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Abstract

We study generalized Shapley-Scarf exchange markets where each agent is endowed with
multiple units of an indivisible and agent-specific good and monetary compensations are
not possible. An outcome is given by a circulation which consists of a balanced exchange of
goods. We focus on circulation rules that only require as input ordinal preference rankings
of individual goods, and agents are assumed to have responsive preferences over bundles of
goods. We study the properties of serial dictatorship rules which allow agents to choose
either a single good or an entire bundle sequentially, according to a fixed ordering of the
agents. We also introduce and explore extensions of these serial dictatorship rules that
ensure individual rationality. The paper analyzes the normative and incentive properties
of these four families of serial dictatorships and also shows that the individually rational
extensions can be implemented with efficient graph algorithms.
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1 Introduction
Background
Many different situations call for exchanging goods, services, or other items of interest in a
centralized manner without using money or prices that facilitate the exchange. In a student
exchange program, for instance, universities send exchange students to other universities and re-
ceive exchange students from elsewhere in return. Centralized transplant exchanges at a national
level or internationally are also important examples, since buying and selling organs is prohib-
ited in most countries. Various websites support the bartering of goods such as clothing and
books, or swapping services based on professional skills. Similarly, time banks serve the purpose
of exchanging different services in a beneficial manner in a town or neighborhood. The reallo-
cation of shifts in healthcare, swapping sabbatical homes, and timeshare exchanges which allow
for trading holiday rights in specific resorts are further examples of exchange without making
any payments. Even the financial sector has cases of cyclic liabilities that can be resolved using
financial clearing, which means the releasing of financial liabilities in a cyclic manner without
further compensation.

Some of the pertinent common features of these exchanges can be captured by the simple
circulation model introduced by Biró et al. [4]. Each market in this circulation model is a gener-
alized Shapley-Scarf market [38], where agents are endowed with multiple units of an indivisible
and agent-specific good. It is often desirable, if not crucial, to obtain a balanced exchange in
these exchange markets, i.e., for each agent the number of units of other goods received equals
the number of units of her own good given to other agents. We therefore require that the out-
come of a market be given by a circulation, which consists of a balanced exchange of goods.
Furthermore, we study circulation rules which take as input preferences over individual goods
only. These types of rules are attractive in practical situations where it may be difficult to elicit
complex preferences over bundles of goods.

For classical Shapley-Scarf markets, where each agent is endowed with one unit of her good,
one exchange rule stands out on the domain of strict preferences: David Gale’s celebrated Top
Trading Cycles (TTC) rule. Gale’s TTC rule is the unique rule that satisfies three key prop-
erties, namely individual rationality,1 Pareto-efficiency,2 and strategy-proofness3 in the classical
Shapley-Scarf markets (Ma [26]). Biró et al. [4] showed that for generalized Shapley-Scarf mar-
kets there is no circulation rule that satisfies the combination of individual rationality, a weak
version of Pareto-efficiency, and a weak version of strategy-proofness. Given this incompatibility,
Biró et al. [4] explored to what extent two natural generalizations of the TTC rule satisfy these
and other properties. In particular, they found that these rules do not have good efficiency
properties. One source of inefficiency are the multiple ways in which preferences over individual

1A rule is individually rational if at each problem it assigns an acceptable bundle to each agent.
2A rule is Pareto-efficient if at each problem the assigned circulation is not Pareto-dominated by some other

circulation, i.e., it is not possible to make all agents weakly better off and at least one agent strictly better off.
3A rule is strategy-proof if at each problem no agent can obtain a more preferred bundle by misrepresenting

her preferences.
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goods can be extended to preferences over bundles: TTC-based rules do not properly take into
account that some agent may prefer bundles that contain her top good together with some rather
inferior good while some other agent may prefer, to the contrary, “intermediate” bundles, see [4,
Proposition 3] for more details.
Our approach and motivation
In this paper, we take a different approach. Assuming that there is a natural order of the agents
determined by e.g. priority or seniority, an intuitive assignment procedure is to let the agents
pick their most preferred goods or bundles following this order, known in general as a serial
dictatorship.

Priority rules or serial dictatorships are not only natural and common in many practical
situations, but they can be more easily explained and “understood” than TTC-inspired rules;
practitioners or participants in these markets may not have an adequate background to properly
understand or appreciate the latter. Moreover, as it turns out, serial dictatorship rules tend to
have better efficiency properties in the circulation model compared to TTC-based rules.4

Pareto efficiency and individual rationality of circulations are more basic requirements than
– and incompatible with – strategy-proofness. However, in practice, agents may not be able
to report more than an ordinal ranking of the individual goods. Therefore, achieving Pareto
efficiency plus individual rationality based on such lean reports raises both an existence and
computational complexity issue.5 In this context we study serial dictatorship rules for the
circulation model.

1.1 Illustrative examples

We first illustrate the working of the families of serial dictatorship rules that we study. Consider
a market with three agents: N = {1, 2, 3}. Agent 1 has capacity q1 = 1 and agents 2 and 3
have capacity q2 = q3 = 2. Initially each agent i is endowed with a “null bundle” that consists
of qi units of her own good. Since goods are agent-specific we will refer to the good of agent i
as good i. Each agent is interested in obtaining a bundle of exactly qi units of possibly different
goods in total. Let the agents’ preferences over individual goods in this market be given as
follows:

1 : 2 ≻1 1 ≻1 3
2 : 3 ≻2 1 ≻2 2
3 : 2 ≻3 3 ≻3 1

Here, for example, agent 3 prefers good 2 to her own good, but finds good 1 unacceptable (i.e.,
worse than her own good).

We assume that agents’ preferences over bundles are “responsive” to preferences over indi-
vidual goods: (1) an agent finds a bundle unacceptable if it contains any unacceptable good6

and (2) preferences are monotonic in the sense that replacing one unit of a good in a bundle by
one unit of a more preferred good yields a more preferred bundle. The agents’ preferences over
bundles are partially determined by responsiveness. For instance, in the case of agent 3, the

4A summary of the efficiency properties of the families of serial dictatorship rules studied in this paper is
provided in Table 5 in Section 6.1.

5For instance, Pareto-efficiency of our so-called Multiple-Serial-IR rules follows by definition; the difficulty is in
showing that the rules operate on the underlying profiles of ordinal preferences of individual goods (Theorem 15).

6This assumption and its possible relaxation are discussed in Section 6.3.
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bundle (1, 1, 0) that consists of one unit of good 1 and one unit of good 2 is not acceptable (i.e.,
worse than agent 3’s null bundle (0, 0, 2)) because it contains a unit of the unacceptable good
1. Also, agent 3 prefers bundle (0, 2, 0) to bundle (0, 1, 1) because the former is obtained from
the latter by replacing one unit of a good by a more preferred good. Responsiveness typically
does not pin down the complete preference relation over bundles: for example, in the case of
agent 2 responsiveness does not tell which of the two acceptable bundles (2, 0, 0) and (0, 1, 1) is
preferred to the other bundle.

Using this market, we demonstrate the four families of rules that we study in this paper.
For each family of rules all goods are first collected and then agents pick single goods/bundles
sequentially. More specifically, the common feature of the allocation processes that we explore is
that we start with the “empty allocation” and then agents sequentially, following a fixed order,
take one good or a complete bundle in turn until their capacities are reached. At the end of the
sequential process we obtain a circulation that is not necessarily individually rational. However,
if we require the intermediate allocations to be extendable to an individually rational circulation
then our final circulation will also be individually rational. First we illustrate the so-called
Single-Serial rules where agents select the goods one by one, together with their individually
rational counterparts, the Single-Serial-IR rules. Then we demonstrate the so-called Multiple-
Serial rules where agents choose complete bundles sequentially, as well as their individually
rational counterparts, the Multiple-Serial-IR rules.

Single-Serial rules. This first family of rules lets agents pick a single good at a time following
a fixed order. Each agent i appears qi times in the fixed order. As an illustration, we consider
the Single-Serial rule based on the order π = (1, 2, 3, 2, 3). Following π, at each step an agent
picks her most preferred available good, as depicted in Table 1. Thus, the resulting bundles

at step 1 2 3 4 5
agent 1 2 3 2 3
picks good 2 3 2 3 1

.

Table 1: Single-Serial rule

are x1 = (0, 1, 0), x2 = (0, 0, 2), and x3 = (1, 1, 0), for agents 1, 2, and 3, respectively. Note
that at step 5 agent 3 was obliged to pick the only remaining (unit of) good 1. Since good 1 is
unacceptable to agent 3, her bundle x3 is unacceptable. Therefore, the circulation x ≡ (xi)i∈N
obtained by the Single-Serial rule is not individually rational.

Single-Serial-IR rules. The family of Single-Serial-IR rules is obtained by adapting the family
of Single-Serial rules to ensure individual rationality. Specifically, at each step an agent picks
her most preferred good among the available goods such that this choice is compatible with an
individually rational final circulation. Using again the order π = (1, 2, 3, 2, 3), the goods that are
picked are shown in Table 2. Steps 1–3 are the same in Tables 1 and 2. However, at step 4, agent

at step 1 2 3 4 5
agent 1 2 3 2 3
picks good 2 3 2 1 3

Table 2: Single-Serial-IR rule
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2 is obliged to pick good 1 to ensure that at the last step agent 3 can pick an acceptable good.
Thus, the resulting bundles are y1 = (0, 1, 0), y2 = (1, 0, 1), and y3 = (0, 1, 1), for agents 1, 2,
and 3, respectively. By construction, the circulation y ≡ (yi)i∈N obtained by the Single-Serial-IR
rule is individually rational.

Multiple-Serial rules. The third family of rules lets agents sequentially pick a complete bundle
following a fixed order. Hence, each agent appears once in the fixed order. As an illustration, we
consider the Multiple-Serial rule based on the order π̄ = (2, 1, 3). Following π̄, at each step an
agent picks her most preferred available bundle from the available goods, as depicted in Table 3.
Note that at step 3 agent 3 was obliged to pick the remaining goods: one unit of good 1 and one

at step 1 2 3
agent 2 1 3
picks bundle (0,0,2) (0,1,0) (1,1,0)

Table 3: Multiple-Serial rule

unit of good 2. Since good 1 is unacceptable to agent 3, her bundle is unacceptable. Therefore,
the circulation obtained by the Multiple-Serial rule is not individually rational.

Multiple-Serial-IR rules. The last family of rules is obtained by adapting the family of
Multiple-Serial rules to ensure individual rationality. Specifically, at each step an agent picks
her most preferred bundle from the available goods such that this choice is compatible with an
individually rational final circulation. Using again the order π̄ = (2, 1, 3), the bundles that are
picked are shown in Table 4. Step 1 is the same in Tables 3 and 4. However, at step 2 agent 1

at step 1 2 3
agent 2 1 3
picks bundle (0,0,2) (1,0,0) (0,2,0)

Table 4: Multiple-Serial-IR rule

is obliged to pick good 1 to ensure that at the last step agent 3 can pick an acceptable bundle.
By construction, the circulation obtained by the Multiple-Serial-IR rule is individually rational.

1.2 Our main contributions

We first show that if a circulation is Pareto-efficient then it can be obtained by some Single-
Serial rule (Proposition 2). Hence, Single-Serial rules are exhaustive in the sense that they
yield all Pareto-efficient circulations. However, as the illustrative example shows, Single-Serial
rules are not necessarily individually rational. Moreover, we show that when they do yield an
individually rational circulation it is only guaranteed to be Pareto-efficient for lexicographic
preferences (Lemma 1 and Example 2).

Single-Serial-IR rules are by definition individually rational. Since checking whether an in-
termediate allocation can still be extended to an individually rational circulation is non-trivial,
it is important to show that the Single-Serial-IR rules can be implemented efficiently, i.e., in
polynomial time. We prove this by establishing that extendability to an individually ratio-
nal circulation is equivalent to the existence of a maximum flow in an associated maximum
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flow problem. More specifically, this equivalence allows us to give an alternative definition of
Single-Serial-IR rules (Theorem 7) and then, using the Ford-Fulkerson theorem, show its efficient
implementation (Corollary 10). Finally, we prove that Single-Serial-IR rules are Pareto-efficient
for lexicographic preferences and any individually rational and Pareto-efficient circulation can
be obtained by some Single-Serial-IR rule (Proposition 11).

While Multiple-Serial rules are Pareto-efficient by definition, they are not necessarily individ-
ually rational, as demonstrated by the illustrative example. We establish that Multiple-Serial-IR
rules do satisfy both properties. The (non-trivial) key issue here is to show that Multiple-Serial-
IR rules satisfy our requirement that they only depend on the ordinal preferences over individual
goods (Theorem 15). Moreover, since Multiple-Serial-IR rules are particular Single-Serial-IR
rules, they can be implemented efficiently (Corollary 16).

1.3 Organization of the paper

In Section 2, we introduce the circulation model. In Sections 3 and 4, we present our Single-
Serial-(IR) rules and Multiple-Serial-(IR) rules, respectively, and prove our main results on
individual rationality, Pareto-efficiency, and computational complexity. In a separate section,
Section 5, we show which of our rules also satisfy strategy-proofness or other weaker incentive
properties. Section 6 provides a concise summary of the properties satisfied by our rules, discusses
generalized serial rules, and describes how our positive results may be extended to more general
models. Finally, Section 7 discusses the related literature and applications.

2 The circulation model
Let N with n = |N | ≥ 2 be the set of agents. Each agent i ∈ N is endowed with a finite
number of qi ∈ N units of an indivisible, homogeneous, and agent-specific good. We call the
non-negative integer qi agent i’s capacity. Let q = (qi)i∈N be the capacity profile. Since goods
are agent-specific, for each i ∈ N , we often refer to the good of agent i as good i.

An assignment for agent i is a vector xi = (xij)j∈N ∈ NN with
∑

j∈N xij ≤ qi, where xij

denotes the amount (i.e., number of units) of good j that i receives. One particular assignment
for agent i is the null assignment 0i where agent i receives no good, i.e., for each j, 0ij = 0. An
allocation is a vector of assignments x = (xi)i∈N such that for each good j ∈ N ,

∑
i∈N xij ≤ qj.

A bundle for agent i is a vector xi = (xij)j∈N ∈ NN with
∑

j∈N xij = qi. Clearly, each bundle
is an assignment. One particular bundle for agent i is the null bundle ei where agent i receives
no good different from her own, i.e., eij = 0 for all j ̸= i, or equivalently, eii = qi. Let Xi denote
the set of possible bundles for agent i. A circulation is a vector of bundles such that each agent
receives as many goods as she gives away from her initial endowment. Formally, a circulation is
a vector of bundles x = (xi)i∈N ∈ (Xi)i∈N such that for each good j ∈ N ,

∑
i∈N xij = qj. Let X

denote the set of circulations.
Each agent i has preferences ≻i over all individual goods, i.e., preferences over receiving a

unit of good j ∈ N\{i} and the option of receiving (retaining) a unit of her good i. We assume
that ≻i is a linear order on N , i.e., it is strict, complete, and transitive. For any j, l ∈ N with
j ̸= l, j ≻i l denotes that agent i prefers receiving one unit of good j over receiving one unit of
good l. Let ⪰i denote the weak counterpart of ≻i, i.e., j ⪰i l if and only if j ≻i l or j = l. If
j ⪰i i, then good j is acceptable to agent i; otherwise it is unacceptable to i.
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Each agent i has a linear order Pi on the set of possible bundles Xi. A bundle xi is acceptable
to i if xiPiei or xi = ei; it is unacceptable to i otherwise. We assume that the preferences Pi over
Xi are a responsive extension of the associated preferences ≻i over individual goods. Formally,
Pi is a linear order that satisfies the following two conditions. Let xi, x

′
i ∈ Xi.

(r1) eiPixi if there is j ∈ N\{i} with i ≻i j such that xij > 0; and

(r2) x′
iPixi if there are j, l ∈ N with j ≻i l such that x′

ij = xij + 1, x′
il = xil − 1, and x′

ik = xik

for all k ∈ N\{j, l}.

Condition (r1) is a property of “absolute desirability”: it states that agent i finds a bundle unac-
ceptable if it contains some good that is unacceptable to her. Condition (r2) is a monotonicity
property: it states that agent i prefers bundle x′

i to xi if x′
i is obtained from xi by replacing one

unit of some good with one unit of a more preferred good.

Remark 1. Note that if a bundle only contains acceptable goods to some agent then, by repeated
application of (r2), the agent finds the bundle acceptable. Hence, it follows from (r1) and (r2)
that a bundle is acceptable if and only if it only contains acceptable goods. ⋄

Let Ri denote the weak counterpart of Pi. So, xiRix
′
i if either xiPix

′
i or xi = x′

i. We denote
the set of responsive preferences for agent i by Pi. Let P = ×i∈NPi be the set of profiles of
responsive preferences. A market is a triple (N, q, P ) where P ∈ P , or simply P . For any
responsive preferences Pi ∈ Pi of agent i, we denote the underlying preferences over individual
goods by ≻Pi . For any P ∈ P , ≻P= (≻Pi)i∈N . Whenever no confusion is possible we write ≻i

for ≻Pi and ≻ for ≻P .
Next we introduce the classes of additive and lexicographic preferences. An agent has additive

preferences if there is a (cardinal) utility function on the set of acceptable goods such that for
any pair of acceptable bundles, the agent prefers the bundle with highest sum of utilities (of
the goods in the bundle). We can assume without loss of generality that the utility of her own
good equals 0. Formally, agent i’s responsive preferences Pi are additive if there exists a utility
function ui : {j ∈ N : j ≻i i} → R++ such that

for all xi, x
′
i ∈ Xi with xi, x

′
i Ri ei,

[
x′
i Pi xi if and only if

∑
j:j≻ii

x′
ijui(j) >

∑
j:j≻ii

xijui(j)

]
. (1)

An agent has lexicographic preferences if whenever she compares any two acceptable bundles,
she prefers the bundle with the largest number of units of her most preferred good; if the two
bundles have the same number of units of her most preferred good, then she prefers the bundle
with the largest number of units of her second most preferred good; etc. In other words, the agent
first maximizes the number of units of her top good, then maximizes the number of units of her
second most preferred good, and so on. Therefore, lexicographic preferences are a specific type
of additive preferences, i.e., additive preferences that require a particular scheme of “strongly
decreasing” utilities. Formally, agent i’s responsive preferences Pi are lexicographic if there exists
a utility function ui : {j ∈ N : j ≻i i} → R++ where

for all k, l ≻i i, [k ≻i l if and only if ui(k) > qiui(l)] (2)

such that condition (1) holds. Condition (2) says that receiving a unit of the top good is
“more important” than receiving any number of other goods, receiving a unit of the second most
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preferred good is “more important” than receiving any number of the third most preferred or less
preferred goods, etc. When preferences are lexicographic, the ordinal ranking over acceptable
bundles is completely determined by the ordinal ranking over individual goods.7 We denote the
set of lexicographic preferences for agent i by PL

i . Let PL = ×i∈NPL
i be the set of profiles of

lexicographic preferences.
We require the exchange of the indivisible goods to be balanced. In other words, any outcome

of a market should be a circulation. Our aim is to study rules that can be used by a centralized
clearinghouse to obtain a circulation for each market. In practice such clearinghouses often
only collect the ordinal preferences of the participating agents over individual goods. Moreover,
given our assumption that preferences are responsive, the most important information about
preferences is concisely summarized by the ranking of individual goods. For this reason we
introduce the following definition of a circulation rule.

Fix the set of agents N and the vector of capacities q. A circulation rule f : P → X
specifies a circulation for each preference profile. For each preference profile P ∈ P , fi(P )
denotes agent i’s bundle at P . In view of the discussion above, we require circulation rules to
operate on the underlying profiles of ordinal preferences over individual goods. In other words,
for any two preference profiles, if each agent has the same underlying ordinal preferences over
individual goods at both profiles, then a circulation rule yields the same circulation at both
profiles. Formally,

for all P, P ′ ∈ P with ≻P= ≻P ′
, f(P ) = f(P ′). (3)

In fact, the first two families of rules that we study will be defined directly on the domain of
ordinal preferences over individual goods, and hence satisfy (3) by definition.

We first introduce the key desiderata. The first property that we consider indispensable is
individual rationality, a standard property which requires that each agent receives a bundle that
is acceptable to her.

Definition 1. A circulation x is individually rational for agent i ∈ N at P ∈ P if xi is acceptable,
i.e., xiRiei, or equivalently, for each j with xij > 0, j ≻Pi i. A circulation x is individually rational
at P ∈ P if it is individually rational for all agents at P . A circulation rule f is individually
rational if for all P ∈ P , f(P ) is individually rational at P . ⋄

Given the relatively simple structure and the particular interest of lexicographic preferences
within the class of responsive preferences, we will examine two different versions of each property
where applicable: “necessarily satisfied” and “possibly satisfied,” indicating whether the property
holds for every responsive extension of the underlying preferences over individual goods, or
only for the lexicographic extension that can be inferred from the ordering of individual goods.
Thus, “necessarily satisfied” corresponds to the property being satisfied by the entire domain of
responsive preferences and is the standard version of the property for responsive preferences over
bundles. The “possibly satisfied” version is weaker; namely, it corresponds to the property being
satisfied by the lexicographic extension of any preferences over the individual goods. Henceforth,
we will denote the weaker version of each property by adding the prefix “ig” (the acronym for
“individual good”) to the name of the standard version of the property. However, note that by
Remark 1, the two versions of individual rationality are equivalent.

In view of the discussion above, we introduce two versions of the other key property, Pareto-
efficiency.

7None of our results requires a similar assumption on the ordinal ranking over unacceptable bundles.
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Definition 2. A circulation x is Pareto-dominated by another circulation y at P ∈ P if for
each agent i ∈ N , yiRixi and for some agent j ∈ N , yjPjxj. A circulation rule f is (necessarily)
Pareto-efficient if for all P ∈ P , f(P ) is not Pareto-dominated by any other circulation at P .
A circulation rule f is ig-Pareto-efficient if for all profiles of lexicographic preferences P ∈ PL,
f(P ) is not Pareto-dominated by any other circulation at P . ⋄

Remark 2. Checking whether a circulation is Pareto-efficient for additive preferences is NP-
hard (Aziz et al. [2]), where the input is given as the cardinal utilities of agents over the individual
goods. On the other hand, checking ig-Pareto-efficiency of a circulation from the agents’ ordinal
preferences is tractable in polynomial time (Aziz et al. [3]). This suggests that a centralized
clearinghouse may find ig-Pareto-efficiency sufficient, especially since the agents may relatively
easily detect if the circulation doesn’t satisfy it. However, ensuring Pareto-efficiency (i.e., not
“just” ig-Pareto-efficiency) is relevant beyond the detectability argument, as it is an important
requirement from the point of view of social welfare. ⋄

Proposition 1 in Biró et al. [4] shows that individual rationality and ig-Pareto-efficiency
are not compatible with another important desideratum, ig-strategy-proofness.8 Given this
incompatibility, [4] focused on two different generalizations of Gale’s Top Trading Cycles rule
(which does satisfy the three properties in the basic model where each agent has unit capacity).
In this paper, we take a different approach by studying classes of serial dictatorships to achieve
individual rationality and ig-Pareto-efficiency or Pareto-efficiency. In fact, it is not obvious that
there exist rules that satisfy both individual rationality and Pareto-efficiency. The reason is that
our requirement that circulation rules operate on the underlying profiles of ordinal preferences
over individual goods, i.e., satisfy condition (3), creates tension with Pareto-efficiency on the
domain of responsive preferences. We refer to Example 2 in the next section for an illustration
of this tension. We postpone the statement (and proof) that individual rationality and Pareto-
efficiency are compatible (Corollary 18), as it follows from the result that our class of Multiple-
Serial-IR rules satisfies all requirements (Proposition 17).

3 Single-Serial rules
Given a capacity profile q, a q-priority order of agents is an ordered sequence in which each agent
i appears exactly qi times. Formally, let Q =

∑
i∈N qi. A q-priority order of agents is a vector

π in

{(i1, i2, . . . , iQ) : for all k = 1, . . . , Q, ik ∈ N and |{l = 1, . . . , Q : il = ik}| = qik} .

The Single-Serial rule associated with a q-priority order π is defined as follows. Fix a
preference profile. Following the order π, each agent sequentially chooses her most preferred
good among the remaining goods (i.e., goods that have not been exhausted yet). Next we
provide a formal definition. For each allocation x and each j ∈ N , let the remainder rx(j) be
the number of units of good j that have not been allocated at x, i.e., rx(j) = qj −

∑
i∈N xij.

8A circulation rule is strategy-proof if for each agent it is a weakly dominant strategy to reveal her true
preferences. As explained in the discussion on “ig”, the (weaker) property ig-strategy-proofness requires that the
true preferences are a weakly dominant strategy only for the lexicographic extension of any preferences over the
individual goods. We refer to Definition 3 in Section 5 for the formal definition.
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Input: A q-priority order π = (i1, i2, . . . , iQ) and preferences over individual goods ≻=≻P .
Step 0: For all i ∈ N , let x0

i = 0i be agent i’s null assignment.
Step k = 1, . . . , Q: Let j∗ ∈ N be the good with rxk−1(j∗) > 0 such that j∗ ⪰ik l for all l ∈ N
with rxk−1(l) > 0. Define xk by xk

ikj∗
= xk−1

ikj∗
+ 1 and xk

ij = xk−1
ij for all (i, j) ̸= (ik, j

∗).
Output: The circulation of the Single-Serial rule associated with π evaluated at profile ≻ is
xQ.

Single-Serial rules are well-defined, since they operate on profiles of ordinal preferences over
individual goods. However, as the following example illustrates, they need not be individually
rational even if preferences are lexicographic.

Example 1. Consider the market (N, q, P ) where N = {1, 2}, q1 = q2 = 1, and (lexicographic)
preferences P given by:

1 : 2 ≻1 1
2 : 2 ≻2 1

Consider the q-priority order (1, 2). The corresponding Single-Serial rule yields the individually
irrational circulation where agent 1 receives her most preferred good and agent 2 receives an
unacceptable good. ⋄

However, whenever a Single-Serial rule yields an individually rational circulation, it is also
Pareto-efficient, provided that preferences are lexicographic. We say that an allocation x is
extendable to a circulation y if x ≤ y, i.e., for each agent i and each good j, xij ≤ yij.

Lemma 1. Let P ∈ PL be a profile of lexicographic preferences. Let x be an individually rational
circulation. If some Single-Serial rule yields x at ≻P , then x is Pareto-efficient at P .

Proof. Suppose π = (i1, i2, . . . , iQ) is a q-priority order such that its associated Single-Serial rule
yields circulation x and x is not Pareto-efficient at P .

Let y be a circulation that Pareto-dominates x. Since x ̸= y, there is a smallest k = 1, . . . , Q
such that xk (i.e., the allocation at the end of step k of the assignment procedure) is not
extendable to y. This implies that at step k, agent ik chooses a good j∗ such that xk

ikj∗
> yikj∗ .

Let l ∈ N be such that l ≻ik j∗. By the definition of step k, for each i ∈ N , xk−1
il ≤ yil and

rxk−1(l) = 0, i.e.,
∑

i∈N xk−1
il = ql. Since y is a circulation,

∑
i∈N yil = ql. Hence, xk−1

ikl
= yikl.

We conclude that xikj∗ ≥ xk
ikj∗

> yikj∗ and for each good l ∈ N with l ≻ik j∗ we have
xikl ≥ xk−1

ikl
= yikl. But then, since xik and yik are acceptable bundles to ik, condition (2) of the

definition of lexicographic preferences implies that xikPikyik , which contradicts the fact that y
Pareto-dominates x.

The following example shows that the requirement of lexicographic preferences in Lemma 1
cannot be omitted.

Example 2. Consider the market (N, q, P ) where N = {1, 2, 3, 4, 5, 6}, q1 = q2 = q3 = q4 = 1,
q5 = q6 = 2, and responsive9 preferences P with (0, 1, 1, 0, 0, 0) P5 (1, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0)
P6 (0, 1, 1, 0, 0, 0) and such that the underlying preferences ≻i (i ∈ N) over acceptable individual
goods are as follows:

9It is easy to see that there are additive preferences whose underlying preferences over individual goods are
≻.
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1 : 5 ≻1 1
2 : 5 ≻2 2
3 : 6 ≻3 3
4 : 6 ≻4 4
5 : 1 ≻5 2 ≻5 3 ≻5 4 ≻5 5
6 : 1 ≻6 2 ≻6 3 ≻6 4 ≻6 6

Consider the q-priority order (5, 6, 6, 5, 1, 2, 3, 4). The corresponding Single-Serial rule gives the
individually rational circulation x where each agent i ∈ {1, 2, 3, 4} receives one unit of her most
preferred good, agent 5 receives bundle (1, 0, 0, 1, 0, 0), and agent 6 receives bundle (0, 1, 1, 0, 0, 0).
However, this circulation is not Pareto-efficient, as switching the bundles of agents 5 and 6 is a
Pareto improvement. So, x is not Pareto-efficient at P .

The market above also allows us to illustrate why the requirement that circulation rules oper-
ate on the underlying profiles of ordinal preferences over individual goods, i.e., satisfy condition
(3), creates tension with Pareto-efficiency on the domain of responsive preferences. Consider the
market (N, q, P ′) that is the same as (N, q, P ) except that now (1, 0, 0, 1, 0, 0) P ′

5 (0, 1, 1, 0, 0, 0)
and (0, 1, 1, 0, 0, 0) P ′

6 (1, 0, 0, 1, 0, 0). One easily verifies that x is Pareto-efficient at P ′. Simi-
larly, there are individually rational circulations that are Pareto-efficient at P , but not at P ′.
This raises the question whether for any profile of ordinal preferences over individual goods there
exists an individually rational allocation that is Pareto-efficient at all possible responsive exten-
sions. Corollary 18 provides an affirmative answer: there exist rules that satisfy both individual
rationality and Pareto-efficiency. ⋄

The next example shows that the requirement of individual rationality in Lemma 1 cannot
be omitted either.

Example 3. Consider the market (N, q, P ) where N = {1, 2, 3, 4, 5, 6}, q1 = q2 = q3 = q4 = 1,
q5 = q6 = 2, and consider lexicographic preferences P such that the underlying preferences ≻i

(i ∈ N) over individual goods are as follows:10

1 : 5 ≻1 1 ≻1 · · ·
2 : 5 ≻2 2 ≻2 · · ·
3 : 6 ≻3 3 ≻3 · · ·
4 : 6 ≻4 4 ≻4 · · ·
5 : 1 ≻5 2 ≻5 3 ≻5 5 ≻5 4 ≻5 6
6 : 1 ≻6 2 ≻6 3 ≻6 4 ≻6 5 ≻6 6

Consider the q-priority order (1, 2, 3, 4, 5, 6, 6, 5). The corresponding Single-Serial rule gives the
circulation x where each agent i ∈ {1, 2, 3, 4} receives one unit of her most preferred good,
agent 5 receives (unacceptable) bundle (1, 0, 0, 1, 0, 0), and agent 6 receives (acceptable) bundle
(0, 1, 1, 0, 0, 0). Clearly, x is not individually rational. Moreover, x is not Pareto-efficient, since
switching the bundles of agents 5 and 6 is a Pareto improvement: agent 5 would receive an
acceptable bundle and agent 6 would be better off as well by obtaining a unit of her most
preferred good. ⋄

Our next result shows that Single-Serial rules are “exhaustive” in terms of Pareto-efficiency.
More precisely, for any profile of preferences, each Pareto-efficient circulation (whether individu-
ally rational or not) can be obtained by applying some Single-Serial rule to the preference profile.

10· · · indicates that preferences can be completed in an arbitrary way.
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This result was proved by Cechlárová et al. [7] in a similar setting. However, since their result
does not imply ours, we present a (simpler) proof for our model.

Proposition 2. Let P ∈ P be a profile of preferences. If a circulation x is Pareto-efficient at
P , then x is obtained by some Single-Serial rule applied to ≻P .

Proof. Let P ∈ P be a profile of preferences. Let x be a circulation that is Pareto-efficient
at P and suppose, by contradiction, that there is no q-priority order of agents for which the
corresponding Single-Serial rule applied to ≻P yields x.

We first construct a partial q-priority order that results in an allocation as “close” to x as
possible. Consider the following procedure. Let y be the empty allocation (where each agent
receives her null assignment) and let σ be the empty order. Check whether there are any agent
i and good j on the market such that 1) j is i’s first choice among the goods that are on the
market and 2) by assigning one additional unit of good j to i this extended allocation y would
still be extendable to x. If there are an agent i and a good j that satisfy conditions 1) and 2),
pick one such pair, say agent i∗ and good j∗, and update yi∗j∗ ≡ yi∗j∗ + 1 and σ ≡ (σ, i∗). If∑

j∈N yi∗j = qi∗ , then remove agent i∗ from the market. Similarly, if
∑

i∈N yij∗ = qj∗ , then remove
good j∗ from the market. We repeat this incremental procedure until we reach an allocation y
that is not extendable with the first choice of any agent. (We reach such an allocation by the
assumption that x cannot be obtained with any Single-Serial rule.)

Let k be a good that is on the market. Then
∑

i∈N yik < qk =
∑

i∈N xik. Since for each agent
i ∈ N , yik ≤ xik, there is some agent i∗ ∈ N with yi∗k < xi∗k. In fact, any such i∗ is an agent
that is still on the market.11

We now build a directed graph D(y) on the remaining goods as follows. Let k and j be
any two goods that are on the market. If for some agent i∗ that is on the market we have 1)
yi∗k < xi∗k and 2) j is i∗’s most preferred good among the available goods (hence yi∗j = xi∗j),
then there is a directed edge from k to j. From the above it follows that for each good k that is
still on the market, there is a directed edge going out from k. Therefore, D(y) contains at least
one directed cycle, say (b1, b2, . . . , br). For each directed edge from bi to bi+1, let ai be an agent
that is on the market such that 1) ai has strictly more units of good bi at x than at y and 2) good
bi+1 is the most preferred good for ai among all goods that remain on the market (modulo r).
Since each agent has strict preferences, it follows that {a1, . . . , ar} contains r different agents.

Construct the circulation x′ from x by carrying out the trades in the cycle. That is, move
one unit of good bi+1 from agent ai+1 to agent ai (modulo r). Since preferences satisfy condition
(r2) of responsiveness, each agent ai strictly prefers x′

ai
to xai . Hence, x′ Pareto-dominates x,

which obviously contradicts the fact that x is Pareto-efficient.

3.1 Single-Serial-IR rules

Since Single-Serial rules do not necessarily yield individually rational circulations, we adjust
them by demanding that for each (sequential) choice of a good the resulting allocation be IR-
extendable. An allocation x is IR-extendable if there exists an individually rational circulation
x′ such that x is extendable to x′. The adjusted serial rules will henceforth be referred to as
Single-Serial-IR rules.

11Let p be a removed agent. For each good r ∈ N (removed or not), ypr ≤ xpr. Since
∑

r∈N ypr = qp, it follows
that for each good r ∈ N we have in fact ypr = xpr.
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Input: A q-priority order π = (i1, i2, . . . , iQ) and preferences over individual goods ≻.
Step 0: For each i ∈ N , let x0

i = 0i be agent i’s null assignment.
Step k = 1, . . . , Q: Let J ⊆ N consist of goods j such that

• rxk−1(j) > 0 and
• the allocation z defined by zikj = xk−1

ikj
+ 1 and zil = xk−1

il for all (i, l) ̸= (ik, j) is IR-
extendable.

Let j∗ ∈ J be such that for each j ∈ J , j∗ ⪰ik j.
Define xk by xk

ikj∗
= xk−1

ikj∗
+ 1 and xk

il = xk−1
il for all (i, l) ̸= (ik, j

∗).
Output: The circulation of the Single-Serial-IR rule associated with π evaluated at profile ≻
is xQ.

The empty allocation (where each agent receives her null assignment) is IR-extendable, because
we can give each agent her original endowments. Hence, the algorithm above is well-defined.
Also, Single-Serial-IR rules are well-defined, as they operate on profiles of ordinal preferences
over individual goods. Moreover, by definition, Single-Serial-IR rules yield individually rational
circulations.

Remark 3. Note that if a Single-Serial rule associated with some q-priority order π yields
an individually rational circulation x at a preference profile ≻, then the Single-Serial-IR rule
associated with π also yields circulation x at ≻. ⋄

Remark 3 coupled with Example 2 shows that Single-Serial-IR rules need not be Pareto-
efficient. However, we will establish that Single-Serial-IR rules are ig-Pareto-efficient (Proposi-
tion 11). Towards a proof of this result, we will first establish some technical results so that
we can provide and use an alternative description (Theorem 7) of the Single-Serial-IR rules.
The alternative description also enables us to show that Single-Serial-IR rules can be efficiently
implemented from a computational point of view (Corollary 10).

We introduce some additional notation. Let (N, q, P ) be a market. Let x be an allocation.
Let |xi| be the number of units of (possibly different) goods that agent i receives at x, i.e.,
|xi| =

∑
j∈N |xij|, and let dx(i) = qi − |xi| be the demand of agent i at allocation x. For S ⊆ N ,

let dx(S) =
∑

i∈S dx(i) and rx(S) =
∑

i∈S rx(i). Note that

rx(N) =
∑
j∈N

rx(j) =
∑
j∈N

(
qj −

∑
i∈N

xij

)
=

∑
j∈N

qj −
∑
j∈N

∑
i∈N

xij

=
∑
i∈N

qi −
∑
i∈N

∑
j∈N

xij

=
∑
i∈N

qi −
∑
i∈N

|xi|

=
∑
i∈N

(qi − |xi|) =
∑
i∈N

dx(i) = dx(N). (4)

For S ⊆ N , let I(S) denote the goods that are acceptable to some member of S, i.e.,
I(S) = {i ∈ N : i ⪰j j for some j ∈ S}. We say that S has overdemand at x if dx(S) > rx(I(S)).
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If some set of agents has overdemand at an allocation x then x is certainly not IR-extendable.
Lemma 3 below shows that the reverse of this statement is also true, i.e., IR-extendability is
characterized by absence of overdemand.

Lemma 3. An allocation x is IR-extendable if and only if no set of agents has overdemand at
x, i.e., for each S ⊆ N , dx(S) ≤ rx(I(S)).

Before we provide a proof of Lemma 3, we introduce a directed graph that turns out to be
a useful tool for the proof of Lemma 3 and for the description of an efficient implementation of
Single-Serial-IR rules.

Let (N, q, P ) be a market. Let N = {1, . . . , n} and let x be an allocation. Consider the
maximum flow problem associated with the directed graph Dx = (V,A, c) with nodes V, arcs A,
and arc-capacities c specified as follows. Let V = {s}∪U ∪W ∪{t}, where U = {u1, u2, . . . , un}
is the set corresponding to the agents and W = {w1, w2, . . . , wn} is the set corresponding to their
goods.12 Regarding the arcs, let uiwj ∈ A if j is an acceptable good to i, for each i let sui ∈ A
and for each j let wjt ∈ A. The capacities of the arcs depend on x: let c(sui) = dx(i) and
c(wjt) = rx(j), whilst we have no capacities (or equivalently, capacity ∞) on the arcs between
U and W . Let M denote the total remaining demand of the agents (and so the total number of
remaining goods), i.e., let M = dx(N) = rx(N), where the second equality follows from (4).

A flow ζ from the source s to the sink t in Dx has value of at most M and describes the
allocation of the remaining goods as follows. We say that an allocation y (of the remaining goods)
corresponds to ζ if yij = ζ(uiwj) for each pair (i, j) ∈ N × N . We also say that an allocation
x′ is the extension of x by y if x′ = x + y (i.e., x′

ij = xij + yij for each pair (i, j) ∈ N × N).
Note that x′ = x+ y is an individually rational circulation (in which case x is IR-extendable) if
and only if all the remaining goods are allocated in y, i.e., if and only if ζ is a maximum flow of
value M in Dx.
Proof of Lemma 3. We already noted that the “only if” part is immediate: if some set of agents
has overdemand at an allocation x then x is certainly not IR-extendable.

To prove the “if” part, suppose x is not IR-extendable, i.e., the maximum value of a flow in Dx

is strictly less than M . We will show that there exists a set S ⊆ N such that dx(S) > rx(I(S)).
The maximum flow – minimum cut theorem (see, e.g., Schrijver [36]) says that the value of a
maximum flow in Dx is always equal to the capacity of a minimum cut in Dx, where a cut is a
partition (V1, V2) of V such that s ∈ V1 and t ∈ V2, and its capacity is the total capacity of the
arcs going from V1 to V2. Let (V1, V2) be a minimum cut of capacity strictly less than M . We
complete the proof by showing that S ≡ V1 ∩ U has overdemand.

First note that S ̸= ∅ (otherwise U ⊆ V2 and (V1, V2) would have capacity ≥ M). But then
I(S) ̸= ∅ and I(S) ⊆ V1 (otherwise some j ∈ I(S) would be in V2 and (V1, V2) would have
infinite capacity). Since, trivially, I(S) ⊆ W , I(S) ⊆ V1 ∩W .

The set of arcs going from V1 to V2 are precisely those from s to U \ S, denoted by A1,
together with those from V1∩W to t, denoted by A2 This holds because it cannot contain an arc
from U to W , otherwise (V1, V2) would have infinite capacity. Since I(S) ⊆ V1 ∩W , A2 contains
all the arcs going from I(S) to t, denoted by A3. Hence, for the capacity c(A1 ∪ A2) of the cut
(V1, V2), we have

M > c(A1 ∪ A2) = c(A1) + c(A2) ≥ c(A1) + c(A3) =
∑

i∈N\S

c(sui) +
∑

j∈I(S)

c(wjt).

12More precisely, ui corresponds to agent i and wj corresponds to good j.
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Using
M = dx(N) =

∑
i∈S

c(sui) +
∑

i∈N\S

c(sui),

we then obtain

dx(S) =
∑
i∈S

c(sui) = M −
∑

i∈N\S

c(sui) >
∑

j∈I(S)

c(wjt) = rx(I(S)),

which completes the proof.

Remark 4. Lemma 3 is a generalization of Hall’s marriage theorem [17]. Using additional
notation and arguments, the lemma could be obtained from the original Hall’s theorem with
a graph reduction using as many copies of nodes in the corresponding bipartite graph as the
capacities of agents.13 We provided a straightforward proof of Lemma 3 instead which does not
rely on Hall’s theorem. Note also that parts of this proof are used in the proofs of Claims 1-5
below. ⋄

Let x be an IR-extendable allocation and let S ⊆ N . We say that S is constrained at x if the
total remaining capacity of the agents in S is equal to the number of units of remaining goods
that any member of S finds acceptable. Formally, S is constrained (at IR-extendable allocation
x) if dx(S) = rx(I(S)).

Remark 5. Note that ∅ and N are constrained at each IR-extendable allocation x. ⋄

Let x be an IR-extendable allocation. We say that agent i is unsatisfied at x if dx(i) > 0, i.e.,∑
k∈N xik < qi. Similarly, we say that good j is unallocated at x if rx(j) > 0, i.e.,

∑
k∈N xkj < qj.

Finally, we say that unallocated good j is feasible to receive for unsatisfied agent i (at IR-
extendable allocation x) if after giving one additional unit of good j to agent i, the resulting
allocation x′ is still IR-extendable (here x′ is the allocation defined by x′

ij = xij+1 and x′
kl = xkl

for all pairs (k, l) ̸= (i, j)).

Lemma 4. Let x be an IR-extendable allocation. Let i be an unsatisfied agent and j be an
unallocated good at x. Then good j is feasible to receive for agent i at x if and only if there exists
no constrained set S with i /∈ S and j ∈ I(S).

Proof. Let x′ be the allocation obtained from x by allocating one more unit of good j to agent
i. Let S ⊆ N . One easily verifies that if i /∈ S and j ∈ I(S) then

rx′(I(S)) = rx(I(S))− 1 and dx′(S) = dx(S). (5)

Similarly, if i ∈ S or j /∈ I(S) then

rx′(I(S))− dx′(S) ≥ rx(I(S))− dx(S) ≥ 0, (6)

where the last inequality follows from Lemma 3.
By definition, good j is feasible to receive for agent i at x if and only if x′ is IR-extendable.

Given Lemma 3, this is the case if and only if dx′(S) ≤ rx′(I(S)) for each S ⊆ N . The proof
is completed by observing that it follows from (5) and (6) that dx′(S) ≤ rx′(I(S)) for each
S ⊆ N if and only if there is no constrained set S at x (i.e., dx(S) = rx(I(S)) ) with i /∈ S and
j ∈ I(S).

13We are grateful to an anonymous reviewer for pointing out the connection with Hall’s marriage theorem.
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Lemma 5. Let x be an IR-extendable allocation. If S, T ⊆ N are constrained sets at x, then
S ∪ T and S ∩ T are also constrained sets at x.

Proof. Let x be an IR-extendable allocation. Suppose S, T ⊆ N are constrained sets at x. Then

dx(S ∩ T ) + dx(S ∪ T ) = dx(S) + dx(T )

= rx(I(S)) + rx(I(T ))

= rx(I(S) ∩ I(T )) + rx(I(S) ∪ I(T ))

≥ rx(I(S ∩ T )) + rx(I(S ∪ T )), (7)

where the first equality follows from the definition of dx, the second equality from S and T
being constrained sets at x, the third equality from the definition of rx, and the inequality is
due to I(S ∪ T ) = I(S) ∪ I(T ) and I(S ∩ T ) ⊆ I(S) ∩ I(T ). Since x is IR-extendable, it
follows from Lemma 3 that no set has overdemand at x. In particular, dx(S ∩T ) ≤ rx(I(S ∩T ))
and dx(S ∪ T ) ≤ rx(I(S ∪ T )). But then from (7) we have dx(S ∩ T ) = rx(I(S ∩ T )) and
dx(S ∪ T ) = rx(I(S ∪ T )), i.e., both S ∩ T and S ∪ T are constrained at x.

Let x be an IR-extendable allocation. We say that a constrained set S (at x) is minimal if
it is non-empty and it has no proper non-empty subset T ⊊ S that is also constrained (at x).
Note that, by Lemma 5, if S is a minimal constrained set and S ∩T ̸= ∅ for another constrained
set T ̸= S then S ⊊ T .

Lemma 6. Let x be an IR-extendable allocation. If i is an unsatisfied agent in a minimal
constrained set, then any unallocated good j that is acceptable to i is feasible for i to receive at x.

Proof. Let x be an IR-extendable allocation. Suppose for a contradiction that for some unsat-
isfied agent i in a minimal constrained set S there is an acceptable and unallocated good j that
is not feasible for i to receive at x (so, in particular, i ∈ S and j ∈ I(S)). By Lemma 4 there is
a constrained set T such that i /∈ T and j ∈ I(T ). Suppose S ∩ T = ∅. Then

dx(S ∪ T ) = dx(S) + dx(T )

= rx(I(S)) + rx(I(T ))

> rx(I(S ∪ T )),

where the first equality follows from S ∩ T = ∅, the second equality from the fact that both S
and T are constrained, and the inequality from j ∈ I(S) ∩ I(T ). Hence, S ∪ T has overdemand
at x, which contradicts Lemma 3.

Now suppose S ∩ T ̸= ∅. Since both S and T are constrained, it follows from Lemma 5 that
S ∩ T is also constrained at x. Since i /∈ S ∩ T , it follows that S ∩ T is a proper non-empty
subset of S, which contradicts the minimality of S.

Lemma 6 allows us to provide an alternative definition of the Single-Serial-IR rules which does
not require checking IR-extendability. The circulation obtained by applying the Single-Serial-
IR rule associated with a q-priority order to a preference profile can be computed as follows.
Initially, each agent’s assignment is empty. At each step, find the first entry in the q-priority
order, say ℓ, of a member in some minimal constrained subset, say i. Add one unit of agent i’s
most preferred available good to her assignment. Update the q-priority order by removing entry
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ℓ, and move to the next step. Next we provide a formal description of the alternative definition.

Alternative definition of the Single-Serial-IR rules.
Input: A q-priority order π and preferences over individual goods ≻.
Step 0: For each i ∈ N , let x0

i = 0i be agent i’s null assignment. Let Ñ = N denote the agents
present in the market. Let π̃ = π.
Step k = 1, . . . , Q: Let ik be the first agent in π̃ that belongs to a minimal constrained subset
of Ñ at allocation xk.14

Let j∗ ∈ N be the good with rxk(j∗) > 0 such that j∗ ⪰ik l for all l ∈ N with rxk(l) > 0. Define
xk by xk

ikj∗ = xk−1
ikj∗

+ 1 and xk
il = xk−1

il for all (i, l) ̸= (ik, j∗).
Update π̃ by removing15 the first instance of ik in π̃. If dxk(ik) = 0, then update Ñ = Ñ\{ik}.
Output: The circulation of the Single-Serial-IR rule associated with π evaluated at ≻ is xQ.

Remark 6. Other alternative definitions are possible. The reason is that it is not necessary
to pick the very first agent that belongs to some minimal constrained subset. According to the
arguments in the proof of Theorem 7, one could pick some other minimal constrained subset,
say S, and take the first agent (according to the q-priority order) that belongs to S. ⋄

Theorem 7. The alternative definition of Single-Serial-IR rules is equivalent to the original
definition.

Proof. To see that the alternative definition of a Single-Serial-IR rule is equivalent to its original
definition, it suffices to make the following observations. If at some step of the alternative
definition some S ⊊ Ñ is a minimal constrained set, then agents in Ñ\S can no longer receive
any good from I(S), since otherwise the allocation would not remain IR-extendable. Moreover,
the agents in S will obviously only choose from I(S), i.e., the goods they find acceptable. So we
can treat S independently from Ñ\S.

Finally, by rearranging the agents as described, the agents in turn can choose their most
preferred goods from the ones that are on the market, since these goods are feasible to receive
for them. If the minimal constrained set is Ñ then this is obvious. Moreover, if the minimal
constrained set S is a strict subset of Ñ , then any agent in S can in turn choose freely her most
preferred good among the ones that are still available in I(S), as stated in Lemma 6.

Corollary 8. Let P ∈ P. Let x be a circulation that is obtained by some Single-Serial-IR rule
applied to ≻P . Then there is a Single-Serial rule that also yields x at ≻P .

Proof. Let (i1, i2, . . . , iQ) be the q-priority order generated by the algorithm of the alternative
definition of the Single-Serial-IR rule applied to ≻P . Then the Single-Serial rule associated with
q-priority order (i1, i2, . . . , iQ) applied to ≻P gives the same circulation.

14Recall that (by our definition) minimality requires non-emptiness. So, ∅ is not a minimal constrained set.
Since N and N\Ñ are constrained at x, Ñ is also constrained at allocation x. Hence, there exists a minimal
constrained subset of Ñ .

15For instance, if at step 1 we have π̃ = (3, 2, 1, 2, 4) and i1 = 2, then the updated order is π̃ = (3, 1, 2, 4).
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Next we show that given an IR-extendable allocation we can decide efficiently whether any
given agent is involved in a minimal constrained set. The following lemma shows that it is suffi-
cient to show that for each agent we can determine in polynomial time the smallest constrained
set that contains the agent.16

Lemma 9. Let x be an IR-extendable allocation. For each j ∈ N , let Sj be the smallest con-
strained set at x that contains agent j. Then i ∈ N is in a minimal constrained set at x if and
only if for each j ∈ N , Si ⊆ Sj or Si ∩ Sj = ∅. Moreover, if i is in a minimal constrained set T
at x, then T = Si.

Proof. Suppose i ∈ N is in a minimal constrained set, say T , and that for some j ∈ N , neither
Si ⊆ Sj nor Si ∩ Sj = ∅. Then Si ∩ Sj is a non-empty, strict subset of Si. By Lemma 5,
Si ∩ Sj is constrained. Since Si is the smallest constrained set that contains i, Si ⊆ T . Hence,
∅ ≠ Si ∩ Sj ⊊ Si ⊆ T , in contradiction to the assumption that T is a minimal constrained set.

Suppose that for each j ∈ N , Si ⊆ Sj or Si ∩ Sj = ∅. We prove that Si is a minimal
constrained set. Suppose Si is not a minimal constrained set. Then there is a constrained set
T ⊆ N with ∅ ≠ T ⊊ Si. Let j ∈ T . From the first part of the proof Sj ⊆ Si or Sj∩Si = ∅. Since
j ∈ Si, Sj ⊆ Si. By assumption, Si ⊆ Sj. Thus, Si = Sj. Since Sj is the smallest constrained
set that contains i, Sj ⊆ T . Hence, Si = Sj ⊆ T , which contradicts T ⊊ Si. Therefore, Si is a
minimal constrained set (which contains i).

The second statement follows immediately from the second part of the proof.

Finding the smallest constrained set that contains a given agent.
Input: A preference profile ≻, an IR-extendable allocation x, and an agent i ∈ N .
Step 1: From the directed graph Dx = (V,A, c) construct the directed graph D′

x = (V,A, c′) by
only increasing the capacity of arc sui by one, i.e., c′(sui) = c(sui) + 1 and c′(a) = c(a) for all
arcs a ̸= sui.
Step 2: Run the Ford-Fulkerson algorithm (see, e.g., Schrijver [36]) to find the smallest minimum
cut (V ∗

1 , V
∗
2 ) of D′

x. In other words, for each minimum cut (V1, V2) of D′
x, V ∗

1 ⊆ V1.
Output: Let S={j ∈ N :uj ∈ V1}. Set S is the smallest constrained set at x that contains i.

Claims 1–5 below establish that the algorithm above is well-defined and yields the asserted
output.

Claim 1. Each minimum cut (V1, V2) of D′
x has capacity dx(N), i.e., the capacity of each

minimum cut of Dx. Moreover, ui ∈ V1.

Proof. Let (V1, V2) be a minimum cut of D′
x. Let v′ be the capacity of (V1, V2). Since x is

IR-extendable, it follows from the discussion that precedes the proof of Lemma 3 that dx(N) is
the capacity of each minimum cut of Dx. Denote v = dx(N).

On the one hand, since c′ ≥ c we have v′ ≥ v. On the other hand, v′ ≤
∑

j∈N c′(wjt) =∑
j∈N c(wjt) = rx(N) = v. Here the inequality follows from the maximum flow – minimum cut

theorem and the fact that the maximum flow in D′
x is at most

∑
j∈N c′(wjt). The last equality

follows from (4). Hence, v′ = v = dx(N).
16Let x be an IR-extendable allocation and i ∈ N . Let S be the collection of constrained sets at x that contain

i. From Remark 5, N ∈ S. Hence, S ̸= ∅. From Lemma 5 it follows that ∩S∈SS is the smallest constrained set
at x that contains agent i.
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Suppose ui ̸∈ V1. Suppose (V1, V2) is not a minimum cut of Dx. Since s ∈ V1 and ui ̸∈ V1, arc
(s, ui) is in (V1, V2). Now note that the only difference between D′

x and Dx is the capacity of arc
(s, ui): c′(sui) > c(sui). Thus, (V1, V2) is not a minimum cut of D′

x either. This contradiction
proves that (V1, V2) is a min cut of Dx. Since sui ∈ A ∩ (V1 × V2), v =

∑
a∈A∩(V1×V2)

c(a) =∑
a∈A∩(V1×V2)

c′(a)− 1 = v′ − 1, which contradicts v′ = v. Hence, ui ∈ V1.

Claim 2. There is a (unique) smallest minimum cut (V ∗
1 , V

∗
2 ) of D′

x. The Ford-Fulkerson algo-
rithm can be used to find this smallest minimum cut.

Proof. Let (Y1, Y2) and (Z1, Z2) (or Y1 and Z1 for short) be minimum cuts. Then, for the
capacities of the cuts Y1 ∩ Z1 and Y1 ∪ Z1, one easily establishes that c(Y1 ∩ Z1) + c(Y1 ∪ Z1) ≤
c(Y1)+ c(Z1). From the minimality of the cuts Y1 and Z1, c(Y1∩Z1), c(Y1∪Z1) ≥ c(Y1) = c(Z1).
Hence, c(Y1 ∩ Z1) = c(Y1 ∪ Z1) = c(Y1) = c(Z1). So, Y1 ∩ Z1 is a minimum cut.

Let C be the collection of minimum cuts Y . From the above it follows that ∩Y ∈CY is the
smallest minimum cut. It is well-known that the Ford-Fulkerson algorithm can be used to find
this smallest minimum cut.17

Claim 3. The set S≡{j ∈ N :uj ∈ V ∗
1 } is constrained at x and contains i.

Proof. From Claim 1, i ∈ S. Note that

A ∩ [(V ∗
1 ∩ U)× (V ∗

2 ∩W )] = ∅; (8)

otherwise (V ∗
1 , V

∗
2 ) would have infinite capacity, contradicting Claim 1. Therefore, the capacity

of the cut (V ∗
1 , V

∗
2 ) of D′

x equals

c′(V ∗
1 , V

∗
2 ) ≡

∑
v∈V ∗

2 ∩U

c′(sv) +
∑

a∈A∩[(V ∗
1 ∩U)×(V ∗

2 ∩W )]

c′(a) +
∑

v∈V ∗
1 ∩W

c′(vt)

=
∑

j∈N\S

c′(suj) +
∑

wl∈V ∗
1 ∩W

c′(wlt). (9)

Next, define W (I(S)) ≡ {wk : k ∈ I(S)}. We prove that

W (I(S)) ⊆ V ∗
1 ∩W and, for each wk ∈ (V ∗

1 ∩W )\W (I(S)), rx(k) = 0. (10)

Suppose that for some k ∈ I(S), wk ∈ V ∗
2 . Since k ∈ I(S), there is j ∈ S for which good k is

acceptable, i.e., ujwk ∈ A. Since j ∈ S, uj ∈ V ∗
1 . This yields a contradiction to (8). Therefore,

the first part of (10) holds.
To prove the second part of (10), suppose that for some wk ∈ (V ∗

1 ∩W )\W (I(S)) we have
rx(k) > 0. Since wk ̸∈ W (I(S)), k ̸∈ I(S). Hence, there is no j ∈ N with uj ∈ V ∗

1 that finds k
acceptable. So,

there is no arc in A that goes from some node in V ∗
1 to wk. (11)

Then the capacity of the cut (V ∗
1 \{wk}, V ∗

2 ∪ {wk}) of D′
x equals∑

v∈(V ∗
2 ∪{wk})∩U

c′(sv) +
∑

a∈A∩[(V ∗
1 \{wk})∩U ]×[(V ∗

2 ∪{wk})∩W ]

c′(a) +
∑

v∈(V ∗
1 \{wk})∩W

c′(vt) =

∑
j∈N\S

c′(suj) +
∑

wl∈(V ∗
1 \{wk})∩W

c′(wlt) = c′(V ∗
1 , V

∗
2 )− c′(wkt) < c′(V ∗

1 , V
∗
2 ), (12)

17A proof is available from the authors upon request.
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where the first equality follows from (8) and (11), the second equality from (9), and the inequality
from c(wkt) = rx(k) > 0. Inequality (12) contradicts that (V ∗

1 , V
∗
2 ) is a minimum cut of D′

x

(Claim 2). Hence, the second part of (10) holds. This completes the proof of (10).
Finally, we show that S is constrained at x. The capacity of the cut (V ∗

1 , V
∗
2 ) of D′

x equals

dx(N) =
∑

j∈N\S

c′(suj) +
∑

wl∈V ∗
1 ∩W

c′(wlt)

=
∑

j∈N\S

dx(j) +
∑

wl∈V ∗
1 ∩W

rx(l)

=
∑

j∈N\S

dx(j) +
∑

wl∈W (I(S))

rx(l)

=
∑

j∈N\S

dx(j) +
∑
l∈I(S)

rx(l)

= [dx(N)− dx(S)] + rx(I(S)),

where the first equality follows from Claim 1 and (9), the second equality from i ∈ S and the
definition of the capacities c′ of the arcs, and the third equality from (10). Hence, dx(S) =
rx(I(S)), i.e., S is constrained at x.

Claim 4. Let T ⊆ N be a constrained set at x that contains i. Let

V̄1 ≡ {s} ∪ {uj : j ∈ T} ∪ {wl : l ∈ I(T )}

and V̄2 ≡ V \V̄1. Then (V̄1, V̄2) is a minimum cut of D′
x.

Proof. First note that by the definition of (V̄1, V̄2) and A,

A ∩ [(V̄1 ∩ U)× (V̄2 ∩W )] = A ∩ [{uj : j ∈ T} × {wl : l ̸∈ I(T )}] = ∅. (13)

The capacity of the cut (V̄1, V̄2) of D′
x equals∑

v∈V̄2∩U

c′(sv) +
∑

a∈A∩[(V̄1∩U)×(V̄2∩W )]

c′(a) +
∑

v∈V̄1∩W

c′(vt) =

∑
j∈N\T

c′(suj) +
∑

l∈I(T )

c′(wlt) =

dx(N)− dx(T ) + rx(I(T )) = dx(N)

where the first equality follows from (13), the second equality from i ∈ T and the definition of
the capacities c′ of the arcs, and the third equality from the fact that T is constrained at x.
Hence, by Claim 1, (V̄1, V̄2) is a minimum cut of D′

x.

Claim 5. Set S is the smallest constrained set at x that contains i.

Proof. From Claim 3, S is a constrained set at x that contains i. Let T ⊆ N be a constrained
set at x that contains i. Let (V̄1, V̄2) be the minimum cut of D′

x induced by T , as stated in
Claim 4. From Claim 2, V ∗

1 ⊆ V̄1. Then V ∗
1 ∩U ⊆ V̄1 ∩U . Thus, S = {j ∈ N : uj ∈ V ∗

1 } ⊆ {j ∈
N : uj ∈ V̄1} = T .
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Corollary 10 below shows that, from a computational point of view, the alternative definition
of Single-Serial-IR rules provides an efficient implementation.18

Corollary 10. Single-Serial-IR rules can be efficiently implemented through their alternative
definition. The runtime is bounded by O(n6Q).

Proof. Using the alternative definition (Theorem 7), at each step k = 1, . . . , Q we have to
compute at most n smallest constrained sets to find the first agent i in the remaining q-priority
order π̃ such that i is in a minimal constrained set. Throughout, the number of edges in the
graph is |E| ≤ n2 + 2n and the number of vertices in the graph is |V | ≤ 2n+ 2. Then, since the
runtime of Ford-Fulkerson algorithm is bounded by O(|V | · |E|2) = O(n5) (see e.g. [36]), the total
runtime (of applying at most nQ times the algorithm) is bounded by O(nQ · n5) = O(n6Q).

Proposition 11. (i) Let P ∈ P be a profile of preferences. Let x be a circulation that is
obtained by some Single-Serial-IR rule applied to ≻P . Then x is individually rational at P and
if preferences are lexicographic it is also Pareto-efficient at P .
(ii) Let P ∈ P be a profile of preferences. Let x be a circulation that is individually rational and
Pareto-efficient at P . Then x is obtained by some Single-Serial-IR rule applied to ≻P .

Proof. We first prove (i). Let f be a Single-Serial-IR rule. By the definition of f , x = f(≻P )
is individually rational at P . Suppose preferences P are lexicographic. We show that x is also
Pareto-efficient at P . By Corollary 8, there is a q-priority order π such that x is obtained by
letting the agents sequentially choose their most preferred (and available) goods, following π. In
other words, the Single-Serial rule based on π and applied to ≻P yields x. Then, by Lemma 1,
x is Pareto-efficient at P .

Next we prove (ii). Let P be a profile of preferences. Let x be a circulation that is individually
rational and Pareto-efficient at P . By Proposition 2, there is a Single-Serial rule associated with
some q-priority order π that yields x at ≻P . By Remark 3, the Single-Serial-IR rule associated
with π also yields x at ≻P .

We note that Remark 3 and Example 2 show that requiring lexicographic preferences cannot
be omitted from the last part of (i) in Proposition 11.

Corollary 12. Single-Serial-IR rules are individually rational and ig-Pareto-efficient.

Remark 7. Biró et al. [4] showed that the cTTC rule τ (a generalization of the top trading
cycles rule) is individually rational and ig-Pareto-efficient. Therefore, by Proposition 11, for
each profile of lexicographic preferences P , the circulation τ(P ) can be obtained by some Single-
Serial-IR rule. More specifically, the Single-Serial-IR rule that is based on the q-priority order
generated by the top trading cycles during the execution of the generalized top trading cycles
algorithm, where the order among the agents in the same top trading cycle can be arbitrary,
yields the circulation τ(P ). ⋄

18We note that deciding whether an allocation x is IR-extendable is also possible with a more general strongly
polynomial algorithm (i.e., the running time of the algorithm is polynomial in the number of agents and does not
depend on the number of goods or the characteristic of the allocation concerned). This follows from the solvability
of the classical circulation problem with lower arc-capacities (see, e.g., Schrijver [36]). Using our terminology,
the latter problem focuses on the question whether there exists an individually rational circulation given the
acceptability graph, the capacities of the nodes, and the lower arc-capacities (which equal the flow through the
arcs as stipulated by the allocation x).
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4 Multiple-Serial rules
The Multiple-Serial rule associated with an order of the agents is defined as follows. Fix
a preference profile. Following the order, each agent sequentially chooses her most preferred
bundle among the remaining goods (i.e., goods that have not been exhausted yet). Next we
provide a formal definition.

Input: An order π = (i1, . . . , in) of the agents and a preference profile P ∈ P .
Step 0: For each i ∈ N , let x0

i = 0i be agent i’s null assignment.
Step k = 1, . . . , n: Let Yik denote the collection of available bundles for agent ik, i.e.,

Yik = {xik ∈ Xik : for each good j ∈ N, xikj ≤ rxk−1(j)} .

Let y∗ik ∈ Yik be the bundle such that for each yik ∈ Yik , y∗ikRikyik . Define xk by setting xk
ik
= y∗ik

and xk
i = xk−1

i for all i ̸= ik.
Output: The circulation of the Multiple-Serial rule associated with π evaluated at profile P is
xn.

An important observation is that Multiple-Serial rules operate on the underlying profiles of
ordinal preferences over individual goods, i.e., (3) is satisfied. This observation follows from
responsiveness: an agent’s most preferred bundle from the remaining goods coincides with the
bundle obtained from a greedy procedure where the agent picks the most preferred (and available)
goods one by one. Therefore, when analyzing the computational complexity of Multiple-Serial
rules, we can assume that the input of the algorithm is ≻P , rather than P .

Obviously, Multiple-Serial rules need not be individually rational: the Single-Serial rule that
yields an individually irrational circulation in Example 1 is a Multiple-Serial rule, since all agents’
capacities are equal to one. The following result is immediate.

Proposition 13. Multiple-Serial rules are Pareto-efficient.

Next we introduce and study Multiple-Serial-IR rules which are the rules obtained by ad-
justing the Multiple-Serial rules to guarantee individual rationality while maintaining Pareto-
efficiency.

4.1 Multiple-Serial-IR rules

Since Multiple-Serial rules do not necessarily yield individually rational circulations, we adjust
them by demanding that for each (sequential) choice of a bundle the resulting allocation be
IR-extendable. The adjusted serial rules will henceforth be referred to as Multiple-Serial-IR
rules.

Input: An order π = (i1, . . . , in) of the agents and a preference profile P ∈ P .
Step 0: For each i ∈ N , let x0

i = 0i be agent i’s null assignment.
Step k = 1, . . . , n: Let Yik denote the collection of bundles yik ∈ Xik for agent ik such that

• for each good j ∈ N, yikj ≤ rxk−1(j) and
• the allocation z defined by zik = yik and zi = xk−1

i for all i ̸= ik is IR-extendable.
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Let y∗ik ∈ Yik be the bundle such that for each yik ∈ Yik , y∗ikRikyik . Define xk by setting xk
ik
= y∗ik

and xk
i = xk−1

i for all i ̸= ik.
Output: The circulation of the Multiple-Serial-IR rule associated with π evaluated at profile
P is xn.

Remark 8. If a Multiple-Serial rule associated with some order π yields an individually rational
circulation x at a preference profile P , then the Multiple-Serial-IR rule associated with π also
yields circulation x at P . ⋄

Next we show that Multiple-Serial-IR rules operate on the underlying profiles of ordinal
preferences over individual goods, i.e., (3) is satisfied. This will allow us to assume that the
input of the algorithm above is ≻P , rather than P , and show that Multiple-Serial-IR rules can
be efficiently implemented for such concise inputs.

We first prove a technical lemma. Given an IR-extendable allocation x, we say that an
assignment yi is feasible to receive for agent i (at x) if after giving the goods in yi to agent i (on
top of those in xi), the resulting allocation x′ is IR-extendable (here x′ is the allocation defined
by x′

ij = xij + yij for all j and x′
l = xl for all l ̸= i).

Lemma 14. Let i ∈ N . Let x be an IR-extendable allocation and let yi and zi be two assignments
that are both feasible to receive for agent i at x and such that |yi| < |zi|. Then there is a good j
in zi such that after adding j to yi the extended assignment is also feasible to receive for agent i
at x.

Proof. Let i ∈ N . First we prove the lemma for |yi| = 1 and |zi| = 2. Suppose that the statement
is not true. Let yi consist of good j and let zi consist of two goods, k and l, with the possibility
that k = l. Let x′ denote the extension of x by yi and let x′′ denote the extension of x by zi.
Note that x′ and x′′ are both IR-extendable but, by our assumption, at x′ neither k nor l is
feasible to receive for i. Therefore, by Lemma 4, there is a constrained set S at x′ such that
i /∈ S and k ∈ I(S), and similarly, there is a constrained set T (which possibly coincides with
S) at x′ such that i /∈ T and l ∈ I(T ). In particular, k, l ∈ I(S) ∪ I(T ) = I(S ∪ T ).

Note that x′ only differs from x by adding a unit of good j to xi. Since i ̸∈ S, it follows
that for each s ∈ S, dx(s) = dx′(s). Hence, dx(S) = dx′(S). Suppose j ̸∈ I(S). Then, for each
s ∈ I(S), rx(s) = rx′(s). Hence, rx(I(S)) = rx′(I(S)). Since k is feasible to receive for i at x,
it follows from Lemma 4 that S is not constrained at x. Thus, dx(S) ̸= rx(I(S)). But then it
follows from the above that dx′(S) ̸= rx′(I(S)) as well, which contradicts that S is constrained
at x′. Hence, j ∈ I(S). Similarly, j ∈ I(T ). Hence, j ∈ I(S) ∪ I(T ) = I(S ∪ T ).

We now show that S ∪ T has overdemand at x′′. First, since i ̸∈ S ∪ T , it follows that for all
p ∈ S ∪ T we have x′

p = xp = x′′
p. Thus, dx′(S ∪ T ) = dx′′(S ∪ T ). Second, by the definitions of

x′ and x′′ and the fact that j, k, l ∈ I(S ∪ T ), it follows that rx(I(S ∪ T )) = rx′(I(S ∪ T )) + 1
and rx′′(I(S ∪ T )) = rx(I(S ∪ T ))− 2. Hence, rx′′(I(S ∪ T )) = rx′(I(S ∪ T ))− 1. By Lemma 5,
S ∪ T is a constrained set at x′. Therefore,

dx′′(S ∪ T ) = dx′(S ∪ T ) = rx′(I(S ∪ T )) = rx′′(I(S ∪ T )) + 1,

which shows that S ∪ T has overdemand at x′′. Using Lemma 3 we obtain a contradiction with
the fact that x′′ is IR-extendable. Hence, the lemma holds when |yi| = 1 and |zi| = 2.

23



Now we complete the proof of the lemma by extending the previous argument and by using
the above subcase. Suppose the lemma is not true. Among all triples (x, yi, zi) that violate the
statement pick one for which |yi| is minimal. Note |yi| > 0.

Next, note that yi and zi do not have any good in common. Otherwise, this good could be
added to xi and omitted from both yi and zi, resulting in another triple, say (x′, y′i, z

′
i), which

violates the statement while |y′i| < |yi|, contradicting the minimality of |yi|.
Let k be some good in yi. Let y′i be the assignment that results from removing good k from

yi. (Then obviously y′i is feasible to receive for agent i at x.) If there is still no good from zi that
can be added to y′i while keeping the thus extended assignment feasible to receive for i at x, then
the triple (x, y′i, zi) violates the statement while |y′i| < |yi|, which contradicts the minimality of
|yi|. Hence, there is a good in zi, say j, that can be added to y′i such that the thus extended
assignment (say y′′i ) would still be feasible to receive for i at x.

Extend x by assigning j to i and let x′ be the resulting allocation, i.e., the only difference
between x and x′ is that x′

ij = xij + 1. Let z′i be the assignment obtained from zi by removing
good j. We will show that the triple (x′, y′i, z

′
i) also violates the statement and, since |y′i| < |yi|,

we obtain a contradiction with the minimality of |yi|. First, by definition of x′ and good j,
assignments y′i and z′i are both feasible to receive for agent i at x′. Moreover, since |yi| < |zi|, we
also have |y′i| < |z′i|. Finally, there is no good l in z′i such that after adding l to y′i the extended
assignment is also feasible to receive for agent i at x′. To show the last claim, suppose this is
not the case, i.e., (⋆) there does exist a good l in z′i such that after adding l to y′i the extended
assignment is also feasible to receive for agent i at x′. Then consider the triple (x∗, y∗i , z

∗
i ) where

x∗ is obtained from x by adding y′i to xi and where y∗i is the assignment that consists of good k
and z∗i is the assignment that consists of goods j and l.

We verify that (x∗, y∗i , z
∗
i ) violates the statement of the lemma. First, since y′i is feasible to

receive for agent i at x, allocation x∗ is IR-extendable. Second, |y∗i | = 1 < 2 = |z∗i |. Third, since
yi is feasible to receive for agent i at x, it follows that y∗i is feasible to receive for agent i at x∗.
Fourth, by (⋆), z∗i is feasible to receive for agent i at x∗. Finally, since (x, yi, zi) violates the
statement, it follows that we cannot add either good j or good l to y∗i such that the extended
assignment is feasible to receive for agent i at x∗. However, given that |y∗i | = 1 and |z∗i | = 2,
it follows from the first part of the proof that (x∗, y∗i , z

∗
i ) does not violate the statement of the

lemma. This contradiction completes the proof.

Theorem 15. Each Multiple-Serial-IR rule operates on the underlying profiles of ordinal pref-
erences over individual goods, i.e., (3) is satisfied. More precisely, the bundle of each agent can
also be obtained in a greedy way by selecting (when it is her turn) one by one the most preferred
goods from the goods that are feasible to receive for the agent.

Proof. First note that checking IR-extendability only requires the ordinal preferences over indi-
vidual goods. Hence, to determine whether a good is feasible to receive also only requires the
ordinal preferences over individual goods.

Let i ∈ N . Let the greedy method yield bundle gi for agent i. Suppose that the Multiple-
Serial-IR rule yields a different bundle, say fi.

Let us order the goods in both gi and fi according to agent i’s ordinal preferences over
individual goods. More specifically, for each k ∈ {1, . . . , qi}, let fi(k) and gi(k) be the k-th most
preferred good in fi and gi, respectively. (Note that some good may appear multiple times in fi
and/or gi. Therefore it is possible that for some k ∈ {1, . . . , qi} we have fi(k) = fi(k+1) and/or
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gi(k) = gi(k + 1).) Suppose i weakly prefers gi(k) to fi(k) for each k ∈ {1, . . . , qi}. Then, by
responsiveness, gi is weakly preferred to fi. Since gi ̸= fi, it follows that gi is strictly preferred
to fi, which contradicts the optimality of agent i’s choice in the Multiple-Serial-IR rule.

Therefore, there is some index k ∈ {1, . . . , qi} such that i strictly prefers fi(k) to gi(k),
and thus i also strictly prefers each of the goods fi(l) with 1 ≤ l ≤ k to gi(k). Let zi be the
assignment that consists of the k most preferred goods in fi and let yi be the assignment that
consists of the k − 1 most preferred goods in gi (here multiple units of the same good are also
counted). By Lemma 14, there is a good j in zi such that after adding j to yi the extended
assignment is also feasible to receive for agent i, which contradicts the selection of the greedy
method.

Remark 9. Theorem 15 can be proved alternatively using matroids as follows.19 Let i ∈ N . Let
x be an IR-extendable allocation. The collection M of sets of up to k goods (k ≤ rx(i)) that are
feasible to receive for i at x subject to IR-extendability is a matroid. To see this, note that the
exchangeability property of matroids is precisely the contents of Lemma 14 (the other matroid
properties are satisfied trivially). Thus, by applying Theorem 1 in Gourvès [16] it follows that
for any responsive preferences Pi, the most preferred bundle of k goods in M can be obtained
by choosing k goods greedily according to ≻Pi , which shows Theorem 15. ⋄

Corollary 16. Each Multiple-Serial-IR rule is a Single-Serial-IR rule. In particular, it can be
efficiently implemented.

Proof. Consider any Multiple-Serial-IR rule. Let π = (i1, . . . , in) be the associated order of the
agents. Let π̄ be the q-priority order in which the first q1 entries are agent i1, the next q2 entries
are agent i2, etc. According to Theorem 15, the Multiple-Serial-IR rule (associated with π)
coincides with the Single-Serial-IR rule associated with π̄. Then efficient implementation follows
from Corollary 10.

The following proposition follows easily from the definition of the Multiple-Serial-IR rules.

Proposition 17. Multiple-Serial-IR rules are individually rational and Pareto-efficient.

Proof. Individual rationality is immediate. Suppose a Multiple-Serial-IR rule associated with
order π = (i1, . . . , in) is not Pareto-efficient. Then there is a preference profile P ∈ P such
that the rule applied to P gives a circulation x that is Pareto-dominated by some circulation
x′. Following the order π, consider the first agent ik such that xik ̸= x′

ik
. Since x′

ik
Pikxik , it

follows from Step k of the definition of the Multiple-Serial-IR rule that x′ cannot be individually
rational. So, there is an agent i ∈ N for which eiPix

′
i. Since x is individually rational, xiRiei.

Hence, xiPix
′
i which contradicts the fact that x′ Pareto-dominates x.

Proposition 17 also shows that individual rationality and Pareto-efficiency together are com-
patible with our requirement that circulation rules operate on the underlying profiles of ordinal
preferences over individual goods.

Corollary 18. There are individually rational and Pareto-efficient rules.
19We are grateful to an anonymous reviewer for pointing out the alternative approach with matroids.
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A converse to Proposition 17 does not hold. More precisely, there are markets where some
individually rational and Pareto-efficient circulation cannot be obtained with any Multiple-Serial-
IR rule (and hence, by Remark 8, also not with any Multiple-Serial rule; thus a converse state-
ment to Proposition 13 does not hold either). We demonstrate this with the following example.

Example 4. Consider the market (N, q, P ) where N = {1, 2, 3}, q1 = q2 = q3 = 2, and consider
preferences P such that the underlying preferences ≻i (i ∈ N) over acceptable individual goods
are as follows:

1 : 3 ≻1 1
2 : 3 ≻2 2
3 : 1 ≻3 2 ≻3 3

The three circulations
x : x13 = x22 = x31 = 2,
x′ : x′

11 = x′
23 = x′

32 = 2, and
x′′ : x′′

11 = x′′
13 = x′′

22 = x′′
23 = x′′

31 = x′′
32 = 1

are individually rational and Pareto-efficient independently of the particular responsive prefer-
ences P3 of agent 3 over bundles (in particular, we can assume that all preferences are lexico-
graphic).20 However, the only (individually rational and Pareto-efficient) circulations that can
be obtained by Multiple-Serial-IR rules are x and x′. Specifically, orders (1,2,3), (1,3,2), (3,1,2),
and (3,2,1) yield x, while orders (2,1,3) and (2,3,1) yield x′. Thus, the individually rational and
Pareto-efficient circulation x′′ cannot be obtained by any Multiple-Serial-IR rule.

Given Remark 8, it is clear that the class of Multiple-Serial rules can only yield a subset of the
circulations obtained by the Multiple-Serial-IR rules, in addition to possibly some individually
irrational circulations. Specifically in this example, Multiple-Serial rules lead to the following:
orders (1,2,3), (1,3,2), and (3,1,2) yield x, order (2,1,3) yields x′, and orders (2,3,1) and (3,2,1)
yield the individually irrational circulation y given by y12 = y23 = y31 = 2. Therefore, the
individually rational and Pareto-efficient circulation x′′ cannot be obtained by any Multiple-
Serial rule either. ⋄

Example 4 together with Proposition 11 demonstrate an interesting difference between
Multiple-Serial-IR and Single-Serial-IR rules: given any profile of lexicographic preferences P
and any circulation x that is individually rational and Pareto-efficient at P , x can be obtained
by some Single-Serial-IR rule, but possibly not by any Multiple-Serial-IR rule.

When we compare the Single-Serial rules with the Multiple-Serial rules (with or without
individual rationality), the Multiple-Serial rules achieve Pareto-efficiency even for responsive
preferences, but the price we pay is that not all Pareto-efficient circulations can be obtained as
illustrated by Example 4. In particular, the circulations obtained by the Multiple-Serial rules
tend to be rather unfair, since the agents who choose first can obtain the goods that possibly
all agents prefer most. More “equitable” (but still Pareto-efficient) circulations in which several
agents receive (possibly commonly) most preferred goods are typically not obtained through
Multiple-Serial rules. This indicates that there is a trade-off between the rule being Pareto-
efficient for responsive preferences and being “equitable.”

20Given ≻1 and ≻2, the responsive preferences P1 and P2 of agents 1 and 2 are uniquely determined. For agent
3, ≻3 together with responsiveness does not specify whether receiving two units of good 2 is preferred to one unit
of good 1 together with one unit of good 3.
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5 Manipulability
In this section, we determine which of our rules satisfy incentive properties. As a starting point,
we note that Proposition 1 in Biró et al. [4] shows that individual rationality and ig-Pareto-
efficiency are not compatible with another important desideratum, ig-strategy-proofness. For
any P ∈ P and any i ∈ N , denote P−i = (Pj)j ̸=i.

Definition 3. Agent i ∈ N can manipulate circulation rule f at P ∈ P if there exists a deviation
P ′
i ∈ Pi such that fi(P

′
i , P−i)Pifi(P ). A circulation rule f is (necessarily) strategy-proof if no

agent can manipulate f at any P ∈ P . A circulation rule f is ig-strategy-proof if no agent can
manipulate f at any profile of lexicographic preferences P ∈ PL.21 ⋄

The following example illustrates the incompatibility of individual rationality, ig-Pareto-
efficiency, and ig-strategy-proofness. Specifically, Serial-IR rules satisfies the first two properties,
and are hence vulnerable to manipulations.

Example 5. Consider the market (N, q, P ) where N = {1, 2, 3}, q1 = q2 = q3 = 1, and
lexicographic preferences P such that the preferences over acceptable goods are given by

1 : 3 ≻1 1
2 : 3 ≻2 1 ≻2 2
3 : 2 ≻3 3

Consider the Single-Serial-IR rule associated with the order (1, 2, 3). This rule yields circulation
x where x13 = x21 = x32 = 1. However, if agent 2 removes good 1 from her list of acceptable
goods then the rule yields circulation x′ where x′

11 = x′
23 = x′

32 = 1. Obviously, agent 2 prefers
x′
2 to x2. ⋄

The literature considered several weaker incentive properties, which we explore next. For
each agent i ∈ N , let Li denote the set of strict (ordinal) preferences over individual goods for
agent i. A truncation of a preference list over individual goods is a preference list obtained
by making some of the lowest-ranked acceptable goods unacceptable. Formally, a preference
≻′

i ∈ Li is a truncation of ≻i ∈ Li if for all k, l ∈ N we have [if k ⪰′
i l ⪰′

i i, then k ⪰i l ⪰i i]
and [if k ≻′

i i and l ≻i k, then l ≻′
i i]. The first condition says that if two goods are listed

as acceptable under the “manipulation” ≻′
i, then they are ordered in the same way as in the

true preferences ≻i. The second condition says that if a good is listed as acceptable under the
“manipulation” ≻′

i and there is some other good that is more preferred in the true preferences
≻i, then the latter good is also acceptable under the “manipulation” ≻′

i.

Definition 4. Agent i ∈ N can manipulate circulation rule f at P ∈ P by means of truncation
if there exists a deviation P ′

i ∈ Pi such that ≻P ′
i is a truncation of ≻Pi and fi(P

′
i , P−i)Pifi(P ).

A circulation rule f is (necessarily) truncation-proof if no agent can manipulate f at any P ∈ P
by means of truncation.22 A circulation rule f is ig-truncation-proof if no agent can manipulate
f by means of truncation at any profile P ∈ PL of lexicographic preferences.23 ⋄

21Since circulation rules operate on profiles of ordinal preferences over individual goods, equivalent definitions
of strategy-proofness and ig-strategy-proofness are obtained by demanding that the deviation P ′

i is lexicographic.
22Kojima [23] similarly defined “non-manipulability via truncation” in the context of resource allocation with

multi-unit demand.
23Since circulation rules operate on profiles of ordinal preferences over individual goods, equivalent definitions of

truncation-proofness and ig-truncation-proofness are obtained by requiring that the deviation P ′
i is lexicographic.
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A preference ≻′
i ∈ Li is a dropping of ≻i ∈ Li if for all k, l ∈ N , [if k ⪰′

i l ⪰′
i i, then

k ⪰i l ⪰i i]. Obviously, since the requirement in the definition of dropping is exactly the first
condition in the definition of truncation, it follows that each truncation is a dropping.

Definition 5. Agent i ∈ N can manipulate circulation rule f at P ∈ P by means of dropping
if there exists a deviation P ′

i ∈ Pi such that ≻P ′
i is a dropping of ≻Pi and fi(P

′
i , P−i)Pifi(P ). A

circulation rule f is (necessarily) dropping-proof if no agent can manipulate f at any P ∈ P by
means of dropping. A circulation rule f is ig-dropping-proof if no agent can manipulate f by
means of dropping at any profile P ∈ PL of lexicographic preferences.24 ⋄

Note that strategy-proofness implies dropping-proofness, which in turn implies truncation-
proofness. Similarly, ig-strategy-proofness implies ig-dropping-proofness, which in turn implies
ig-truncation-proofness.

Since preferences are lexicographic and agent 2’s manipulation is a truncation, Example 5
provides an instance of a Single-Serial-IR rule that is not ig-truncation-proof. Hence, there are
Single-Serial-IR rules that do not satisfy any of the six incentive properties! Note that since in
Example 5 each agent’s capacity equals one, the Single-Serial-IR rule is a Multiple-Serial-IR rule.
Thus, there are Multiple-Serial-IR rules that do not satisfy any of the six incentive properties.

However, as a positive result we show that Multiple-Serial-IR rules are safe against so-called
swapping manipulations. A preference ≻′

i ∈ Li is a swapping of ≻i ∈ Li if for all k ∈ N ,
k ⪰i i ⇐⇒ k ⪰′

i i. Hence, a swapping can swap (the order of) goods, but what is (un)acceptable
remains (un)acceptable.

Definition 6. Agent i ∈ N can manipulate circulation rule f at P ∈ P by means of swapping
if there exists a deviation P ′

i ∈ Pi such that ≻P ′
i is a swapping of ≻Pi and fi(P

′
i , P−i)Pifi(P ). A

circulation rule f is (necessarily) swapping-proof if no agent can manipulate f at any P ∈ P by
means of swapping. A circulation rule f is ig-swapping-proof if no agent can manipulate f by
means of swapping at any profile P ∈ PL of lexicographic preferences.25 ⋄

Proposition 19. Multiple-Serial-IR rules are swapping-proof.

Proof. Consider the kth agent, say ik, in the order of a Multiple-Serial-IR rule. This agent
cannot change the choices of the first k − 1 agents by replacing her true preferences by some
swapping. The reason is that restrictions on choices are determined by IR-extendability, which
does not vary between agent ik’s true preferences and any swapping (because the set of acceptable
goods is the same). Furthermore, at step k, agent ik weakly prefers choosing her most preferred
(feasible) bundle with respect to her true preferences to choosing her most preferred (feasible)
bundle with respect to any swapping.

An agent i ∈ N is said to be of unit-capacity if qi = 1.

Corollary 20. Single-Serial-IR rules are swapping-proof for unit-capacity agents.

24Since circulation rules operate on profiles of ordinal preferences over individual goods, equivalent definitions
of dropping-proofness and ig-dropping-proofness are obtained by requiring that the deviation P ′

i is lexicographic.
25Since circulation rules operate on profiles of ordinal preferences over individual goods, equivalent definitions

of swapping-proofness and ig-swapping-proofness are obtained by requiring that the deviation P ′
i is lexicographic.
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Remark 10. We note that Single-Serial rules are in general not ig-swapping-proof. This is a
well-known weakness of serial rules (see e.g. [18]) that is experienced for instance in sports drafts
when teams sequentially choose one player at a time: sometimes it can be beneficial to choose a
popular player rather than a personal favorite among the remaining players, since the latter may
still be available in subsequent rounds, while the popular player will surely be taken. Moreover,
we also conclude by the same token that Single-Serial-IR rules are not ig-swapping-proof (except
for unit-capacity agents, as described in Corollary 20). ⋄

Finally, we consider a different kind of manipulation, namely the possibility of hiding en-
dowments.26 Let i ∈ N and let q be a capacity profile. We denote q−i = (qj)j ̸=i. In the next
definition, we express the circulation outcome explicitly as a function of the capacity profile, in
addition to the preference profile.

Definition 7. A circulation rule f is hiding-proof if for all i ∈ N , P ∈ P , and q′i < qi,
fi(P, q) Ri fi(P, (q−i, q

′
i)) +

qi−q′i
qi

ei.27 A circulation rule f is ig-hiding-proof if for all i ∈ N ,

P ∈ PL, and q′i < qi, fi(P, q) Ri fi(P, (q−i, q
′
i)) +

qi−q′i
qi

ei. ⋄

Remark 11. Hiding-proofness implies individual rationality. For instance, in the market exhib-
ited in Example 1 agent 2 can profit by hiding her resources. Hence, there are Single-Serial and
Multiple-Serial rules that are not ig-hiding-proof (and hence not hiding-proof). It is easy to check
that Single-Serial-IR and Multiple-Serial-IR rules are hiding-proof (and hence ig-hiding-proof).
⋄

6 Concluding remarks

6.1 Summary of properties

Table 5 summarizes our findings regarding the properties of the families of circulation rules that
we have studied in this paper. In the table ✓ indicates that a property (row) is satisfied by any
rule in the family (column) and ✗ indicates that it is not. For a comparison, the table also includes
the properties of the most important rules studied in Biró et al. [4]: the circulation Top Trading
Cycles (cTTC) rule and the family of Segmented Trading Cycle (STC) rules. As we noted earlier,
Proposition 1 in Biró et al. [4] shows that there is no rule that satisfies individual rationality,
ig-Pareto-efficiency, and ig-strategy-proofness. As is clear from Table 5, there are rules that
satisfy any two of the three properties: (1) Multiple-Serial rules satisfy ig-Pareto-efficiency and
ig-strategy-proofness, (2) STC rules satisfy individual rationality and ig-strategy-proofness, and
(3) Single/Multiple-Serial-IR rules (and the cTTC rule) satisfy individual rationality and ig-
Pareto-efficiency. To accompany Table 5, we display in Table 6 where the proof comes from for
each entry regarding the serial rules. For the proofs of the entries on cTTC and the STC rules
we refer to Biró et al. [4].

26In the context of classical exchange economies, Postlewaite [34] was the first to introduce and study “non-
manipulability by withholding.”

27Note that ei is the bundle that consists of qi units of good i. Hence, qi−q′i
qi

ei consists of (the hidden) qi − q′i
units of good i.
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Serial rules
Single Single-IR Multiple Multiple-IR cTTC STC

individually rational ✗ ✓ ✗ ✓ ✓ ✓

Pareto-efficient ✗ ✗ ✓ ✓ ✗ ✗

ig-Pareto-efficient ✗ ✓ ✓ ✓ ✓ ✗

strategy-proof ✗ ✗ ✓ ✗ ✗ ✓

ig-strategy-proof ✗ ✗ ✓ ✗ ✗ ✓

dropping-proof ✓ ✗ ✓ ✗ ✗ ✓

ig-dropping-proof ✓ ✗ ✓ ✗ ✓ ✓

truncation-proof ✓ ✗ ✓ ✗ ✓ ✓

ig-truncation-proof ✓ ✗ ✓ ✗ ✓ ✓

swapping-proof ✗ ✗ ✓ ✓ ✗ ✓

ig-swapping-proof ✗ ✗ ✓ ✓ ✗ ✓

hiding-proof ✗ ✓ ✗ ✓ ✓ ✓

ig-hiding-proof ✗ ✓ ✗ ✓ ✓ ✓

Table 5: Properties of rules

Serial rules
Single Single-IR Multiple Multiple-IR

individually rational Example 1 By def. Example 1 By def.
Pareto-efficient Example 2 Remark 3 + Example 2 By def. Proposition 17
ig-Pareto-efficient Example 3 Corollary 12 By def. Proposition 17
strategy-proof Remark 10 Example 5 Trivial Example 5
ig-strategy-proof Remark 10 Example 5 Trivial Example 5
dropping-proof Trivial Example 5 Trivial Example 5
ig-dropping-proof Trivial Example 5 Trivial Example 5
truncation-proof Trivial Example 5 Trivial Example 5
ig-truncation-proof Trivial Example 5 Trivial Example 5
swapping-proof Remark 10 Remark 10 Trivial Proposition 19
ig-swapping-proof Remark 10 Remark 10 Trivial Proposition 19
hiding-proof Remark 11 Remark 11 Remark 11 Remark 11
ig-hiding-proof Remark 11 Remark 11 Remark 11 Remark 11

Table 6: Basis for the properties

6.2 Generalized serial rules

For each Single-Serial/Single-Serial-IR rule we have assumed that there is a fixed q-priority order
of the agents, i.e., independently of the preferences. Similarly, for each Multiple-Serial/Multiple-
Serial-IR rule we have assumed that there is a fixed order of the agents. However, as we have
focused our study on individual rationality and (ig)-Pareto-efficiency, to establish our results
and examples in Sections 3 and 4 we have not compared outcomes across different preference
profiles. Hence, our analysis also holds for “generalized serial rules” where we allow the order to
depend on the preference profile. In particular, we obtain the following result as a corollary to
Propositions 13 and 2.
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Corollary 21. Each generalized Multiple-Serial rule is Pareto-efficient. Each Pareto-efficient
rule is a generalized Single-Serial rule.

Note that not every Pareto-efficient rule is a generalized Multiple-Serial rule, see, e.g., the last
paragraph in Example 4. Similarly, not every generalized Single-Serial rule is Pareto-efficient,
see, e.g., Example 3. Note that in both examples preferences are lexicographic. Figure 1 depicts
our findings on Pareto-efficient circulations and Single-Serial and Multiple-Serial rules in a Venn
diagram.

Proposition 2 + Example 3PE

Proposition 13 + Example 4 (2nd part)

SS

MS

Lexicographic/Responsive preferences

Figure 1: Venn diagram. Fix preferences P . Let PE denote the set of Pareto-efficient circulations
at P . Let SS (MS) denote the set of circulations obtained by applying Single-Serial (Multiple-
Serial) rules to ≻P . The examples show that the set inclusion can be strict.

A special case of a generalized Single-Serial-IR rule is the cTTC rule studied in Biró et al.
[4] which is individually rational and ig-Pareto-efficient (see Remark 7). This also follows from
the next result, which is a corollary to Proposition 11.

Corollary 22. A rule is individually rational and ig-Pareto-efficient if and only if it is a gen-
eralized Single-Serial-IR rule.

The following result is obtained as a corollary to Propositions 17 and 11(ii).

Corollary 23. Each generalized Multiple-Serial-IR rule is Pareto-efficient and individually ra-
tional. Each Pareto-efficient and individually rational rule is a generalized Single-Serial-IR rule.

Note that not every Pareto-efficient and individually rational rule is a generalized Multiple-
Serial-IR rule, see, e.g., Example 4 (where preferences are lexicographic). When preferences are
not lexicographic, not every generalized Single-Serial-IR rule is Pareto-efficient and individually
rational, see, e.g., Example 2 coupled with Remark 3. Figure 2 depicts our findings on Pareto-
efficient and individually rational circulations and Single-Serial-IR and Multiple-Serial-IR rules
in a Venn diagram.

31



Proposition 11 / Corollary 22
PE+IR

Proposition 17 + Example 4

SSIR
∥

MSIR

Lexicographic

Proposition 11(ii) + Example 2 with Remark 3

PE+IR

SSIR

MSIR

Responsive

Figure 2: Venn diagrams. Fix preferences P . Let PE+IR denote the set of Pareto-efficient and
individually rational circulations at P . Let SSIR (MSIR) denote the set of circulations obtained
by applying Single-Serial-IR (Multiple-Serial-IR) rules to ≻P . The examples show that the set
inclusion can be strict.

Figures 1 and 2 show that the natural interest in Pareto-efficient circulations and Pareto-
efficient and individually rational circulations should motivate a further study of serial rules.

6.3 Extensions

Obviously, our negative results still hold in extended models. We describe below how our positive
results may be extended to models with link-capacities, heterogeneous goods, or more complex
preferences.

Link-capacities
Instead of (or besides) the agent-capacities we could have link-capacities, i.e., a cap on the
number of goods an agent can send to, or receive, from other agents. This is a very typical setting
for circulation problems in graph theory, and some practical applications do have this kind of
requirement, e.g., in the Erasmus exchange program the number of students from university
U that visit university V is bounded by the specifications in the bilateral contract between U
and V . We opted for defining our model through agent-capacities to easily relate it to existing
models on the exchange of indivisible goods. However, any link-capacitated market can always
be transformed into an agent-capacitated market under responsive preferences by introducing
artificial agents. For instance, if agent j cannot receive more than qij units of good i, then
we introduce an artificial agent/good ij with capacity qij. In agent i’s preferences we replace
good j by good ij, and agent ij only finds good j acceptable. Thus, feasible circulations are
in one-to-one correspondence in the two markets. Moreover, the original agents evaluate any
circulation in the same way in the two markets. Finally, since the new nodes do not have any
strategic role in the extended market (they only have unit capacity),28 the manipulability of any
circulation rule does not change from one setting to the other.

28We refer to [4] for further details.
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Heterogenous goods
We can reduce the model with heterogenous goods to our circulation model as follows. For the
sake of exposition, assume that all (units of) goods are distinct. Let each unit of the heterogenous
case be an artificial agent with unit capacity in our circulation model. Each artificial agent only
finds acceptable its original owner. Any original agent’s preferences over artificial agents are
induced by her original preferences over heterogenous goods. As an illustration, the generalized
TTC for the heterogenous case, which was introduced and studied in [14], is equivalent to the
cTTC rule for the reduced circulation market with homogenous goods in [4]. The artificial agents
cannot manipulate the cTTC rule because of their unit capacity. Yet the strategic possibilities
of the original agents are different. For instance, a manipulation in which an agent in the
heterogenous goods market hides some of her goods corresponds to a group manipulation in the
reduced market. The precise connections between the two markets and the properties of the
circulation rules could be pursued in future research.
More complex preferences
First we discuss the relevance of the assumption that an unacceptable good makes a bundle
unacceptable. In our definition of responsiveness of agents’ preferences over bundles we assume
that acceptable bundles can only contain acceptable goods (r1). Our results on Single-Serial
and Multiple-Serial rules still hold when (r1) is dropped. The reason is that Single-Serial and
Multiple-Serial rules do not satisfy individual rationality. However, the assumption is important
for Single-Serial-IR and Multiple-Serial-IR rules. Since these rules were constructed to guarantee
individual rationality, it is crucial to have enough structure on the set of acceptable bundles.
For instance, to obtain the alternative definition of Single-Serial-IR rules (that does not require
checks of IR-extendability) we use (r1), see, e.g., the maximum flow problem employed in the
proof of Lemma 3.

Assumption (r1) is reasonable in many real-life applications, such as Erasmus exchanges
(where a student cannot be sent to a university she never applied to) or organ exchanges (where
only transplantable organs can be accepted by a country). However, there are also many ap-
plications where “negative utility goods” (a.k.a. bads) can be accepted by agents if they are
compensated with “positive utility goods.” For instance, consider the allocation of courses to
university professors. A professor may have a usual set of acceptable courses, but she may be
willing to teach a course she finds much less interesting than any of her usual courses, as long as
she is compensated with a new special topics course of her choosing. The non-trivial question of
extending our results on individually rational serial rules to cover situations where an acceptable
bundle may contain unacceptable goods is left for future research.

One could also consider a different input for the rules. In this paper we only use the ordinal
preferences of the agents over the individual goods and assume responsive and lexicographic
preference extensions. But circulation rules could also be based on the agents’ cardinal utilities
of individual goods (see, e.g., [2]), again with responsive and lexicographic preference extensions.
This would extend the class of circulation rules and the set of possible strategic manipulations,
for example. More generally, one could study the case where agents submit linear preferences
over the whole set of bundles or even choice functions. It could be interesting to focus on
particular preference domains, e.g. substitutable choice functions. Such general models are used
in some recent studies on stable networks, e.g. [19]. However, the main challenge of allowing
the agents to submit their full preferences over the possible bundles is that such input would be
exponentially large in the number of agents/goods. This is a well-known issue in applications
such as course allocation [6] or combinatorial auctions [29].
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7 Related literature and applications
Our paper is in the intersection of two strands of literature, namely the literature that studies se-
rial dictatorships for allocation problems and the literature on exchange with multiple indivisible
goods.

In the first strand, serial dictatorships were shown to satisfy desirable properties such as
Pareto-efficiency and strategy-proofness in various allocation problems. Svensson [39] character-
ized serial dictatorships by Pareto-efficiency, non-bossiness [35], and neutrality in the classical
house allocation problem where the houses are public endowments. For multiple object allo-
cation, Pápai [31], Ehlers and Klaus [13], and Hatfield [18] obtained the same characterization
result on increasingly smaller preference domains. Namely, Pareto-efficiency, non-bossiness, and
strategy-proofness characterize sequential dictatorships (a variation on serial dictatorships where
only the first agent is fixed in the ordering and subsequent agents in the ordering are determined
by previous assignments). On the domain where agents always desire a fixed quota of het-
erogeneous objects and preferences are responsive, Hatfield [18] also proved that these three
axioms together with neutrality characterize the subfamily of serial dictatorships. In a more
general setting with agent-specific quotas, Hosseini and Larson [20] proved that when prefer-
ences are lexicographic an allocation rule is strategy-proof, non-bossy, neutral, and satisfies a
mild Pareto-efficiency requirement if and only if it is a serial dictatorship. Pápai [30] studied mul-
tiple assignment problems with monotonic and quantity-monotonic preferences and established
further similar characterizations of serial dictatorships. Consistency and solidarity axioms were
considered in the same model by Klaus and Miyagawa [22] who also derived serial dictatorship
results.

All these papers study serial dictatorship rules that allow each agent to pick a good or a set
of goods only once, which accounts for the positive result on incentives, as indicated by the use
of strategy-proofness in many characterizations. When agents are allowed to choose only one
good at a time and have multiple turns which are not necessarily consecutive, for example as
in our Single-Serial and Single-Serial-IR rules, serial dictatorships possess an intricate strategic
structure, which was investigated by Manea [27]. He considered a model in which all bundles
are acceptable and preferences are represented by additive utility functions and proved that
subgame perfect equilibrium circulations are not necessarily Pareto-efficient and generally not
every Pareto-efficient circulation is sustained at some subgame perfect equilibrium in the perfect
information game induced by serial rules. We discuss the incentive properties of our rules in
Section 5. As we will see, the difficulty with incentives stems from two different sources: one
is the above-mentioned multiple non-consecutive turns of agents, which applies to the Single-
Serial and Single-Serial-IR rules. The other one is that requiring individual rationality interferes
with the nice incentive properties of serial dictatorships and creates room for manipulation by
truncation, which applies to the Single-Serial-IR and Multiple-Serial-IR rules.

In contrast to our set-up, all of the above papers explored allocation problems without initial
private endowments. The second relevant strand of the literature focuses on the exchange of
multiple indivisible goods, which presupposes that agents initially own the goods. The first
generalization of the Shapley-Scarf market was due to Konishi et al. [24] who studied the core
in a model with multiple types of goods, where each agent initially owns one good of each type
and only goods of the same type can be traded for each other. They showed that in this model
there is no individually rational, Pareto-efficient, and strategy-proof rule. Klaus [21] proved
that the type-wise top trading cycle rule in this model is not Pareto-dominated by any other
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strategy-proof rule, while Pápai [32] obtained an axiomatic characterization of a similar top
trading cycles rule in a model with heterogeneous goods and responsive preferences. Pápai [33]
is a further axiomatic study of exchange in a model with general preferences over heterogeneous
goods. With the exception of this last paper, all of the above papers on exchange either require
or end up with a balanced exchange, depending on the approach they take.

Recently, artificial intelligence and computer science papers also considered related exchange
problems. Todo et al. [40] studied a model with multiple private endowments and showed that
individual rationality, Pareto-efficiency, and strategy-proofness are not compatible for lexico-
graphic preferences. Fujita et al. [14] studied a model with lexicographic preferences and showed
that their augmented TTC rule always yields an assignment in the core. Hence, their rule is
individual rational and Pareto-efficient, but not strategy-proof. However, they proved that it is
NP-hard to find a beneficial preference misreport. Lesca and Todo [25] considered the so-called
service exchange problem where each agent is willing to provide her service in order to receive
in exchange the service of someone else. Assuming that each agent cares about the service that
she receives and the person who receives her service, they showed that finding an individually
rational and Pareto-efficient circulation is NP-hard, unless all preferences are “set-restricted”.

Apart from Biró et al. [4], there are four recent, closely related papers that studied the
balanced exchange of multiple indivisible goods. Two of these papers are on tuition and student
exchanges from a two-sided [11] and one-sided [12] perspective, respectively. The other two
papers are motivated by time banks [1] and shift reallocation [28]. We discuss below the main
differences among the models as well as the main findings of these four papers.

Dur and Ünver [11] studied a model where the agents on the two sides of the market are
students and universities. Students want to exchange their seats and universities are interested
in exchanging their enrolled students.29 In the largest students exchange program of this kind,
the European Erasmus program, students pay their tuition fee to their “home university” during
the exchange period. So, to ensure the longevity of the program, it is essential that exchanges
be balanced, i.e., for each university, the number of incoming students equals the number of
outgoing students. Each university has a priority order over its outgoing students and responsive
preferences over incoming students. The latter assumption on the universities’ preferences fits
many markets, especially labor markets and those of tuition exchanges, where exchanges are often
long-term.30 Assuming that both sides of the market are strategic, Dur and Ünver [11] proposed
a two-sided top trading cycles rule (2S-TTC). They showed that 2S-TTC is balanced-efficient,
group strategy-proof for students, acceptable, respecting internal priorities, individually rational,
and immune to quota manipulation by universities. Moreover, they proved that 2S-TTC is the
unique rule that satisfies the first four properties.

In other applications the exchange is short-term, such as the Erasmus exchange program
where students are visiting foreign universities for one or two semesters. In this case it seems
reasonable to assume that universities care most about their outgoing students, since these stu-
dents will come back and graduate at their home university. In their follow-up paper on Erasmus
exchange, Dur et al. [12] dropped the assumption of [11] that universities have preferences over
incoming students, but kept the internal priority order of universities over their outgoing stu-
dents. It is assumed that this internal priority order is a non-strategic decision, although in
practice it can be strategic, as universities may care about which of their students temporarily

29Dur and Ünver [11] also listed many other applications with similar characteristics where students exchange
their tuition, teachers or other professionals exchange their positions temporarily, etc.

30An example is the French teacher re-allocation scheme [8].
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visit other universities. Dur et al. [12] studied a generalized version of the TTC rule with both
cycles and chains, allowing for small deviations from the balancedness condition. This approach
is closer to Biró et al. [4] where we also studied generalized TTC rules, while in the current paper
we focus on serial rules which are closer to current practices in the Erasmus exchange program.

Andersson et al. [1] studied a balanced exchange problem motivated by time banks. In
time banks the participants exchange their services in a one-to-one fashion without monetary
transfers. In practice, this is usually implemented either by bilateral agreements or through a
dynamic credit system. The model of Andersson et al. [1] is similar to ours: (i) agents have
agent-specific goods and only care about the goods they receive and (ii) the outcome is required
to be balanced. However, the main difference is that [1] focused on a different preference domain
where each agent (a) has dichotomous preferences over other agents’ goods and (b) has a specific
upper bound for each acceptable good (i.e., not one upper bound for the size of bundles). A
bundle is acceptable if and only if it contains only acceptable goods and respects the associated
upper bounds. An acceptable bundle is preferred to another acceptable bundle if the former
contains more goods from other agents. For this setting Andersson et al. [1] proposed a rule
that is individually rational and maximizes the total number of acceptable goods exchanged in a
balanced way, which guarantees Pareto-efficiency. They showed that their rule is also strategy-
proof and that the underlying graph algorithm can be implemented efficiently. As shown in
[4], the three properties (individual rationality, Pareto-efficiency, and strategy-proofness) are
incompatible in our model, except for very specific capacity configurations.

Manjunath and Westkamp [28] studied a balanced exchange problem motivated by shift
reallocation. Their model is different from ours in that each agent is assumed to be endowed
with heterogeneous goods, in the sense that each agent (worker) can be endowed with different
goods (shifts), and not all the goods of an agent may be acceptable to another agent. They
studied a restricted trichotomous preference domain: all desirable goods are ranked first, in
the most preferred indifference class, followed by all undesirable goods endowed to the agent,
leaving the undesirable goods of others for the third and lowest-ranked indifference class. These
assumptions are natural in the context of shift exchanges studied by [28], since the acceptability
of a shift mainly depends on its timing and not on whose pre-assigned shift it was. In contrast
to both [1] and our paper, they dispense with the assumption that a bundle is acceptable if it
contains only acceptable goods. Similarly to Andersson et al. [1], their main result is an efficiently
computable rule that is individually rational, Pareto-efficient, and strategy-proof. However, their
property of Pareto-efficiency is slightly weaker than the maximal volume property of [1], and the
two algorithms and the proofs for strategy-proofness are also different.

Student exchange programs, time banks, and shift reallocation are all real-life applications
that are captured by our model with responsive preferences or can be studied using a slightly
adapted model. Another relevant application is financial clearing. Banks or companies often
have cyclic liabilities or debts that can cause liquidity problems or even create systemic risk.
In a financial clearing (or portfolio compression) the parties involved agree to clear the same
amount of debt in a cycle of liabilities (see for example [9], [10], and [37]). Each party has natural
preferences over all possible clearances. For instance, each party may want to secure payments
from riskier partners first. The search for clearing cycles can be coordinated by private companies
or national agencies (as in e.g. Romania [15]). Any proposed set of clearing cycles constitutes a
circulation in the market, and vice versa: any circulation can be decomposed into clearing cycles
(see [41]). Multiple-Serial-IR rules could serve as appropriate preference-based solutions in these
markets for which the particular selection order may be based on an objective criterion such
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as the financial vulnerability of the companies. If the participants agree to accept any clearing
cycle, which ensures that dropping manipulations cannot occur, then the Multiple-Serial-IR rule
becomes strategy-proof, given that it is swapping-proof (see Proposition 19).
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