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Abstract
With beliefs over the outcomes of coin-tosses as our primitive, we formalize the Law of Small

Numbers (Tversky and Kahneman (1974)) by an axiom that expresses a belief that the sample
mean of any sequence will tend towards the coin’s perceived bias along the entire path. The
agent is represented by a belief that the bias of the coin is path-dependent and self-correcting.
The model is consistent with the evidence used to support the Law of Small Numbers, such as
the Gambler’s Fallacy. In the setting of Bayesian inference, we show how learning is affected
by the interplay between two potentially opposing forces: a belief in the absence of streaks and
a belief that the sample mean will tend to the true bias. We show that, unlike other learning
results in the literature (Rabin (2002), Epstein, Noor and Sandroni (2010)), the latter force
ensures that the agent at least admits the true parameter as possible in the limit, if not learn
with certainty that it is true. In an evolutionary setting, we show that agents who believe in
the Law of Small Numbers are never pushed out of the evolutionary race by “standard” agents
who correctly understand randomness.

JEL Classification: D01, D9.

Keywords: Law of Small Numbers, Belief Biases, Heuristics, Gambler’s Fallacy, Learning,
Misspecified beliefs, Evolution.

1 Introduction
Economic environments are complex, and cognitive limitations make it hard to navigate them on
the basis of conscious deliberation and analysis. As a result economic agents often rely on intuitive
judgements to help them arrive at decisions (Noor (2022)). Intuitive judgements, while often correct,
also embody systematic biases (Tversky and Kahneman (1971)). We study one class of biases in the
context of judgement under uncertainty.

In their classic research on the nature of intuitive judgements under uncertainty, Tversky and
Kahneman (1971) hypothesize that “people view a sample randomly drawn from a population
as....similar to the population in all essential characteristics”. This leads them to coin the term
“the Law of Small Numbers” (henceforth LSN) to describe beliefs that the sample means in any fi-
nite sample should be concentrated around the population mean, as they would be in a large sample
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according to the Law of Large Numbers. For instance, although any outcome of two flips of a fair
coin should be equally likely, believers in LSN would judge

P (T,H) = P (H,T ) > P (H,H) = P (T, T ),

believing that it is more likely that the sample mean generated by two flips will be closer to 0.5 than
not. LSN does not refer to a specific experimental finding. Rather, it is a hypothesis that unifies
several findings, prominent of which are:

1. Gambler’s Fallacy : Subjects believe that the probability of tails is higher following a streak
of heads. That is, they expect that the sample mean in any sequence of coin tosses will tend toward
the bias of the coin. While there is a large experimental literature establishing this (see Benjamin
(2019) for a review), there is also substantial evidence from the field (Terrell (1994), Suetens et al.
(2016), Chen et al. (2016)). For instance, Mueller et al. (2021) find the gambler’s fallacy at play in
job search.

2. Local Representativeness: Tversky and Kahneman (1974) cite evidence where subjects view
HTHTTH as more likely than HHHTTT. This is different from Gambler’s Fallacy in that it is not
about the likelihood of a tails after a stream of heads, but rather it expresses a belief in too many
alternations and too few streaks on the path of any sequence. Indeed, evidence shows that subjects
tend to believe in a switch rate of approximately 60% (Rapoport and Budescu (1997), Bar Hillel
and Wagenaar (1991)). This can be understood as LSN, in that it is rooted in the expectation that
essential characteristics of population will be represented locally in every segment of the sequence.

3. Sample Size Neglect : Kahneman and Tversky (1972) report an experiment where subjects are
told that 45 babies are born per day in a large hospital and 15 babies are born per day in small
hospital, and each hospital has recorded the daily gender distribution over a full year. Subjects
were asked which hospital had more days with over 60% boy births. Subjects had to respond “larger
hospital”, “smaller hospital” or “about the same”, and the vast majority believed that both hospitals
had a similar number of such days, not recognizing that the variance of the sampling distribution
should be higher in the small hospital. This reflects LSN in that any sample regardless of size is
thought resemble the population in its characteristics. See Benjamin, Moore and Rabin (2018) for
an incentivized experiment supporting Sample Size Neglect.

While the Law of Small Numbers is often articulated informally, we seek a formal articulation
as an axiom. We understand the Law of Small Numbers as a belief specifically about the evolution
of the sample mean generated by a sequence of outcomes. Specifically, in a canonical coin-tossing
setting, we understand the Law of Small Numbers as a belief that the sample mean in any random
draw will tend towards the perceived bias of the coin along the sequence. We refer to this as our
LSN axiom. Our main representation result for LSN visualizes the agent as believing in a self-
correcting bias. The LSN axiom straightforwardly gives rise to the Gambler’s Fallacy and to Local
Representativeness, and can exhibit Sample Size Neglect to the extent that the sampling distribution
may not vary with sample size as much as implied by statistical fact.

We explore the model through an application to Bayesian inference. We establish that in the
limit the agent always puts strictly positive probability on the true parameter θ∗. Intuitively, this
is because by LSN the agent believes that the sample mean tends to the (unknown) true parameter,
and by the Law of Large Numbers the sample mean tends to the (actual) true parameter. This
contrasts with Rabin (2002), where the agent may become fully confident in the wrong parameter in
the limit. Nevertheless, also unlike Rabin (2002), our agent may not be certain of the true parameter
in the limit. The reason is that Local Representativeness leads to misinferences from data (since the
data almost surely contains streaks), which may lead her to admit some false parameters as possible.

We consider an evolutionary setting, where a population containing agents who believe in the
Law of Small Numbers and agents who understand i.i.d. randomness must decide whether to hunt
in a “safe small stakes” hunting ground or a “risky high stakes” hunting ground. Their decision is
based on a public signal about the risky hunting ground, which they use to determine their beliefs
about a parameter that captures the desirability of the risky ground. We show that almost surely,
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the LSN agents will eventually be more confident about the true parameter than the IID agent,
and consequently, relative to the IID population, a larger proportion of the LSN population will
hunt in the “correct” hunting ground. This will guarantee that the LSN population will survive
asymptotically. We also establish a lower bound on the probability that the IID population does not
survive asymptotically. This lower bound can be arbitrarily close to 1, depending on the parameter.

The paper is organized as follows. We close the introduction with a literature review. Sections
2 and 3 present our model and connect it to the experimental evidence. Section 4 contains an
application to Bayesian inference, and contains further connections with the evidence. Section 5
contains an application to evolution. All proofs are relegated to appendices.

Related Literature. The evidence on beliefs can be divided in terms of properties of intuitive
beliefs and properties of motivated beliefs. Motivated beliefs are beliefs that respond to some
emotional objective. For instance, confirmation bias (Rabin and Schrag (1999)) arises from a desire
to confirm past beliefs. Intuitive beliefs are not motivated in such a manner, and instead represent
beliefs arising from intuitive information processing (as opposed to conscious deliberation). The
Law of Small Numbers, and Kahneman and Tversky’s research on beliefs more generally, concerns
the properties of intuitive beliefs.

While there exists a large experimental literature on intuitive beliefs particularly in psychology
(see Tversky and Kahneman (1974) and Benjamin (2019)), there has been little theoretical work in
economics since the seminal work of Rabin (2002). 1Rabin (2002) models the agent beliefs about
sequences generated from a coin of perceived bias θ∗ ∈ [0, 1] as if they are determined by an urn
UNθ∗N containing N balls with an integer θ∗N number of balls labelled “heads”, from which draws
are made without replacement. Moreover, this urn is renewed after every 2 periods. Therefore the
belief that the outcome of a single flip of the coin is heads is P (H) = θ∗ while the belief that two
flips generate two heads is P (HH) = θ∗ θ

∗N−1
N−1 . Similarly, the belief of getting head first and tails

second is P (HT ) = θ∗ (1−θ∗)N
N−1 . Due to the assumption that the urn is renewed after every 2 flips,

the belief in a sequence (x1x2y3y4, ....) of outcomes of flips is a product:

P (x1x2y3y4...) = P (x1x2)× P (y1y2)× .....

The standard agent (defined by θ∗-i.i.d. beliefs) is an asymptotic special case N → ∞. Studying
Bayesian inference by such agents, and exploiting the tractability afforded by the “i.i.d. for pairs”
simplification, Rabin (2002) shows that such an agent may learn the wrong parameter in the limit,
that they may exhibit the hot hand effect, and that they adjust their posteriors too much in response
to observations relative to a Bayesian who has the correct prior. As we will see in section 2.2, Our
model is different since Rabin (2002) may violate our LSN axiom due to the “i.i.d. for pairs” property.
As noted above, the predictions of the two models differ in a learning environment.

In order to study further how inference with LSN can lead to a hot hand effect, Rabin and
Vayanos (2010) study an alternative model where the agent receives a sequence of noisy signals
sn = θ + εn about a state θ but mistakenly believes (as per the gambler’s fallacy) that the errors
εn are not i.i.d. and exhibit reversals. The self-correcting bias property of our model is similar in
spirit, but the models are formally different: when placed in a learning environment, in our model
a signal is 0 or 1 (corresponding to a head or tail) whereas in Rabin and Vayanos (2010) a signal
is a real number in R. Although excluded by their model, if we imagine their signals to lie in [0, 1]
and interpret sn as the sample mean upto toss n, then models become more similar in spirit. In fact
Rabin (2002) can also be viewed as a model of self-correcting bias within each pair of tosses, with a
reset after each pair.

Benjamin, Rabin and Raymond (2016) hypothesize that people’s beliefs may not respect the Law
of Large Numbers (as is implied by Sample Size Neglect) and in particular may believe in a sampling
distribution for large samples that has more spread than it should. They write a model where the

1See He (2022) for a recent application of the Gambler’s Fallacy.
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agent believes that the outcome of a coin toss is generated by an i.i.d. stochastic bias θ that has the
true bias θ∗ as its mean. Our model is one of a self-correcting (hence non-i.i.d. ) stochastic bias.

In psychology, the evidence is also interpreted as subjects believing in a switching rate that is
higher than 50% (Rapoport and Budescu (1997), Bar Hillel and Wagenaar (1991)). Rapoport and
Budescu (1997) provide a model the essence of which is captured by the following, which we will
refer to as the switching rate model: Presuming that the bias of the coin is perceived to be θ∗ = 1

2 ,

Pn(x) =
1

2
×

n∏
i=1

θ|xi−xi−1|(1− θ)1−|xi−xi−1|,

where the probability of a switch (no switch) on the ith toss is θ > 1
2 (resp. 1 − θ < 1

2 ).
2 The ith

outcome is “rewarded” (in the sense of being attributed a higher belief) if |xi − xi−1| > 0, that is, if
it differs from the outcome in the previous toss. As we will see in section 2.2, this model violates our
LSN axiom and therefore is different from our model. The switching rate model is also not directly
interpretable as a model with self-correcting bias.

Noor (2022) models the formation of intuitive beliefs by representing the agent’s beliefs as a
neural network of associations that is trained by her “experience”. He shows that if the agent’s
experience is defined by the sampling distribution generated by the environment, then the resulting
beliefs will exhibit LLN in that properties of large-sample sampling distributions are reflected in
the agent’s beliefs regarding small samples. As a result the model exhibits the Gambler’s Fallacy
and Sample Size Neglect. Like our model, Noor (2022)’s model also produces the Hot Hand Effect.
While our model explains it as a result of Bayesian learning about the bias of a coin (as in the
literature, such as Rabin (2000) and Rabin and Vayanos (2010)), Noor (2022) explains it by means
of beliefs trained by a mixture of sampling distributions produced by different coins.

Our learning results contribute to the literature on Bayesian learning with misspecified beliefs
(spawned by Berk (1966)), as opposed to learning under non-Bayesian updating (as in Epstein, Noor
and Sandroni (2010)). Specifically, our agent is misspecified in that she does not contain the correct
(that is, i.i.d) data generating process in her prior. She nevertheless uses Bayes’ rule to compute
posteriors.

2 LSN Axioms

2.1 Primitives
Consider a canonical coin-tossing environment: the possible realizations of a coin toss in any period
i are Ωi = Ω = {0, 1}, and the space of all realizations of any n ≤ ∞ tosses is Ωn =

∏n
i=1 Ωi.

Throughout, we use x = (x1, x2, ....) ∈ Ω∞ to denote an infinite sequence and xn = (x1, ..., xn) ∈ Ωn

to denote a finite sequence of length n. The concatenation of two sequences xn ∈ Ωn and ym ∈ Ωm

is denoted xnym ∈ Ωn+m. Our results do not hinge on the binariness of Ω, which we maintain for
simplicity of exposition, and can be readily extended at least to any finite set Ω.

Our primitive consists of a family of beliefs,

{Pn}∞n=1,

where each Pn is a probability measure (henceforth, belief ) on the measurable space (Ωn,Σn) defined
by the sample space Ωn and the space Σn = 2Ωn of all subsets An ⊂ Ωn. As our LSN axioms are
ordinal in nature, they can be derived from the betting behavior of Subjective Expected Utility
agents. Since the translation to betting behavior is obvious, we take beliefs {Pn} directly as our

2Similar to Rabin (2002), Rapoport and Budescu (1997)’s model switching probability may depend on whether n
is even or odd and is characterized by a parameter m that governs the length of throws in which the agent behaves
in the standard way. What we are calling the switch rate model corresponds to their model when m = 1.
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primitive and interpret them as behavioral objects. Observe that since our primitive consists of the
agent’s ex ante beliefs prior to any flip of the coin, our model is one of prior beliefs. In particular, it
is not a model of updating, and as such it lies outside the literature on non-Bayesian updating (see
for instance Epstein (2006), Epstein, Noor and Sandroni (2008, 2010)).

Our focus will be on the sample mean number of heads at any point n of a sequence x =
(x1, x2, ....), denoted

xn :=

∑
i≤n xi

n
.

Throughout, let θ∗ ∈ [0, 1] denote the probability assigned to heads when there is only 1 flip of the
coin, that is,

θ∗ := P 1(1).

We presume throughout that the coin tosses are objectively i.i.d. The agent correctly understands
the bias to be θ∗ but we model her incorrect understanding of what an i.i.d. data-generating process
looks like.

In Economics it is typical to posit the existence of a belief P∞ over the infinite horizon sample
space (Ω∞,Σ∞), and to consider its marginals.3 If we begin with a family of beliefs {Pn}∞n=1,
Kolmogorov’s extension theorem tells us that a necessary and sufficient condition on {Pn}∞n=1 for
the existence of P∞ is

Axiom 1 (Marginal Consistency) For any n and any event An ⊂ Ωn,

Pn(An) = Pn+1(An).

Marginal Consistency embodies horizon-independence of beliefs, in the sense that the agent does
not think differently about a given event An if the horizon is extended by a period. Such horizon-
independence is satisfied by standard models. An interesting question is whether the Law of Small
Numbers is at odds with Marginal Consistency, and we will see that it is not.

2.2 Axiom: LSN
The aim is to construct a model that accommodates the evidence on the Law of Small Numbers
noted in the Introduction. Our model is built on the following interpretation of the informal theory
laid out in Kahneman and Tversky (1971, 1974).

• According to the Gambler’s Fallacy, when faced with a fair coin, the agent believes thatHHHT
is more likely thanHHHH, that is, a tails is more likely than heads following a streak of heads.
Kahneman and Tversky (1971) state that the agent “feels that the fairness of the coin entitles
him to expect that any deviation in one direction will soon be cancelled out by a corresponding
deviation in the other”. Our interpretation of this statement is that the agent believes that
the sample mean is likely to tend towards the bias of the coin, that is, it is more likely that
the distance between the sample mean of xn and the bias θ∗,

d(xn) = |xn − θ∗|,

will be small. This will be a distinctive feature of our model.
3As is standard, we identify any n-event An ∈ Σn with the event AnΩ∞ = {(xnz) ∈ Ω∞ : xn ∈ An and z ∈ Ω∞}

in the infinite horizon space Ω∞ known as the n-cylinder. Let Σ∞ = σ(∪∞n=1Σn) denote the σ-algebra generated by
all the n-cylinders, n = 1, 2, ..... Then P∞ is a probability measure of a well-defined space (Ω∞,Σ∞). The marginal
belief on (Ωn,Σn) is defined by Pn(An) = P∞(AnΩ∞) for each n-event An ∈ Σn.
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• According to the Local Representativeness, people regard the sequence HTHTTH as more
likely than HHHTTT. Tversky and Kahneman (1974) relate such beliefs with LSN by noting
that “people expect that the essential characteristics of the process will be represented, not only
globally in the entire sequence, but also locally in each of its parts”. As before we interpret the
“essential characteristics” of the process to refer to the fact that the process requires the sample
mean to eventually concentrate around the population mean θ∗. However, instead of being
a statement about the sample mean at the end of the sequence, we observe that HTHTTH
dominates HHHTTT on path in the sense that the sample mean is always closer to 1

2 in the
former than the latter along the entire sequence (Table 1).

HTHTTH HHHTTT
n = 1 1 1
n = 2 1

2 1
n = 3 2

3 1
n = 4 1

2
3
4

n = 5 2
5

3
5

n = 6 1
2

1
2

Table 1. The entries are xn =

∑n
i=1 xi
n

for x = HTHTTH,HHHTTT and n = 1, ..., 6.

The following axiom captures the idea that beliefs are driven by a consideration of the distance
between sample mean and true bias, and that dominance on path implies higher beliefs.

Axiom 2 (LSN) For any N and x, y ∈ Ω∞ s.t. d(xN−1) = d(yN−1),

d(xn) ≤ d(yn) for all n ≤ N =⇒ PN (xN ) ≥ PN (yN ).

Moreover if d(xn) < d(yn) for some n ≤ N then PN (xN ) > PN (yN ).

The axiom states that if the sample means of the sequences x and y are equally distant from
θ∗ at throw N − 1, and if x dominates y on path for all N throws, then xN is deemed more likely
than yN . This is satisfied, for instance, in the Gambler’s Fallacy with a fair coin where HHHT
is deemed more likely than HHHH. The axiom also embodies Local Representativeness: for a
fair coin, HTHTH will be deemed more likely than HHTTT according to the axiom, since both
sequences have the same number of heads in the first 4 throws (and thus the means at the 4th throw
are equally distant from θ∗ = 1

2 ), but the first strictly dominates the second on path. Similarly,
HTHTTH will be deemed more likely than HHHTTT as in the evidence noted above, since the
sample means of both sequences at the 5th throw are equally distant from 1

2 . LSN has the flavor of
“mean reversion”, except that mean reversion is expected at each flip. It captures Kahneman and
Tversky (1974)’s notion of a “belief that a random process is self-correcting”.4

At this point we can already note that our model will differ from those in the literature. Consider
the example of HHH vs HHT . The LSN axiom straightforwardly implies that

P (HHT ) > P (HHH).

Intuitively, both the Gambler’s Fallacy and Local Representativeness favor HHT over HHH. Due
to the “i.i.d. pairs” simplification, Rabin (2002) is not consistent with this: when beliefs have full
support and θ∗ = 1

2 , the Rabin (2002) model predicts P (HHT ) = P (HHH) since the model requires

4One may hypothesize that the evidence pertains to a small number of flips, and due to cognitive constraints,
agents may behave differently when faced with much longer sequences. In particular, bounded memory or limited
attention may cause them to focus on parts of the sequence or to form a coarser perception of the mean number of
heads. We abstract from cognitive constraints in this paper since, as a feature of intuitive processing, LSN is distinct
from bounded memory or attention, and thus is worth studying in isolation.
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that P (HHT )
P (HHH) = P (HH)P (T )

P (HH)P (H) = P (T )
P (H) = 1. The switching rate model also violates the LSN axiom.

Our axiom predicts that:

P (HHHHHHTH) < P (HHHHHHTT ).

Intuitively, while Local Representativeness requires the former sequence to be more likely (since
there are fewer streaks) and the Gambler’s Fallacy requires the latter to be more likely (since the
sample mean is closer to θ∗ = 1

2 ), our LSN axiom imposes that the latter dominates in this example.
The switching rate model requires the reverse ranking because the former sequence contains more
switches than the latter.

We close by writing a weaker and a stronger condition that will appear in our applications. The
Weak LSN axiom weakens LSN by restricting attention to x, y that have the same sample mean in
throw N − 1 and where xN that dominates yN on path:

Axiom 3 (Weak LSN) For any N and x, y ∈ Ω∞ s.t. xN−1 = yN−1,

d(xn) ≤ d(yn) for all n ≤ N =⇒ PN (xN ) ≥ PN (yN ).

Moreover if d(xn) < d(yn) for some n ≤ N then PN (xN ) > PN (yN ).

In contrast, the Strong LSN axiom requires that dominance on path to be respected for all pairs
of sequences.

Axiom 4 (Strong LSN) For any N and x, y ∈ Ω∞,

d(xn) ≤ d(yn) for all n ≤ N =⇒ PN (xN ) ≥ PN (yN ).

Moreover if d(xn) < d(yn) for some n ≤ N then PN (xN ) > PN (yN ).

2.3 Axiom: Weak Independence
The LSN axioms only place structure on beliefs that can be ranked by dominance on path. Such
beliefs admit a very general representation (see Section 6.2), but additional structure is desirable for
applications.

The evidence on LSN reveals that people do not have a correct understanding of the properties
that i.i.d. tosses of a coin should have. One property of i.i.d. tosses is:

Axiom 5 (Independence)For any n, any xn, yn ∈ Ωn and any xn+1 ∈ Ω s.t. Pn(yn) > 0 and
Pn+1(ynxn+1) > 0,

Pn+1(xnxn+1)

Pn+1(ynxn+1)
=
Pn(xn)

Pn(yn)
.

We impose that our agent at least understands that i.i.d. tosses imply:

Axiom 6 (Weak Independence)For any n, any xn, yn ∈ Ωn and any xn+1 ∈ Ω s.t. Pn(yn) > 0 and
Pn+1(ynxn+1) > 0,

xn = yn =⇒ Pn+1(xnxn+1)

Pn+1(ynxn+1)
=
Pn(xn)

Pn(yn)
.

In providing some structure to our model, Weak Independence places a restriction on the extent
of Local Representativeness, which is illustrated as follows. Consider sequences HHHTTT and
TTTHHH generated by a fair coin and suppose the agent finds these equally likely, P

6(HHHTTT )
P 6(TTTHHH) = 1.

It is conceivable that TTTHHHT may be considered more likely than HHHTTTT because there are
shorter streaks in the former. However, under Weak Independence the agent must find them equally
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likely, P 7(HHHTTTT )
P 7(TTTHHHT ) = P 6(HHHTTT )

P 6(TTTHHH) = 1. Weak Independence requires that the perspective on
the n-length streams HHHTTT and TTTHHH with equal sample means should not change in the
n + 1 horizon based on the outcome in flip n + 1. Repeated application of the axiom implies more
generally that the concatenated streams xnzm and ynzm are ranked by Pn+m in accordance with
the ranking of xn and yn by Pn, whenever xn = yn.

3 The Self-Correcting Bias Representation

3.1 Representation Result
For completeness we first present the conditions that characterize an agent who understands that
the coin tosses are independent, and also the additional condition that ensure that she understands
that the tosses are identical. See Appendix 6.2 for more general versions of the results in this section
that drop Marginal Consistency.

Theorem 1 A family of full support beliefs {Pn}∞n=1 satisfies Independence and Marginal Consis-
tency iff it admits a time-varying bias representation: for all n and xn ∈ Ωn,

Pn(xn) =

n∏
i=1

(θi)
xi(1− θi)1−xi ,

where θi ∈ (0, 1) for all i and θ1 = θ∗. Moreover, Pn(Ωn−11) = θ∗ for all n > 1 iff θi = θ∗ for all i.

To model an LSN agent, we maintain Marginal Consistency, relax Independence to Weak Inde-
pendence, and use the LSN structure to discipline the representation. Recall that for any sequence
x ∈ Ω∞, the sequence truncated at i is denoted xi ∈ Ωi. Adding an outcome of heads (respectively,
tails) in the i+ 1st toss yields xi1 ∈ Ωi+1 (respectively xi0 ∈ Ωi+1) and the sample mean is denoted
xi1 (respectively xi0).

Theorem 2 A family of full support beliefs {Pn}∞n=1 satisfies LSN, Weak Independence and Marginal
Consistency iff it admits a self-correcting bias representation: for all n and xn ∈ Ωn,

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(1− θi,xi−1)1−xi ,

where θ1,x0 ≡ θ∗ and θi,xi−1 ∈ (0, 1), and moreover for all i > 1 and xi−1, yi−1 ∈ Ωi−1 s.t. d(xi−1) =
d(yi−1),

d(xi−11) ≤ d(yi−10) ⇐⇒ θi,xi−1 ≥ 1− θi,yi−1

d(xi−11) ≤ d(yi−11) ⇐⇒ θi,xi−1 ≥ θi,yi−1

d(xi−10) ≤ d(yi−10) ⇐⇒ θi,xi−1 ≤ θi,yi−1 .

These three conditions hold for all xi−1, yi−1 ∈ Ωi−1 (resp. for all xi−1, yi−1 ∈ Ωi−1 s.t. xi−1 = yi−1)
iff {Pn} satisfies Strong LSN (resp. Weak LSN).

The result tells us that LSN and Weak Independence are characterized by a path-dependent bias
that is self-correcting in that it varies so as to keep the sample mean near the bias θ∗. Specifically,
interpret θi,xi−1 ∈ (0, 1) as the propensity for heads in the ith flip, conditional on a sample mean xi−1

up to that point. The three noted conditions state that the bias towards heads in the ith is stronger
whenever it brings the sample mean at the end of the ith toss closer to the mean. For instance, the
first condition, when specialized to xi−1 = yi−1, tells us that if at the end of a given sequence xi−1

a heads on the ith toss will bring the sample mean strictly closer to θ∗ than a tails, then it must be
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that the bias towards heads is stronger than that towards tails, θi,xi−1 > 1
2 . The three conditions

moreover impose some structure on the intensity of the bias across sequences. For instance, the
second condition states that, for any xi−1, yi−1 that result in the same distance to θ∗ at the end of
toss i − 1, if it is the case that a heads after xi−1 leads to a mean closer to θ∗ than a heads after
yi−1, then the bias towards head in the ith toss is stronger after xi−1 than it is after yi−1, that is,
θi,xi−1 ≥ θi,yi−1 . The other conditions are interpreted similarly. Observe that the theorem assures
us that the Law of Small Numbers is not fundamentally incompatible with Marginal Consistency.

As is evident in the proof of the theorem, the three conditions relating the bias with the distance
between the sample mean and true bias can be described in a simpler way, even without requiring
Marginal Consistency. We present the most general version of our model next.

Theorem 3 Beliefs {Pn} satisfy LSN and Weak Independence if and only if for each i there exists
gi : [0, 1]2 → [0, 1] that is strictly decreasing in its first argument such that for any n and xn ∈ Ωn,

Pn(xn) = θ∗x1(1− θ∗)1−x1

n∏
i=2

gi(d(xi), d(xi−1)).

In the representation, {Pn} satisfies Strong LSN (resp. Weak LSN) iff gi is constant in its second
argument (resp. gi has xi−1 as its second argument).5

The connection with the self-correcting bias representation – after assuming Marginal Consistency
– is that

θi,xi−1 = gi(d(xi−11), d(xi−1)) and 1− θi,xi−1 = gi(d(xi−10), d(xi−1)).

To say that gi is constant is to say that θi,xi−1 = 1
2 . To say that gi is constant in i is to say that

the intensity of the bias θi,xi−1 depends only on d(xi−11) and d(xi−1) and not on the toss i per se.
An example of a specification of the model is that there exists ε∗ > 0 and α > 1

2 such that for all
i > 1, each gi is given by

giε∗(|xi − θ∗|) =

{
α
Zi |xi − θ∗| ≤ ε∗

1−α
Zi otherwise

(1)

where {Zi}i=1,..,n normalize the representation so that Pn is a probability.6 Thus, when facing
sequence x, the agent “rewards” (in the sense of boosting the probability of the sequence) the
outcome of flip n by α > 1

2 if xn is within ε∗ of θ∗, and otherwise “punishes” it by 1 − α when
determining her belief Pn(xn).

We turn next to a discussion of how our model connects with the evidence on the Law of Small
Numbers.

3.2 Gambler’s Fallacy
According to Gambler’s Fallacy, following a streak of heads, the agent believes that a tails is more
likely to occur. Relatedly, an agent that satisfies Weak LSN exhibits:7 for any xn ∈ Ωn,∑n

i=1 xi
n

> θ∗ =⇒ Pn+1(0|xn) ≥ Pn+1(1|xn).

That, if there are “too many heads” in the first n flips (in that
∑n
i=1 xi
n > θ∗) then she believes that it

is more likely for there to be a tails in the (n+ 1)th flip. This makes a qualified prediction regarding
5Furthermore, {Pn} satisfies Marginal Consistency iff gi(d(xi−11), d(xi−1))+gi(d(xi−10), d(xi−1)) = 1 for all x, i.
6Recall that by definition, for i = 1 it must be that g1ε∗ (|1 − θ∗|) = θ∗ and g1ε∗ (|0 − θ∗|) = 1 − θ∗. Therefore the

model is defined by a restriction on gi only for i > 1.
7Observe that xn0 and xn1 are equivalent on the first n flips. By Weak LSN, the belief over these sequences is

completely determined by which outcome for flip n+ 1 takes the sample mean closer to θ∗.
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the Gambler’s Fallacy: it is not the presence of a streak prior to the last flip that is responsible for
exaggerating the belief in a tails, but rather the sample mean of the entire sample. Thus, if the
sample mean is too low at the nth flip then there will be no gambler’s fallacy despite an immediately
preceding streak.

The Retrospective Gambler’s Fallacy refers to the belief that outcome of the flip preceding a
streak of heads is most likely to be a tails (Oppenheimer and Monin (2009)). This is consistent with
our model, albeit with some nuance. For instance, observe that when θ∗ = 1

2 , Weak LSN implies

Pn+1(11|121314) < Pn+1(01|121314),

that is, conditional on obtaining a heads on tosses 2-4, our agent will believe it is more likely that
there was a tails on the first toss. This follows simply because the stream (0, 1, 1, 1) dominates
(1, 1, 1, 1) on path. However, unlike a comparison of sequences of the form xn1 vs xn0 used in the
Gambler’s Fallacy, we do not necessarily have dominance in sequences of the form (11, x2...xn+1) vs
(01, x2...xn+1). For instance, when θ∗ = 1

2 , the sequence (1, 0, 1, 1) dominates (0, 0, 1, 1) by the end
of the the second toss, but is dominated by it at the end of the fourth toss. Consequently, our LSN
axioms are silent on the comparison – they permit a Retrospective Gambler’s Fallacy but do not
necessitate it. 8

3.3 Local Representativeness
According to the Local Representativeness, people regard the sequence HTHTTH as more likely
than HHHTTT. The literature interprets this evidence as revealing that people expect the sample
mean to stay close to the true bias on path. Our LSN axioms formalize this using the notion of
dominance on path.

An interesting observation is that Local Representativeness and the Gambler’s Fallacy, while
both serving as evidence for LSN, can in fact contradict each other. Consider the following example
discussed in Section 2.2,

HHHHHHTH vs HHHHHHTT.

Local Representativeness presumably requires the former sequence to be more likely, since there are
fewer streaks. But the Gambler’s Fallacy requires the latter to be more likely, since the sample mean
is closer to θ∗ = 1

2 . This observation implies that any model of LSN will have to take a position
on which force dominates in any given example. In the above example, our LSN axiom implies
that the Gambler’s Fallacy will be stronger, since HHHHHHTT dominates HHHHHHTH on
path. Rabin (2002) implies that Local Representativeness is stronger, since P (HHHHHHTH)

P (HHHHHHTT ) =
P (TH)
P (HH) > 1. The switching rate model also implies that Local Representativeness dominates here
sinceHHHHHHTH has more switches thanHHHHHHTT . The models may generate predictions
in other directions in other examples.

3.4 Sample Size Neglect and Non-Belief in LLN
As noted in the Introduction, Kahneman and Tversky (1972) report an experiment where subjects
beliefs about the sampling distribution appear to be relatively insensitive to sample size., which
they term Sample Size Neglect To show that our model can accommodate this, consider the ε∗-
specification for g in (1) presented in Section 3.1. For any n, all sequences xn that have a mean xn

8It is worthwhile to make note also of the finding of Long-Distance Gambler’s Fallacy in Benjamin, Moore and
Rabin (2018). Following a streak of r = 1, 2, 5 heads on consecutive flips up to the nth flip, their subjects exhibited that
a probability of heads on flip n+1 was respectively 44%,41% and 39%. But when the streak came from nonconsecutive
draws from random locations flips, the probability of heads on another randomly chosen flip was 45%,42% and 41%
resp. That is, Gambler’s Fallacy appeared in randomly chosen subsequences from the original sequence. This is
difficult to reconcile in our model, as it is in any of the models in the literature, especially if the number n of flips is
large.
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within ε∗ of θ∗ will get the same probability α
Zn , whereas those that have a more distant mean will all

get probability 1−α
Zn . Thus the sampling distribution is a step function for each n, and in particular

there is some N beyond which there are always sample means that lie in [θ∗− ε∗, θ∗+ ε∗]. If we take
α→ 1, then the sampling distribution becomes concentrated on the sample means [θ∗ − ε∗, θ∗ + ε∗]
for all n ≥ N . Therefore it exhibits Sample Size Neglect.

Benjamin, Rabin and Raymond (2016) note that Sample Size Neglect suggests that subjects’
believed sampling distributions tend to be too spread out relative to the objective sampling distri-
bution. They term this a Non-Belief in the Law of Large Numbers, and evidence for it is cited in
Benjamin (2019). The limiting case α→ 1 in the above example demonstrates that the agent’s sam-
pling distribution does not collapse on θ∗, consistent with Non-Belief in the Law of Large Numbers.

4 Bayesian Inference
In this section we study whether an agent who exhibits LSN can learn the bias after observing an
infinite sequence of i.i.d. tosses.

4.1 Model
Let Θ = {θ1, ..., θn} and let Pnθ (xn) denote the ex-ante probability she assigns to a sequence xn
conditional on the true bias being θ. Define dθ(xi) := |xn − θ|. Suppose it is given by the following
model which satisfies LSN and Weak Independence:

Pnθ (x) =

n∏
i=1

gi(dθ(x
i), xi−1).

where we assume that Pnθ has full support and therefore that gi is strictly positive. Moreover, we
assume gi is independent of θ.

Suppose she has a prior µ ∈ ∆(Θ) over the parameter. Then, her ex-ante beliefs over sequences
of length n is given by

Pn(xn) =
∑
θ

Pnθ (xn)µ(θ).

Let Pn(θ|xn) denote her Bayesian posterior after observing xn:

Pn(θ|xn) =
Pnθ (xn)µ(θ)∑

θ′∈Θ P
n
θ′(x

n)µ(θ′)
.

Since for each given θ, the family of beliefs{Pnθ } is permitted to violate Marginal Consistency,
the Bayesian posteriors may be computed with respect to ex-ante beliefs Pn ∈ ∆(Θ× Ωn) that are
not consistent in the sense that Pn(xn) need not be equal to Pn+1(xnΩ). However, if each of these
families satisfies Marginal Consistency, our model reduces to a Bayesian Model that is misspecified
in that the true data generating process (the i.i.d. model) is not in the support of the prior.

4.2 Results
Suppose the data is generated by pθ on (Ω∞,Σ∞) that is i.i.d. with bias θ∗. We first establish
a general property of the model: the agent always places a non-vanishing probability on the true
parameter.

Theorem 4 Assume µ ∈ ∆(Θ) and each Pn ∈ ∆(Ωn) have full support. Then,

lim inf
n
Pn(θ∗|xn) > 0 a.s-pθ

∗
.
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Without further conditions, it cannot be assured that beliefs will converge. But the theorem
establishes that regardless of whether there is convergence, the agent always places a non-vanishing
probability on the true parameter. The reason is that the agent believes not just that the sample
mean tends to the true parameter at every point of the path, but rather that it must eventually tend
to it in the limit by the Law of Large Numbers. The latter is the reason that the evolution of the
sample mean keeps the agent from ruling out the true parameter. The former, however, may keep
her from ruling out other parameters when she sees unexpected patterns along the path.

The result stands in contrast with Rabin (2002), where the agent’s beliefs always converges a.s.
to a degenerate posterior, which may well be degenerate on the wrong parameter. The reason is
that in Rabin’s model, for any given bias different from 1

2 , the agent’s beliefs predict a different
proportion of heads that the one implied by LLN. Therefore, in a learning context, Rabin’s agent
places probability zero on the true proportion of heads and her beliefs concentrate on the “least’”
implausible bias.

The following result provides sufficient conditions on {Pn} for Pn(θ∗|xn) to converge, providing
both a case where the agent learns the truth and a case where she fails to rule out some wrong
parameters.

Theorem 5 Suppose µ ∈ ∆(Θ) and each Pn ∈ ∆(Ωn) have full support, and that gi is continuous
in its second argument for each i.

1. If gi = g for all i > 1, then pθ
∗
(limn→∞ Pn(θ∗|xn)→ 1) = 1, that is,

lim
n→∞

Pn(θ∗|xn)→ 1 a.s.- pθ
∗
.

2. If gi → c uniformly faster than 1
n2 → 0,9 where c > 0 is a constant function, then

pθ
∗
(limn→∞ Pn(θ∗|xn) ∈ (0, 1)) = 1, that is,

0 < lim
n→∞

Pn(θ∗|xn) 6= 1 a.s.- pθ
∗
.

Claim (i) assumes that gi = g is strictly increasing in the first argument, which ensures that
posteriors are responsive to the sample mean in every period. In this case the agent eventually
learns the true parameter θ∗. Claim (ii) assumes that gi approaches a constant g “fast enough”. As
noted after Theorem 3, a constant g corresponds to a belief that the bias is constant and equals
1
2 . In the current context, the agent believes that, for every θ, the coin becomes less self-correcting
with n. As a result, the progression of the sample mean is viewed as less informative about the
true parameter, and the posteriors correspondingly become less responsive to the sample mean as n
grows. Indeed, posteriors may be critically shaped by what she sees early in any sequence xn. The
result states that the agent’s posterior beliefs will not converge to a degenerate distribution almost
surely. In line with Theorem 4, in the limit the agent places strictly positive probability on the true
parameter θ∗. Indeed, patterns observed early in the sequence can never lead the agent to discard
the truth.

4.3 Hot Hand Effect and Under/Over-inference
We illustrate how our model can accommodate some evidence related to inference. Consider the ε∗-
specification for g in (1) presented in Section 3.1. Suppose there are two parameters Θ = {θ̂, 1− θ̂},
where θ̂ > 1

2 . The agent has a uniform prior over parameters.
An intuition familiar from psychology (Gilovich, Vallone and Tversky (1985)) and formalized in

economics (Rabin (2002), Rabin and Vayanos (2010)) is that inference with LSN can give rise to a
Hot Hand Effect, the finding that subjects sometimes expect a streak to be more likely to continue,
in contrast to the Gambler’s Fallacy. We illustrate this same idea in our model. Intuitively, our

9That is, there exists N such that for all n > N , |gn(a, θ)− c| < 1
n2 for all a, θ in the support of gn.
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agent expects the mean of the sequence to remain close to the bias. Therefore, according to the
agent, a higher bias will imply longer streaks. Then in an inference setting, observing a longer streak
will more strongly suggest that the true bias is high, and the agent will therefore expect the streak
to continue, as in the Hot Hand Effect. To illustrate, let 1n be a sequence of heads of length n, in
which case the sample mean is 1. Suppose that this sample mean is within ε∗ of θ̂ and beyond ε∗ of
1− θ̂, that is, 1− θ̂ < ε∗ < 1− (1− θ̂). Then given the expressions in Appendix 6.4, we see that

Pn(θ̂|1n)

Pn(1− θ̂|1n)
=

θ̂αn−1

(1− θ̂)(1− α)n−1
.

Since α > 1
2 , the belief in θ̂ grows exponentially with the length of the streak n, which in turn gives

rise to a belief that the streak is likely to continue. This illustrates a Hot Hand Effect.
Over- or under-inference refers to how much posteriors move with data relative to those of an IID

agent (see Benjamin (2019) for a discussion of the evidence). We show that our model can generate
extreme movements or sluggish movement. The g function in the representation determines this.
For instance in the above example, suppose that g is close to constant: α ≈ 1

2 . Then by the above
expression we see that the posteriors after observing a single heads are approximately the same as
those after observing a streak of heads:

Pn(θ̂|1)

Pn(1− θ̂|1)
=

θ̂

(1− θ̂)
≈ θ̂αn−1

(1− θ̂)(1− α)n−1
=

Pn(θ̂|1n)

Pn(1− θ̂|1n)
.

Given that the IID agent’s posteriors will be different, for α ≈ 1
2 we can have under-inference.

To illustrate over-inference, consider again ε∗-specification for g in (1) and suppose there are two
parameters θ̂, 1− θ̂ where θ̂ > 1

2 . Consider beliefs over parameters after observing a heads followed
by a tails, (1, 0). Given the expressions in Appendix 6.4, the belief in θ̂ satisfies

PLSN (θ̂|1, 0) =
θ̂α

θ̂α+ (1− θ̂)α
= θ̂ >

1

2
= P IID(θ̂|1, 0),

that is, while the IID agent’s posterior equals the prior after observing a heads and a tails, the LSN
agent will over-infer that the true parameter is θ̂.

5 Evolutionary Survival of LSN vs IID Agents
We study the survival of LSN agent in a specific evolutionary context. Consider two populations of
agents. An “IID agent” has an accurate perception of i.i.d. sequences. An “LSN” agent follows the
ε∗-specification for g in (1).

Suppose there is a continuum of “safe” hunting grounds where hunting yields a small reward r = 1
(a “rabbit”). There is a continuum of “risky” hunting grounds of which a fraction θ ∈ Θ = {θ̂, 1− θ̂},
where θ̂ > 1

2 , contains a large reward, r = 2 (a “deer”), and the remaining fraction contain no reward,
r = 0. The fraction θ is an unknown parameter. In every period, one risky ground is randomly
chosen and publicly sampled by both LSN and IID agent types. The agents update their beliefs
about θ based on whether a deer is sighted in the sampling hunting ground. Let xi = 0 (resp. xi = 1)
denote that the deer was not present (resp. present), in which case we can write the reward in period
i as r = 2xi. Each type A = IID,LSN determines the fraction of its population, kAxi ∈ [0, 1], that
hunts in the risky grounds in period i conditional on having observed xi signals, which the remainder
fraction 1− kAxi hunting in the safe ground.10 Letting ΛAi−1 denote the population of type A at the

10An interpretation is that each agent has to choose between spending their full day in the safe or the risky hunting
ground, and they randomize by flipping a coin with bias kA

xi
and they go to the risky hunting ground if there is a

heads. If all agents do this, then fraction kA
xi

goes to the risky hunting ground.
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start of period i. The total reward per capita received by type A is

cAxi :=
RAxi

ΛAi−1

= kAxi(2θ) + (1− kAxi).

Both types of agents have a common prior over Θ:

µLSN (θ̂) = µIID(1− θ̂) =
1

2
.

Both maximize expected utility using a common strictly increasing strictly concave utility index u to
determine the optimal (kAxi , 1− k

A
xi) based on history of deer sightings xi from the sampled hunting

ground. We assume that agents do not observe the outcome of other agents’ hunting. Consequently,
they cannot deduce θ by observing the fraction of agents that found a deer.

The population of type A agents grows by a factor of λc
A
xi in period i, where λ > 1. Thus, higher

per capita consumption leads to faster growth in the population. Assuming that both populations
start with the same size, we are interested in determining which grows faster over time, that is, we
are interested in the ratio:

n∏
i=1

λc
LSN
xi

λc
IID
xi

,

and in particular how this ratio grows as n→∞.
We show that:

Proposition 1 Denote the true parameter as θ ∈ Θ = {θ̂, 1− θ̂}. Then the following hold for LSN
agents with 0 < ε∗ < 2θ̂ − 1.

(i) The LSN agents are eventually more confident about the true parameter, a.s.:

PnLSN (θ|xn) ≥ PnIID(θ|xn) for all sufficiently large n ∈ N a.s.-pθ

(ii) The population of LSN agents never vanishes, a.s.:

lim inf
n→∞

n∏
i=1

λc
LSN
xi

λc
IID
xi

> 0 a.s-pθ.

The first part of the result states that along any realized path x, almost surely, LSN agents will
eventually be more confident in the true parameter than the IID agents. The reason is that by
LLN the sample mean will eventually be within ε∗ of the true parameter θ, and the LSN agents will
take this as a stronger indication that the true parameter is θ than not, relative to the IID agents.
This leads a larger proportion of the LSN population, relative to the IID population, to hunt in the
“correct” hunting ground (the correct hunting ground is the risky one iff the true parameter is θ = θ̂),
and therefore to grow faster than the IID population. Accordingly, the second part of the result
states that the LSN population is never pushed out of the evolutionary race by the IID population.

Since we have already seen (in Theorem 4) that in general LSN agents may not become sure
about the truth in the limit, it is possible to construct settings where LSN agents may not survive
relative to IID agents with positive probability. The above result, however, shows us that LSN agents
do not possess an inherent evolutionary disadvantage that they carry into all possible settings. As
long as they can learn, the fact that their beliefs are misspecified relative to IID agents and cause
misinferences does not threaten their survival. In fact it can benefit their survival. It is possible
to construct examples in the current setting where in fact LSN agents completely dominate the
population with probability strictly greater than 1

2 . For instance:

Proposition 2 If θ̂ ≥ 3
4 and ε∗ = θ̂ − 1

2 , then P (lim infn→∞
∏n
i=1

λ
cLSN
xi

λ
cIID
xi

=∞) > 1
2 .

14



We close by noting, however, that in a market setting LSN agents share the same fate when
facing IID agents as any agent with misspecified beliefs. Sandroni (2000) shows that agents who
eventually make accurate forecasts will push out agents who do not. Even when LSN agents know
the true parameter, their one-step ahead belief will be bounded away from the true probability.
Such agents will not survive relative to well-specified agents because, intuitively, the misspecified
beliefs lead agents to bet (via their demand for assets) on events that have probability 0, to their
detriment. However, this result hinges on the market for assets for being complete. We leave it to
future research to study the survival of LSN agents in incomplete markets.

6 Appendix

6.1 Appendix: Proof of Theorem 1
Lemma 1 A family of full support beliefs {Pn} satisfies Independence iff

Pn(xn) =

n∏
i=1

(θi)
xi(γi)

1−xi ,

where θi, γi ∈ (0, 1) and θ1 = 1− γ1 = θ∗. Moreover, Marginal Consistency holds iff θn + γn = 1 for
all n. Finally, Pn(Ωn−11) = θ∗ for all n iff θn = 1− γn = θ∗ for all n.

Proof. By definition, P 1(x1) = (θ∗)x1(1 − θ∗)1−x1 . By Independence, P
2(1,1)

P 2(0,1) = P 1(1)
P 1(0) = θ∗

1−θ∗ and
P 2(1,0)
P 2(0,0) = P 1(1)

P 1(0) = θ∗

1−θ∗ Define θ2 := P 2(1,1)
θ∗ = P 2(0,1)

1−θ∗ and γ2 := P 2(1,0)
θ∗ = P 2(0,0)

1−θ∗ . Then we have

P 2(x1x2) = (θ∗)x1(1− θ∗)1−x1 × (θ2)x2(γ2)1−x2 .

Moreover by Marginal Consistency, P 2(1, 1) + P 2(1, 0) = P 1(1) and so θ∗θ2 + θ∗γ2 = θ∗ and in
particular θ2 + γ2 = 1 given that θ∗ > 0 by the full support assumption. Proceed inductively.
Assume that the representation holds for n. Invoking Independence as above, θn+1 := Pn+1(xn,1)

Pn(xn)

and γn+1 := Pn+1(xn,0)
Pn(xn) are independent of xn, and the same argument establishes that Pn+1 has

the desired representation. Moreover, θn+1 + γn+1 = 1 holds iff Marginal Consistency holds.
Suppose {Pn} satisfy Independence and the property that Pn(Ωn−11) = θ∗ for all n. Then using

the representation we have that θn = Pn(Ωn−11) = θ∗ and γn = Pn(Ωn−10) = 1 − Pn(Ωn−11) =
1− θ∗.

6.2 LSN
To simplify exposition, for any x ∈ Ω∞ and n write

d(xn) = |xn − θ∗|.

6.2.1 Representing LSN and Weak Independence

Lemma 2 Pn satisfies Weak LSN iff for each r ∈ [0, 1] there exists a strictly decreasing function
fn(·|r) on [0, 1]n such that for any xn ∈ Ωn,

Pn(xn) = fn(d(x1), ..., d(xn)|xn−1).

Pn satisfies LSN if the dependence of fn on xn−1 is replaced with dependence on d(xn−1). Pn

satisfies Strong LSN iff for each fn is constant in its last argument.
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Proof. For any x, y ∈ Ωn s.t. d(xn−1) = d(yn−1) and d(xi) ≤ d(yi) for all i ≤ n, LSN implies
Pn(xn) ≥ Pn(xn), with d(xi) < d(yi) for some i ≤ n implying Pn(xn) ≥ Pn(xn). Therefore there
exists a function fn : [0, 1]n+1 → [0, 1] s.t.

Pn(xn) = fn(d(x1), ..., d(xn)|d(xn−1)),

and fn is strictly decreasing in all arguments d(xi) for i 6= n − 1. Wlog fn(·|d(xn−1)) can be
presumed strictly decreasing in all arguments. Conversely, if Pn admits such a representation, then
LSN is implied. A similar argument establishes the desired characterization of Weak LSN and Strong
LSN.

Lemma 3 A family of full support beliefs {Pn}∞n=1 satisfies LSN and Weak Independence iff for each
n > 1 there exists a continuous gn : [0, 1]2 → [0, 1] that is strictly decreasing in its first argument
such that for any N and xN ∈ ΩN ,

PN (xN ) =

N∏
n=1

gn(d(xn), d(xn−1)),

where g1(d(x1), x0) := (θ∗)x1(1 − θ∗)1−x1 . If LSN is replaced with Strong LSN then gn is constant
in its last argument.

Proof. Consider a family of full support beliefs. Begin with sufficiency of Weak LSN and Weak
Independence. For each n and r

n fix some yn,r ∈ Ωn with
∑n
i=1 y

n,r
i = r. By the full support

assumption, Pn(yn,r) > 0.
Step 1: For any r and xnxn+1 ∈ Ωn+1 s.t.

∑n
i=1 x

n
i

n = r
n ,

Pn+1(xnxn+1)

Pn(xn)
=
Pn+1(yn,rxn+1)

Pn(yn,r)
.

This just restates the conclusion of Weak Independence.

Step 2: Show that there exists a function gn+1 on [0, 1]2 that is strictly decreasing in its first
argument and for any xn+1,

gn+1(d(xn+1), d(xn)) =
Pn+1(xnxn+1)

Pn(xn)
.

By Weak LSN (and lemma 2), there exists fn s.t.

Pn(xn) = fn(d(x1), ..., d(xn)|xn−1).

If LSN (resp. Strong LSN) holds, then we can take this function to depend on d(xn−1) rather than
xn−1 (resp. independent of the last argument d(xn−1)), and the proof below does not change.

Take any n and r and any xn+1 ∈ Ω. Take the corresponding yn,r but suppress superscript r in
the notation for exposition as needed. Then by the representation,

Pn+1(yn,rxn+1)

Pn(yn,r)
=
fn+1(d(y1), ..., d(yn), d(ynxn+1)|yn)

fn(d(y1), ..., d(yn)|yn−1)
.

Since n, r and thus yn,r are given, we can write the RHS ratio as a function gn+1 so that

Pn+1(yn,rxn+1)

Pn(yn,r)
= gn+1(d(yn,rxn+1), yn,r) > 0.
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By definition of d and by Weak LSN, for any realizations xn+1, x
′
n+1 ∈ Ω,

d(yn,rxn+1) ≥ d(yn,rx′n+1) =⇒ Pn+1(yn,rxn+1) ≥ Pn+1(yn,rx′n+1)

=⇒ gn+1(d(yn,rxn+1), yn,r) ≤ gn+1(d(yn,rx′n+1), yn,r),

where the conclusion is strict if the hypothesis is strict. Therefore, gn+1 is strictly decreasing in its
first argument.

To complete the step, take any xnxn+1 ∈ Ωn+1 with
∑n
i=1 x

n
i = r and note that it must be that

xn = yn,r and dn+1(xnxn+1) = dn+1(yn,rxn+1). Then Step 1 yields

gn+1(d(xnxn+1), xn) = gn+1(d(yn,rxn+1), yn,r) =
Pn+1(yn,rxn+1)

Pn(yn,r)
=
Pn+1(xnxn+1)

Pn(xn)
.

This argument goes through even if we impose LSN since xn = yn,r implies d(xn) = d(yn,r).
Step 3. Complete the proof of sufficiency.
Define g1(d(x1)) := P 1(x1) = (θ∗)x1(1− θ∗)1−x1 . Apply Step 2 iteratively to obtain that for any

N and xN ∈ ΩN ,

PN (xN ) =

N∏
n=1

gn(d(xn), xn−1),

yielding the desired functional form.
Finally, observe that gn is defined over a finite subset of [0, 1]2 for each n > 1 but is strictly

decreasing in its first argument for each given value of the second argument. Moreover, by the
full support assumption, it takes on strictly positive values. For each possible value of the second
argument, the function can clearly be extended to a continuous strictly decreasing function in the
first argument. Moreover, it can be continuously extended in its second argument by exploiting the
fact that the mixture of decreasing functions is decreasing.

Step 4: Necessity of Weak Independence.
Suppose now that such a representation (using Weak LSN) exists. Take any N and xN , yN ∈ ΩN

s.t. xN = yN . Then dn+1(xNxN+1) = dn+1(yNxN+1) (and observe that if we assume LSN rather
than Weak LSN then xN = yN implies d(xN ) = d(yN )). By the representation,

PN+1(xNxN+1) =

[
N∏
n=1

gn(d(xn), xn−1)

]
× gN+1(d(xNxN+1), xN )

and similarly

PN+1(yNxN+1) =

[
N∏
n=1

gn(d(yn), yn−1))

]
× gN+1(d(yNxN+1), xn)

=

[
N∏
n=1

gn(d(yn), yn−1)

]
× gN+1(d(xNxN+1), xn)

where the last equality uses dN+1(yNxN+1) = dN+1(xNxN+1) and xn = yn. Therefore, given
Pn(yn) > 0 and Pn+1(ynxn+1) > 0 by the full support assumption,

PN+1(xNxN+1)

PN+1(yNxN+1)
=

∏N
n=1 g

n(d(xn), xn−1)∏N
n=1 g

n(d(yn), yn−1)
=
PN (xN )

PN (yN )
.

as desired.
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6.2.2 Proof of Theorems 2 and 3

Lemma 4 A family of full support beliefs {Pn}∞n=1 satisfies Weak LSN and Weak Independence iff
it admits a self-correcting bias representation:

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(γi,xi−1)1−xi ,

where θi,xi−1 , γi,xi−1 ∈ (0, 1) are such that for any xi−1, yi−1 ∈ Ωi−1 s.t. xi−1 = yi−1,

d(xi−11) ≤ d(yi−10) ⇐⇒ θi,xi−1 ≥ γi,yi−1 .

whereas if {Pn} satisfies Strong LSN (resp. LSN) then for any xi−1, yi−1 ∈ Ωi−1 (resp. for any
xi−1, yi−1 ∈ Ωi−1 s.t. d(xi−1) = d(yi−1)),

d(xi−11) ≤ d(yi−10) ⇐⇒ θi,xi−1 ≥ γi,yi−1

d(xi−11) ≤ d(yi−11) ⇐⇒ θi,xi−1 ≥ θi,yi−1

d(xi−10) ≤ d(yi−10) ⇐⇒ γi,xi−1 ≥ γi,yi−1 .

Moreover, γi,xi−1 = 1− θi,xi−1 iff {Pn} satisfy Marginal Consistency.

Proof. Begin with the representation in lemma 3 for Weak LSN and Weak Independence. Denote
the bias towards heads on the ith throw given a sample mean xi−1 by

θi,xi−1 := gi(d(xi−11), xi−1) ∈ [0, 1]

and similarly for the bias towards tails:

γi,xi−1 := gi(d(xi−10), xi−1) ∈ [0, 1].

The representation can then be written

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(γi,xi−1)1−xi ,

Since gi is strictly decreasing in its first argument, the functions θ, γ must have the desired mono-
tonicity property that for any xi−1, yi−1 ∈ Ωi−1 s.t. xi−1 = yi−1,

d(xi−11) ≤ d(yi−10) ⇐⇒ θi,xi−1 ≥ γi,yi−1 .

Conversely, if we have such a representation, then for any sequences xi−11, yi−11 ∈ Ωi−1 ending
in a heads we have

xi−1 = yi−1 and d(xi−11) ≤ d(yi−11) =⇒ θi,xi−1 ≥ θi,yi−1 ,

and for any sequences xi−10, yi−10 ∈ Ωi−1 ending in tails we have

xi−1 = yi−1 and d(xi−10) ≤ d(yi−10) =⇒ γi,xi−1 ≥ γi,yi−1 ,

with strict inequality on the left side implying strict inequality on the right. So we can define func-
tions f i(d(xi−11), xi−1) := θi,xi−1 and hi(d(yi−10), yi−1) := γi,yi−1 that are both strictly decreasing
in their first argument. These functions are connected by the condition that

xi−1 = yi−1 and d(xi−11) = d(yi−10) =⇒ θi,xi−1 = γi,yi−1 ,
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in which case f i(d(yi−10), yi−1) = f i(d(xi−11), xi−1) = θi,xi−1 = γi,yi−1 = hi(d(yi−10), yi−1). There-
fore f(·, xi−1) and h(·, xi−1) coincide on the intersection of their domains. Consequently, together
the functions define a strictly decreasing function g(·, xi−1) on the union of the domains, and we can
write

Pn(xn) =

n∏
i=1

(θi,xi−1)xi(γi,xi−1)1−xi =

n∏
i=1

gi(d(xi), xi−1).

By lemma 3, beliefs satisfy Weak LSN and Weak Independence.
The corresponding arguments for LSN and Strong LSN are analogous.
Finally, compute that for any xN ,∑

xN+1
PN+1(xNxN+1)

PN (xN )

=

∏N
n=1 g

n(d(xn), d(xn−1))×
∑
xN+1

[
gN+1(d(xNxN+1), d(xN ))

]∏N
n=1 g

n(d(xn), d(xn−1))

=
∑
xN+1

[
gN+1(d(xNxN+1), d(xN ))

]
= θi,d(xi−11),d(xi−1) + γi,d(xi−10),d(xi−1).

It follows that Marginal Consistency holds iff
∑
xN+1

PN+1(xNxN+1)

PN (xN )
= 1 iff γi,d(xi−10),d(xi−1) = 1 −

θi,d(xi−11),d(xi−1), as was to be shown.

6.3 Proof of Theorems 4 and 5
Lemma 5 Assume µ ∈ ∆(Θ) and each Pn ∈ ∆(Ωn) have full support. Then,

lim inf
n
Pn(θ∗|xn) > 0 a.s-pθ

∗
.

Proof. Fix any sequence such that limn x
n = θ∗ and let xnk denote a subsequence that converges

to lim inf of Pn(θ∗|xn):
limk→∞P

nk
θ∗ (xnk) = lim inf

n
Pn(θ∗|xn).

For any θ 6= θ∗, this subsequence generates a sequence {Pnkθ (xnk)} in [0, 1], and a further subsequence
must lead to convergence of Pnkθ (xnk). Since there are finitely many θ, we can wlog suppose that
Pnkθ (xnk) are convergent for all θ ∈ Θ. Due to the full support assumptions, it must be that∑
θ∈Θ P

nk
θ (xnk)µ(θ) > 0 and in particular the posteriors Pnk(θ|xnk) are well-defined.

Suppose by way of contradiction that lim infn P
n(θ∗|xn) = 0. Thus Pnkθ∗ (xnk)→ 0. It cannot be

that Pnkθ (xnk)→ 0 for all θ ∈ Θ, otherwise we obtain the contradiction that 1 =
∑
θ∈Θ P

n(θ|xn)→
0. Let θ ∈ Θ be such that limk→∞P

nk
θ (xnk) > 0 and consider the likelihood ratio of θ and θ∗,

Pnθ (xn)

Pnθ∗(x
n)

=

∏n
i=1 g

i(|xi − θ|, xi)∏n
i=1 g

i(|xi − θ∗|, xi)
=

n∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

.

By the Law of Large Numbers, pθ
∗
(x∞| limn→∞ xn = θ∗) = 1. Hence, it is enough to consider

such sequences. Fix ε = minθ 6=θ′ |θ − θ′| and x ∈ Ω∞ such that limn→∞ xn = θ∗. Let N be such
that for all n > N , |xn − θ∗| < ε

4 . Then, |x
n − θ| > ε

2 . Further,

n∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

=

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

.
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Because g is weakly decreasing in its first argument, and since |xn − θ∗| < ε
4 and |xn − θ| > ε

2 , then

gi(|xi − θ∗|, xi) ≥ gi(|xi − θ|, xi)

for all i > N . Hence,

lim
nk→∞

Pnkθ (xnk)

Pnkθ∗ (xnk)
≤
N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

which contradicts the hypothesis that Pnkθ∗ (xnk)→ 0 and in particular contradicts lim infn P
n(θ∗|xn) =

0.

Lemma 6 Suppose µ ∈ ∆(Θ) and each Pn ∈ ∆(Ωn) have full support. Assume LSN and Weak
Independence, and consider a representation where gi is strictly increasing in its first argument for
each i.

1. If gi = g for all i > and g is strictly increasing in its first argument and continuous in its
second, then pθ

∗
(limn→∞ Pn(θ∗|xn)→ 1) = 1, that is,

lim
n→∞

Pn(θ∗|xn)→ 1 a.s.- pθ
∗
.

2. If gi → c uniformly faster than 1
n2 → 0 for all θ, where gi is strictly increasing in its first

argument and continuous in its second argument for all i and c > 0 is a constant function, then

0 < lim
n→∞

Pn(θ∗|xn) 6= 1 a.s.- pθ
∗
.

Proof. Because we are only considering finitely many θ’s, it is enough to show that Pnθ (xn)
Pn
θ∗ (xn) →

0 a.s.- pθ
∗
for all j 6= i.

By an identical argument to the one in Lemma 5, for ε = minθ∈Θ\{θ∗} |θ − θ∗|, there exists N
such that for all i > N, |xi − θ∗| < ε

4 , and

Pnθ (xn)

Pnθ∗(x
n)

=

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

.

Further, because g is strictly decreasing in its first argument, and since |xn−θ∗| < ε
4 and |xn−θ| > ε

2 ,

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

<

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi( ε2 , x
i)

gi( ε4 , x
i)
.

Notice that gi( ε2 ,x
i)

gi( ε4 ,x
i)
< 1 for all i and the term

∏N−1
i=1

gi(|xi−θ|,xi)
gi(|xi−θ∗|,xi) does not depend on n.

This implies thatTherefore, to prove the result, it suffices to show that
∏n
i=N

g( ε2 ,x
i)

g( ε4 ,x
i)
→ 0.

Step 1: Establish the result under the first assumption in the lemma.
A sufficient condition for the result limn→∞ Pn(θ∗|xn) → 1 a.s.-pθ

∗
is that

∏n
i=N

gi( ε2 ,x
i)

gi( ε4 ,x
i)
→ 0.

To see this observe that, given the preceding,
∏n
i=N

gi( ε2 ,x
i)

gi( ε4 ,x
i)
→ 0 implies

Pnθ (xn)

Pnθ∗(x
n)

<

N−1∏
i=1

gi(|xi − θ|, xi)
gi(|xi − θ∗|, xi)

×
n∏

i=N

gi( ε2 , x
i)

gi( ε4 , x
i)
→ 0

and so Pnθ (xn)
Pn
θ∗ (xn) → 0, and in particular limn→∞ Pn(θ∗|xn)→ 1 a.s.-pθ

∗
.
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So consider the first assumption in the lemma. Since the assumption restricts gi = g for i > 1,
we take N > 1. We show that

∏n
i=N

g( ε2 ,x
i)

g( ε4 ,x
i)
→ 0. Since g is continuous in its second argument

and since xi → θ∗, we have g( ε2 ,x
i)

g( ε4 ,x
i)
→ g( ε2 ,θ

∗)

g( ε4 ,θ
∗) < 1. In particular there exists M and ε > 0 s.t.

g( ε2 ,x
i)

g( ε4 ,x
i)
< 1− ε for all i > M . But then

n∏
i=N

g( ε2 , x
i)

g( ε4 , x
i)

=

max{M,N}∏
i=N

g( ε2 , x
i)

g( ε4 , x
i)
×

n∏
i=max{M,N}+1

g( ε2 , x
i)

g( ε4 , x
i)

<

max{M,N}∏
i=N

g( ε2 , x
i)

g( ε4 , x
i)
×

n∏
i=max{M,N}+1

(1− ε)→ 0,

as desired.
Step 2: Establish the result under the second assumption in the lemma.
Assume that gn → c > 0 uniformly faster than 1

n2 → 0. Then there exists K such that
infn>K g

n > 0 for all n > K. Moreover, for any a, b ∈ [0, 1] and sample mean θ such that a > b > 0,
it must be that for all n > K, and

|g
n(a, θ)

gn(b, θ)
− 1| = |g

n(a, θ)− gn(b, θ)

gn(b, θ)
| < |g

n(a, θ)− c
gn(b, θ)

|+ |g
n(b, θ)− c
gn(b, θ)

|

<
1

n2

2

gn(b, θ)
<

k

n2

for some constant k = 2
infn>K gn . In fact k > 1 since g ≤ 1. Hence, for all n > K,

gn(a, θ)

gn(b, θ)
< 1 +

k

n2
.

Fix any x ∈ Ω∞ and consider

lim
n→∞

P θ
∗
(xn)

P θ(xn)
= lim
n→∞

n∏
i=1

gi(|xi − θ∗|, xi)
gi(|xi − θ|, xi)

=

∞∏
i=1

gi(|xi − θ∗|, xi)
gi(|xi − θ|, xi)

.

This product exists if and only if there exists N such that for all m > N ,
∞∑
n=m

ln(
gn(|xn − θ∗|, xn)

gn(|xn − θ|, xn)
) <∞,

which we shall proof happens a.s-pθ
∗
. Since the law of large numbers implies xn → θ∗, there is

M s.t. |xn − θ∗| < |xn − θ| and thus gn(|xn−θ∗|,xn)
gn(|xn−θ|,xn) > 1 (since gn is strictly increasing in its first

argument) for all n ≥M . Also, as we saw earlier, there is K such that gn(a,θ)
gn(b,θ) < 1+ k

n2 for all n > K

and any a, b, θ. It follows that for all n > N := max{M,K},11

∞∑
n=N+1

ln(
gn(|xn − θ∗|, xn)

gn(|xn − θ|, xn)
) <

∞∑
n=N+1

ln(1 +
k

n2
) <∞.

11To see why the inequality
∑∞
n=1 ln(1 + k

n2 ) <∞ in the expression holds, let f(x) = ln(1 + k
x2

) and note that it
is decreasing on (0,∞). Then

∞∑
n=1

ln(1 +
k

n2
) < f(1) +

∫ ∞
1

f(x) = f(1) + (2
√
k)tan−1(

√
k)− ln(k + 1) <∞.
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Therefore, we establish limn→∞
P θ
∗

(xn)
P θ(xn)

< ∞, and in particular P (θ∗|xn) 6→ 1 a.s.-pθ
∗
. More-

over, since P θ
∗

(xn)
P θ(xn)

> 0 for any n by the full support assumption, and since we have shown that
gn(|xn−θ∗|,xn))
gn(|xn−θ|,xn) > 1 for all n > N , it must be that limn→∞

P θ
∗

(xn)
P θ(xn)

=
∏∞
i=1

gi(u(|
∑
j≤i

xi
i −θ

∗|))
gi(u(|

∑
j≤i

xi
i −θ))

> 0 .

Thus, P (θ∗|xn) > 0 a.s.-pθ
∗
.

6.4 Evolution
6.4.1 Proof of Proposition 1

We start with a convenient observation about the normalizing constants Ziθ and Zi1−θ in the repre-
sentation.

Lemma 7 Let Ziθ be the constant associated with the representation 1 for parameter θ. Then,
Ziθ = Zi1−θ for all i > 1 and all θ ∈ [0, 1].

Proof. WLOG fix θ ≥ 1
2 . For each sequence xn ∈ Ωn,let y(xn) be the sequence obtained by replacing

the ones in xnwith zeros and the zeros with ones. It is easy to see that |xn − θ| = |y(xn)− (1− θ)|.
Hence, |xn − θ| ≤ ε∗ ⇐⇒ |y(xn) − (1 − θ)| ≤ ε∗ which implies Pnθ (xn) = Pn1−θ(y(xn)) by the
representation (1). In particular, Pnθ (1n) = Pn1−θ(0

n). We show that for any n ≥ 2,

n∏
i=2

1

Ziθ
=

n∏
i=2

1

Zi1−θ
.

Consider two cases:
(i) |1− θ| > ε∗.
Then θ(1 − α)n−1

∏n
i=2

1
Ziθ

= Pnθ (1n) = Pn1−θ(0
n) = (1 − (1 − θ))(1 − α)n−1

∏n
i=2

1
Zi1−θ

=⇒∏n
i=2

1
Ziθ

=
∏n
i=2

1
Zi1−θ

.

(ii) |1− θ| ≤ ε∗.
Then θαn−1

∏n
i=2

1
Ziθ

= Pnθ (1n) = Pn1−θ(0
n) = (1 − (1 − θ))αn−1

∏n
i=2

1
Zi1−θ

=⇒
∏n
i=2

1
Ziθ

=∏n
i=2

1
Zi1−θ

.

Using the equalities
∏n
i=2

1
Ziθ

=
∏n
i=2

1
Zi1−θ

for all n ≥ 2, a proof by induction yields Ziθ = Zi1−θ
for all i > 1.

Next, observe that by Bayesian updating, if there is N s.t. xn > 1
2 and |xn − θ| < ε∗ for all

n > N , then

PnLSN (θ|xn) =
PnLSN (θ|xN )αn−N

PnLSN (θ|xN )αn−N + PnLSN (1− θ|xN )(1− α)n−N

and as usual,

PnIID(θ|xn) =
PnIID(θ|xN )(θ)kn−N (1− θ)n−N−kn−N

PnIID(θ|xN )(θ)kn−N (1− θ)n−N−kn−N + PnIID(1− θ|xN )(1− θ)kn−N (θ)n−N−kn−N
,

where kn−N is the number of heads that occur after the N th throw (which satisfies 2kn−N > n−N
since that xn > 1

2 for all n > N). Now we are ready to prove the proposition.

Proof of (i): We only establish the case in which θ = θ̂ > 1
2 since the proof θ = 1− θ̂ is analogous.

Let PnLSN (θ|xn) and PnIID(θ|xn) be the posterior beliefs after observing signals xn of the LSN and
IID agents respectively.
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By LLN, there exists N such that xn > 1
2 and |xn−θ| < ε∗ for all n > N . Moreover, by Bayesian

updating,

PnLSN (θ|xn)

PnLSN (1− θ|xn)
=

PnLSN (θ|xN )

PnLSN (1− θ|xN )

αn−N

(1− α)n−N
and PnIID(θ|xn)

PnIID(1−θ|xn)=
PnIID(θ|xN )

PnIID(1− θ|xN )

(θ)kn−N (1− θ)n−N−kn−N
(1− θ)kn−N (θ)n−N−kn−N

,

where kn−N is the number of heads that occur after the N th throw. Then

PnLSN (θ|xn)

PnLSN (1− θ|xn)
/

PnIID(θ|xn)

PnIID(1− θ|xn)
=

PnLSN (θ|xN )

PnLSN (1− θ|xN )

αn−N

(1− α)n−N
/

PnIID(θ|xN )

PnIID(1− θ|xN )

(θ)kn−N (1− θ)n−N−kn−N
(1− θ)kn−N (θ)n−N−kn−N

=

[
PnLSN (θ|xN )

PnLSN (1− θ|xN )
/

PnIID(θ|xN )

PnIID(1− θ|xN )

] [
α

1− α

]n−N [
θ

1− θ

]n−N−2kn−N

→∞,

since α
1−α ,

θ
1−θ > 1.

Hence, there exists N ′ such that for all n > N ′,

PnLSN (θ|xn)

PnLSN (1− θ|xn)
>

PnIID(θ|xn)

PnIID(1− θ|xn)
,

which implies PnLSN (θ|xn) > PnIID(θ|xn) for all n > N ′, as desired.

Proof of (ii): Let PnLSN (θ|xn) and PnIID(θ|xn) be the posterior beliefs after observing signals xn
of the LSN and IID agents respectively.

Step 1: Show that

PnLSN (θ|xn) ≥ PnLSN (θ|xn) ⇐⇒ kLSNxn ≥ kIIDxn .

The optimal choice of agent A solves

Uxi(k) = [θPn(θ|xn)+(1−θ)Pn(1−θ|xn)]u(k2+(1−k))+[(1−θ)Pn(θ|xn)+θPn(1−θ|xn)]u(1−k).

The FOC is therefore

2[θPn(θ|xn) + (1− θ)Pn(1− θ|xn)]u′(k + 1) = [(1− θ)Pn(θ|xn) + θPn(1− θ|xn)]u′(1− k),

which rearranges to

2
u′(k + 1)

u′(1− k)
=

1− θ + 1
2P

n(1− θ|xn)

1− θ + 1
2P

n(θ|xn)
.

Since u is strictly concave, the LHS is strictly decreasing in k. Therefore PnLSN (θ|xn) ≥ PnIID(θ|xn) ⇐⇒
kLSNxn ≥ kIIDxn .

Step 2: Prove the result.
By step 1 and part (i) of the proposition, the LSN agent will eventually spend more time on the

risky ground than the safe ground a.s. Furthermore, when the true parameter is θ = θ̂ > 1
2 (the

argument for θ = 1 − θ̂ is analogous), there will eventually be more heads than tails a.s. by LLN.
Hence, a.s., the LSN agent will eventually have a higher return than the IID agent.

6.4.2 Proof of Proposition 2

The proof relies on the following statistical fact: in an infinite sequence of coin tosses, the probability
of observing more heads than tails at every toss is equal to 2θ − 1 whenever θ > 1

2 .

Lemma 8 Assume θ > 1
2 and let E = {x∞|xn > 1

2 for all n}. Then pθ(E) = 2θ − 1 .
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Proof. From the Gambler’s Ruin Problem, we know that conditional on the first throw being heads,
the probability of always having more heads than tails is equal to 1− 1−θ

θ .12 Hence, the probability
of always having more heads than tails is equal to θ(1− 1−θ

θ ) = 2θ − 1.

Suppose that θ = θ̂ (the argument is analogous for θ = 1− θ̂). Consider

E = {x∞|xn > 1

2
for all n∈ N},

the event where the sample mean exceeds 1
2 at every i. Under our assumptions on θ̂ and ε∗, for any

sequence x ∈ E, we will have that |xn− θ| < ε∗ for all n. Hence from the proof of Proposition 1, we
see that for each x ∈ E, the LSN population grow at a faster rate than the IID population in every

period, that is λ
cLSN
xi

λ
cIID
xi

> 1 for each i. Therefore limn→∞
∏n
i=1

λ
cLSN
xi

λ
cIID
xi

> 1.

By lemma 8, pθ(E) = 2θ − 1. Consider also the event F = {1} × {0} × E, where the first toss
yields a head, the second a tails and the subsequent stream belongs to E. This event has probability
(1−θ)θpθ(E) > 0. Note that after the heads on the first toss, PLSN (θ|1) = P IID(θ|1), after the tails
on the second toss, PLSN (θ|1, 0) = θα

θα+θ(1−α) = θ > 1
2 = P IID(θ|1, 0), and then for all subsequent

tosses we have PLSN (θ|xi) > P IID(θ|xi) since xn > 1
2 for all n > 2. That is, the LSN agents

are weakly more confident about the true parameter than the IID agents for i = 1 and strictly so

for all i > 1. Consequently, by step 1, limn→∞
∏n
i=1

λ
cLSN
xi

λ
cIID
xi

> 1 for each x ∈ F . Conclude that

pθ(limn→∞
∏n
i=1

λ
cLSN
xi

λ
cIID
xi

> 1) ≥ pθ(E ∪ F ) > 1
2 .
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