion transitivity, it follows that all alternatives in
W (o) are ranked as better than all alternatives in L(o) which, because the Borda opinion
scores of all elements of W (o) are positive and the scores of all elements of L(o) are nega-
tive, corresponds to the ranking according to the Borda opinion aggregator as well. This
completes the proof.

To see that the axioms employed in the above theorem are independent, consider the
following examples.

Example 1 The opinion aggregator of the first example assigns different weights to wins
and to losses in calculating opinion scores, an unequal treatment that leads to violations of
opinion cancellation. Let b′(x; o) = 2

∑
y∈X\{x} o(x, y)−

∑
z∈X\{x} o(z, x) for all o ∈ O and

for all x ∈ X. Define f 1 by letting

(x, y) ∈ f 1(o) ⇔ b′(x; o) ≥ b′(y; o)

for all o ∈ O and for all x, y ∈ X. This opinion aggregator violates opinion cancellation
and satisfies opinion monotonicity and opinion transitivity.

Example 2 The opinion aggregator of the second example declares all alternatives to be
equally good, independent of the state of opinion; this leads to violations of opinion mono-
tonicity. Let f 2(o) = X2 for all o ∈ O, that is, f 2 assigns the universal equal-goodness
relation to all states of opinion. The opinion aggregator f 2 violates opinion monotonicity
and satisfies opinion cancellation and opinion transitivity.

Example 3 The opinion aggregator of the final example ranks alternatives with a negative
Borda opinion score as better than alternatives with a positive score and performs all other
comparisons according to the Borda opinion aggregator, thereby generating violations of
transitivity. Formally, define the opinion aggregator f 3 by letting, for all o ∈ O, (x, y) ∈
P (f 3(o)) for all x, y ∈ X such that b(x; o) < 0 and b(y; o) > 0, and

(x, y) ∈ f 3(o) ⇔ b(x; o) ≥ b(y; o)

for all remaining x, y ∈ X. The opinion aggregator f 3 violates opinion transitivity and
satisfies opinion cancellation and opinion monotonicity.
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A few remarks on some earlier characterization of Borda’s method are in order at this
point. Young’s (1974) seminal axiomatization employs a variant of pairwise cancellation,
in addition to the well-known neutrality axiom, a consistency condition that ensures that
different sets of voters who are in agreement can be merged without changing the chosen
alternatives, and a faithfulness property requiring that social and individual choice are
identical in one-person societies. The setup is that of profile aggregation with a variable
population—a social choice function must be capable to select candidates for different sets
of voters. Nitzan and Rubinstein (1981) work within an analogous framework, except that
they consider social aggregation mechanisms that generate aggregate rankings rather than
chosen alternatives. Nitzan and Rubinstein (1981) mostly employ axioms that are anal-
ogous to those of Young (1974) but they are formulated in terms of aggregate rankings
instead of choices. An exception is their monotonicity property, a positive-responsiveness
requirement that they use in place of Young’s (1974) faithfulness axiom. Nitzan and Ru-
binstein (1981) do not impose transitivity on individual goodness relations. It is worth
mentioning in this context that, although Young (1974) proves his result for individual an-
tisymmetric orderings, he explicitly says on page 43 of his paper that this assumption can
be relaxed. In particular, Young (1974, p. 51) states that his results “can also be proved
in much the same way if individual voters are allowed to express their assessment of the
alternatives by weak orders, or, even more generally, by partial, antisymmetric relations.”
Among several others, a recent axiomatization of the Borda method is established by Mi-
hara (2017) who also focuses on rules that generate aggregate orderings from profiles of
individual orderings. In his model, the population is fixed and, therefore, axioms such as
Young’s (1974) consistency and faithfulness do not apply. The axioms employed by Mihara
(2017) are a weakening of neutrality, a positional cancellation condition, and positive re-
sponsiveness. All of the above results are phrased in terms of individual goodness relations.
We note that the monotonicity axiom employed in our characterization as well as the part
of cancellation that goes beyond the pairwise restriction are specifically formulated for the
opinion-aggregation framework and, therefore, there is a considerable difference between
our result and these earlier axiomatizations. Of particular note is the observation that our
opinion cancellation property permits us to phrase the monotonicity restriction exclusively
in terms of trichotomous states of opinion, an attribute of our characterization that does
not have a parallel in the traditional approaches.

We now move on to a characterization of the opinion aggregator that is based on Con-
dorcet’s method of majority decision. Compared to our axiomatization of Borda’s method,
this result is more closely related to a well-known earlier result provided by May (1952). A
possible explanation of this difference between the two opinion aggregators considered here
is that the majority rule discards much of the information available in a state of opinion
(or, in the traditional setting, the information available in a profile of individual goodness
relations) and, as a consequence, cannot but rely on a strong notion of neutrality.

As alluded to earlier, we have to impose completeness of the aggregate relation because
it does not follow from the remaining axioms (except in the case of the empty state of
opinion) and, therefore, the first property used in our characterization of the majority
opinion aggregator is the axiom of opinion completeness.
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Opinion completeness. For all o ∈ O \ {o∅}, f(o) is complete.

The remaining two axioms parallel the properties of neutrality and responsiveness used
by May (1952) in his characterization of the majority rule.

Opinion neutrality. For all o, o′ ∈ O and for all x, y, z, w ∈ X, if o(x, y) = o′(z, w) and
o(y, x) = o′(w, z), then

(x, y) ∈ f(o) ⇔ (z, w) ∈ f(o′) and (y, x) ∈ f(o) ⇔ (w, z) ∈ f(o′).

Opinion responsiveness. For all o, o′ ∈ O and for all x, y ∈ X, if (x, y) ∈ f(o) and
o′(x, y) = o(x, y) + 1 and o′(z, w) = o(z, w) for all (z, w) ∈ D \ {(x, y)}, then

(x, y) ∈ P (f(o′)).

The following theorem characterizes the majority opinion aggregator fM . Clearly, the
result is inspired by and quite similar to May’s (1952) original axiomatization and, thus,
we claim a lesser degree of originality than that associated with our characterization of the
Borda opinion aggregator. We note, however, that our observation indeed provides the first
characterization of the majority rule formulated as an opinion aggregator.

Theorem 3 An opinion aggregator f satisfies opinion completeness, opinion neutrality,
and opinion responsiveness if and only if f = fM .

Proof. ‘If.’ That the majority opinion aggregator fM satisfies the three axioms is straight-
forward to verify.

‘Only if.’ Suppose that f is an opinion aggregator that satisfies opinion completeness,
opinion neutrality, and opinion responsiveness. Because fM satisfies opinion completeness,
it is sufficient to show that, for all o ∈ O and for all x, y ∈ X,

(x, y) ∈ I(fM(o)) ⇒ (x, y) ∈ I(f(o)) (2)

and
(x, y) ∈ PM(f(o)) ⇒ (x, y) ∈ P (f(o)). (3)

To prove (2), note first that the case o = o∅ is immediate by definition of an opinion
aggregator. Now suppose that o ∈ O\{o∅} and (x, y) ∈ I(fM(o)) for some x, y ∈ X which,
by definition, is equivalent to

o(x, y) = o(y, x). (4)

Suppose that, by way of contradiction, (x, y) 6∈ I(f(o)). By opinion completeness, it
follows that (x, y) ∈ P (f(o)) or (y, x) ∈ P (f(o)). Without loss of generality, suppose the
former betterness relationship applies; the proof is the same for the latter. Let o′ ∈ O be
such that o′(x, y) = o(y, x) and o′(y, x) = o(x, y). Moreover, for all other pairs (z, w) ∈
D \ {(x, y), (y, x)}, let o′(z, w) = o(z, w). By construction, it follows that o′(u, v) = o(u, v)
for all (u, v) ∈ D and, therefore, o′ = o. Thus, f(o′) = f(o) and hence (x, y) ∈ P (f(o′)).
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Setting z = y and w = x, (4) implies (y, x) ∈ P (f(o′)) by opinion neutrality. This is a
contradiction and hence (2) must be true.

To establish (3), suppose that (x, y) ∈ P (fM(o)) and hence o(x, y) > o(y, x) by
definition. Let o′ ∈ O be such that o′(x, y) = o(y, x) and o′(z, w) = o(z, w) for all
(z, w) ∈ D \ {(x, y)}. By (2), it follows that (x, y) ∈ I(f(o′)) and hence (x, y) ∈ f(o′). Re-
peated application of opinion responsiveness implies (x, y) ∈ P (f(o)), as was to be shown.

The independence of the axioms used in Theorem 3 is established by means of the
following three examples.

Example 4 The opinion aggregator of this example replaces some instances of equal good-
ness with non-comparability, leading to violations of opinion completeness. Let f 4(o∅) = X2

and, for all o ∈ O \ {o∅} and for all x, y ∈ X,

(x, y) ∈ f 4(o) ⇔ (x, y) ∈ P (fM(o)).

The opinion aggregator f 4 violates opinion completeness and satisfies opinion neutrality
and opinion responsiveness.

Example 5 The opinion aggregator defined in this example treats a specific alternative
in a manner different from the others, thereby generating violations of opinion neutrality.
Let f 5(o∅) = X2. Fix an alternative x0 ∈ X and define, for all o ∈ O \ {o∅} and for all
x, y ∈ X,

(x, y) ∈ I(f 5(o)) ⇔ o(x, y) = o(y, x) and x0 6∈ {x, y}

and

(x, y) ∈ P (f 5(o)) ⇔ o(x, y) > o(y, x) or

x = x0 and o(x, y) = o(y, x).

The opinion aggregator f 5 violates opinion neutrality and satisfies opinion completeness
and opinion responsiveness.

Example 6 Finally, in analogy to the monotonicity property of the previous characteriza-
tion result, the opinion aggregator f 2 that assigns the universal equal-goodness relation to
all states of opinion violates opinion responsiveness and satisfies opinion completeness and
opinion neutrality.

4 Plurality and approval voting

The state-of-opinion framework that we employ is very flexible in the sense that it can eas-
ily accommodate traditional forms of voting rules that are familiar from the literature and
from real-world applications. Moreover, the Borda opinion aggregator and the majority
opinion aggregator coincide with the requisite voting rule under consideration in some im-
portant special cases. Analogous observations regarding the equivalence of various voting
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schemes on specific domains are established by Mart́ınez and Moreno (2017). This section
discusses two examples that are of considerable practical relevance—namely, plurality vot-
ing and approval voting and some variants of the latter. We emphasize that these are mere
illustrations and, as such, they are not intended to provide a general method of moving
from an informationally different environment to the opinion-aggregation framework. In
fact, a more general approach seems to be difficult to implement because the way we link
opinion aggregation to the plurality rule relies on ballots that differ from those utilized
in the context of approval voting. While it may be possible to establish some general
connections, it is not obvious to us how we can identify a precise definition of an opinion
aggregator from a ballot profile without knowledge of the specific structure of the profile
that the analysis is based on.

A well-known voting rule is the plurality rule; see, for instance, Richelson (1978), Ching
(1996), Goodin and List (2006), Yeh (2008), Sekiguchi (2012), and Kelly and Qi (2016)
for characterizations. Consider a non-empty and finite set N of voters. To apply plurality
voting, the inputs required from the voters are single-alternative ballots of the form si ∈
X ∪ {∅} for all i ∈ N , where si is assumed to be the (unique) top alternative for voter i if
si ∈ X, and voter i abstains if si = ∅. Let s = (si)i∈N be a single-alternative ballot profile,
and let S be the set of all possible single-alternative ballot profiles. The plurality score of
x ∈ X ∪ {∅} for the single-alternative ballot profile s ∈ S is

p(x; s) = |{i ∈ N | x = si}|,

and the plurality rule gP :S → B is defined by

(x, y) ∈ gP (s) ⇔ p(x; s) ≥ p(y; s)

for all s ∈ S and for all x, y ∈ X.
We can assign a state of opinion os to any single-alternative ballot profile s ∈ S. To do

so, we assume that whenever x = si for some i ∈ N , x wins against all other alternatives
y ∈ X \ {x}—and these are the only opinions expressed (implicitly) by voter i. Thus, we
obtain os from s by defining

os(x, y) = |{i ∈ N | x = si}| = p(x; s)

for all (x, y) ∈ D; this follows immediately because, according to our interpretation, x = si

means that x wins against all other alternatives. Therefore, every time there is a voter
who has x as the top element, the pair (x, y) must be in the state of opinion os for each
y ∈ X \{x}. Because there are |X|−1 alternatives that lose against x, the number of times
x wins against some other alternative in the state of opinion os is given by the product
of |X| − 1 and the plurality score p(x; s). Likewise, the number of times x loses against
another alternative is given by the number of voters for whom an alternative y ∈ X other
than x is on top—that is, the number |N | − p(x; s)− p(∅; s). Thus, using the definition of
the Borda opinion scores, it follows that

b(x; os) =
∑

y∈X\{x}

os(x, y)−
∑

y∈X\{x}

os(y, x)

= (|X| − 1)p(x; s)− (|N | − p(x; s)− p(∅; s))
= |X|p(x; s)− |N |+ p(∅; s)
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for all s ∈ S and for all x ∈ X and, therefore,

(x, y) ∈ fB(os) ⇔ |X|p(x; s)− |N |+ p(∅; s) ≥ |X|p(y; s)− |N |+ p(∅; s)
⇔ |X|p(x; s) ≥ |X|p(y; s)

⇔ p(x; s) ≥ p(y; s)

⇔ (x, y) ∈ gP (s)

for all s ∈ S and for all x ∈ X.
According to the majority opinion aggregator, it follows that

(x, y) ∈ fM(os) ⇔ os(x, y) ≥ os(y, x)

⇔ p(x; s) ≥ p(y; s)

⇔ (x, y) ∈ gP (s)

for all s ∈ S and for all x ∈ X.
Therefore, the Borda opinion aggregator and the majority opinion aggregator agree with

the plurality rule on the set of states of opinion that are generated by single-alternative
ballot profiles.

As a second example, consider the method of approval voting analyzed by Brams and
Fishburn (1978, 1983); see also Brams (1975). To employ this voting rule, each voter i ∈ N
gets to submit a set-valued ballot with a strict subset Ci ( X of approved-of alternatives.
A set-valued ballot profile is given by an |N |-tuple C = (Ci)i∈N of strict subsets of X.
The set of all possible set-valued ballot profiles is denoted by C. The approval score of an
alternative x ∈ X for a set-valued ballot profile C ∈ C is given by

a(x; C) = |{i ∈ N | x ∈ Ci}|.

The approval-voting rule hA: C → B is defined by

(x, y) ∈ hA(C) ⇔ a(x; C) ≥ a(y; C)

for all C ∈ C and for all x, y ∈ X.
We can assign a state of opinion oC to any set-valued ballot profile C ∈ C. To do so, we

assume that whenever x ∈ Ci for some i ∈ N , x wins against all alternatives y ∈ X \ Ci—
and these are the only opinions expressed (implicitly) by voter i. Thus, we obtain oC from
C by defining

oC(x, y) = |{i ∈ N | x ∈ Ci and y 6∈ Ci}|
= a(x; C)− |{i ∈ N | x ∈ Ci and y ∈ Ci}|

for all (x, y) ∈ D; this follows because, according to our interpretation, x ∈ Ci means that
x wins against all alternatives y that are not approved of by voter i. Therefore, if there
is a voter i ∈ N who has x as an approved-of alternative, the pair (x, y) must be in the
state of opinion oC for every y ∈ X \ Ci; on the other hand, if y is also approved of by i,
the pair (x, y) is not in oC . This means that the number of instances a pair (x, y) appears
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in the state of opinion oC is not equal to the approval score of x because the number of
instances in which both x and y are approved of must be subtracted from a(x; C) to arrive
at oC(x, y). It follows that

b(x; oC) =
∑

y∈X\{x}

[a(x; C)− |{i ∈ N | x ∈ Ci and y ∈ Ci}|]

−
∑

y∈X\{x}

[a(y; C)− |{i ∈ N | x ∈ Ci and y ∈ Ci}|]

=
∑

y∈X\{x}

[a(x; C)− a(y; C)]

= (|X| − 1)a(x; C)−
∑

y∈X\{x}

a(y; C)

for all C ∈ C and for all x ∈ X and, therefore,

(x, y) ∈ fB(oC) ⇔ (|X| − 1)a(x; C)−
∑

z∈X\{x}

a(z; C)

≥ (|X| − 1)a(y; C)−
∑

z∈X\{y}

a(z; C)

⇔ (|X| − 1)a(x; C)− a(y; C) ≥ (|X| − 1)a(y; C)− a(x; C)

⇔ |X|a(x; C) ≥ |X|a(y; C)

⇔ a(x; C) ≥ a(y; C)

⇔ (x, y) ∈ hA(C)

for all C ∈ C and for all x, y ∈ X.
For the majority opinion aggregator fM , we obtain

(x, y) ∈ fM(oC) ⇔ a(x; C)− |{i ∈ N | x ∈ Ci and y ∈ Ci}|
≥ a(y; C)− |{i ∈ N | x ∈ Ci and y ∈ Ci}|

⇔ a(x; C) ≥ a(y; C)

⇔ (x, y) ∈ hA(C)

for all C ∈ C and for all x, y ∈ X.
Thus, the Borda opinion aggregator and the majority opinion aggregator agree with the

approval-voting rule on the set of states of opinion that are generated by set-valued ballot
profiles.

There are several variants of approval voting that have been discussed in the literature;
see, for instance, Alcantud and Laruelle (2014) and Gonzalez, Laruelle, and Solal (2019).

If, for example, disapproval voting is used instead of approval voting, each voter again
gets to submit a set-valued ballot. In this case, the set identifies the alternatives that the
voter disapproves of, and the alternatives are ranked inversely with respect to their disap-
proval scores. Again, we can define a state of opinion that corresponds to each set-valued
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ballot profile and the observations for approval voting translate directly to disapproval vot-
ing. This is the case because we can reinterpret the alternatives that are not disapproved
of as alternatives that are approved of and, analogously, the disapproved-of alternatives are
those that are not approved of.

A version of mixed approval-disapproval voting proceeds by allowing each voter to sub-
mit a ballot that consists of two disjoint strict subsets of the universal set of alternatives—
one set of alternatives that are approved of, one set of alternatives that the voter disapproves
of. The mixed approval-disapproval rule then ranks the alternatives according to the dif-
ferences between their approval scores and their disapproval scores. In terms of states of
opinion, this can again be translated into the approval-voting framework. To do so, we can
use the approved-of sets of each voter as before and assign the disapproved-of sets to a set
of voters that is disjoint from the original set of voters. This is perfectly legitimate in our
setting because, by assumption, it does not matter who holds which opinion. Now each
disapproved-of set can be interpreted as a set of alternatives that are not approved of, and
its complement as a set of approved-of alternatives. By using this method, we arrive at a
larger population of voters whose ballots consist of single sets of approved-of alternatives.
This brings us back to the case of approval voting and, again, the same equivalence results
as above are obtained.

A corollary of the above equivalence results is that the majority opinion aggregator fM

always generates transitive aggregate relations if attention is restricted to states of opinion
that can be derived from single-alternative ballots or from set-valued ballots. Thus, the
domains considered here provide novel examples for scenarios in which Condorcet cycles
can be ruled out; see also Black (1948) and Sen (1970, Chapters 10 and 10*), for instance.
An intuitive explanation for this phenomenon is the dichotomous nature of these states of
opinion.

The observations of this section represent instances of opinion aggregation with re-
stricted domains: depending on the underlying voting rule, only some states of opinion
can materialize while others are ruled out. This raises the issue of providing characteri-
zation results on limited domains, a topic that is not explicitly addressed in this paper.
The axiomatizations of the previous section are established on an unrestricted domain and
possible modifications that employ domain conditions constitute, at this stage, an open
question. This is undoubtedly an important aspect of the framework that we propose.
At the same time, it seems natural to us to focus on the unlimited-domain case in this
initial contribution and leave the exploration of domain restrictions for future work. In
this respect, our approach parallels that followed in numerous (if not most) analogous ad-
vancements of relatively novel topics such as the existence of social welfare functions with
desirable properties or the study of strategy-proofness.

5 Concluding remarks

An important feature of the opinion aggregators discussed in this paper is that they, un-
like other collective choice mechanisms, do not rely on any properties of the individual
inputs. Both the Borda opinion aggregator and the majority opinion aggregator are well-
defined without having to assume that there are individual relations that are complete
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or transitive—or even merely acyclical. As a consequence, the rules are well-suited to be
analyzed in the context of opinion aggregation.

The characterization results for the two aggregators exhibit an interesting parallel struc-
ture. In each of them, three properties are employed that fall into the same three categories.
The transitivity axiom required in the characterization of the Borda opinion aggregator is a
coherence requirement imposed on the social relation to be established, as is the complete-
ness property that appears in our axiomatization of the majority opinion aggregator. The
axioms of opinion cancellation and opinion neutrality express independence requirements.
Finally, opinion monotonicity and opinion responsiveness ensure that an opinion aggregator
adjusts suitably to specific changes in the state of opinion under consideration.

The notion of an opinion employed here is based on a betterness interpretation—we
think of a pair (x, y) being in a state of opinion o to mean that x is superior to y. Our
observations can easily be amended if an at-least-as-good-as interpretation is adopted in-
stead; this follows immediately because all instances of equal goodness cancel out in the
definitions of the Borda opinion aggregator and the majority opinion aggregator. The rea-
son why we choose the betterness variant is that it allows us to accommodate applications
such as that of opinions representing potentially conflicting impulses in cognitive processes
alluded to earlier. To see this point, note that if the pair (x, y) represents a relationship
of superiority of x over y according to an individual, it is perfectly possible to have both
(x, y) and (y, x) appear in a state of opinion. On the other hand, if (x, y) stands for x
being at least as good as y, this is no longer possible. Betterness of x compared to y cannot
but be defined as the presence of (x, y) and the absence of (y, x) in an agent’s collection of
opinions. Thus, under this interpretation, it is logically impossible to have superiority of x
over y and superiority of y over x at the same time.

References

Alcantud, J.C.R. and A. Laruelle (2014), Dis&approval voting: a characterization. Social
Choice and Welfare, 43, 1–10.

Armstrong, W.E. (1939), The determinateness of the utility function. Economic Journal,
49, 453–467.

Arrow, K.J. (1951, second ed. 1963), Social Choice and Individual Values. Wiley, New
York.
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