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Abstract

This paper develops a dynamic model of crowdfunding to characterize success

rates and welfare and to identify optimal transparency and design policies. We also

characterize average bidding profiles. Bidding costs generate two dynamic forces:

(1) decreasing pivotality, driven by reduced scope for strategic complementarity as

the deadline nears, pushes the slope downwards; (2) a news effect from observed

bidding further pushes the slope downwards for concave cost distributions, but

upwards for convex costs. These effects can explain prominent bidding patterns.

Non-disclosure of funding progress yields higher welfare than full transparency given

homogeneous costs. However, cost heterogeneity favours disclosure by enabling

early bidders to activate otherwise passive, higher cost bidders. We also investigate

the tradeoff between raising prices and thresholds and we demonstrate success and

welfare gains from the indirect dynamic pricing permitted by current platforms.
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1 Introduction

Strategic complementarities and positive externalities arise in a wide range of games.

Simultaneous-move variants are well understood but in reality interactions are often dy-

namic. This paper characterizes dynamic outcomes, identifying two novel forces and the

welfare impact of sequentiality, in a canonical finite-duration game with these features.

Our specific game also has independent interest since it corresponds to reward-based

crowdfunding. This, now well-established, way of raising funds for producing new goods,

enables entrepreneurs to solicit finance directly from funders. The new good serves as

the reward for funders who essentially pledge or bid on the campaign as advance buyers.

Projects range from small-scale musical albums to substantial innovations that gener-

ate new markets and significant welfare gains.1 Typically, the entrepreneur describes

her planned product and sets its price plus a funding threshold and deadline: she only

produces and bidders only buy in the “success” event that aggregate funds reach the

threshold in time. If instead the campaign fails, nothing is produced and nothing is paid,

giving the name, all-or-nothing (AON).

The beauty of crowdfunding is that bidding provides a credible signal of demand

before the entrepreneur sinks her costs of production. This market test reduces her

exposure to demand uncertainty. On the flip side, bidders face production uncertainty.

When campaign failure stops production, bids are reimbursed but any sunk costs of

bidding go to waste. So bidders are more willing to bid when a campaign has a higher

probability of success. Conversely, each bid raises this success rate. As platforms disclose

funding progress in real-time, bidding and success rates co-evolve. Each bid encourages

later bidders to bid and benefits them. So the combination of sunk costs and threshold

directly create the strategic complementarity and positive externalities that underlie all

our results. We characterize the resulting bid dynamics and campaign outcomes. From

this, we derive entrepreneurs’ optimal campaign design choices and we establish the

welfare implications of crowdfunding platforms’ current disclosure rules.

We also characterize average bidding profiles and compare them with empirically

salient patterns. Campaigns that start poorly usually die out, while successful campaigns

mostly start up strongly, slow down gradually and then pick up again as the deadline
1E.g., Kickstarter raised 6.3B USD since 2012, bringing 550K projects to life (Statista, 2021). 40%

succeed (Kickstarter, 2021), of which 90% become ongoing ventures (Mollick and Kuppuswamy, 2014).

1



approaches, creating a U-shape (see Fig. 12). Understanding these dynamics is critical for

addressing our welfare and design questions. Yet first generation crowdfunding theories

only model simultaneous funding choices.

We instead model bidders who arrive over time by a Poisson process. Each bidder

observes the “gap” between the campaign’s threshold and funds collected so far and its

deadline. He also learns his independent cost of bidding. Any sunk cost has the same

implications. We model the case of inspection costs because assessing one’s value for a

good before it is produced often requires time and effort: bidders must read about the

intended good and the entrepreneur and may watch a video pitch. Assuming product

prices dissuade uninformed bidding, we show that inspection costs are equivalent to direct

sunk costs of bidding. Direct costs include the hassle and opportunity costs of committing

to pay by letting the platform hold bids in escrow. As campaign durations rarely exceed

two months, such costs may be small but inspection costs are significant for many bidders.

Of course, inspection costs are sometimes trivial or even net negative, as when a bidder

is already informed or enjoys thinking about the good, but this merely invigorates the

analysis because cost heterogeneity is critical to most of our results.

We focus on inspections that reveal private values.2 A campaign’s date (time since

initiation) and gap then form a Markovian state space that determines the probability of

success. We show that this (interim) success rate is falling in both date and gap, since

later dates leave less time for bidders to arrive and fill the funding gap.

Two forces determine bidding patterns and underlie our welfare results. The first is

the pivotality effect, denoted PE. We define each bidder’s pivotality as the increase in the

success rate when he decides to bid, taking as given the state (date and gap) when he

arrives.3 We prove that pivotality has a decreasing trend. This is intuitive: each bidder

encourages all followers to also bid and a later bidder expects to have fewer followers;

the strategic complementarity operates over a shorter duration as passing time brings

the deadline closer. Since a bidder is encouraged by his own pivotality, this decreasing

pivotality trend, denoted DP, has a negative effect on expected bidding. This is the

pivotality effect PE. It is always (weakly) negative. Formally, we show that a bidder only

cares about success when he bids, so his incentives rise with the bidder success rate, which
2We discuss common values in Section 7.
3Pivotality is often substantial in practice, especially in the early stages of a campaign, because most

campaigns are far smaller than those that hit the headlines; on Kickstarter, the median number of bids
is 60 and variance is substantial (Fan-Osuala et al., 2018).
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is the unconditional success rate plus his pivotality (a martingale plus a supermartingale).

While the PE accounts for the impact of the bidder success rate trend, the second

force captures the impact of its variance around that trend. We call this the news effect,

denoted NE, because later bidders observe more news about bidding outcomes. Com-

paring an earlier and later bidder, only the later one observes and can respond to the

news of how much interim bidders reduce the gap. The later bidder cannot influence

interim bidders (whence DP), but can react to deviations in the bidder success rate from

its trend. The average impact of these deviations is positive if there are increasing re-

turns to good news about success prospects and negative if the returns are decreasing.

Formally, a locally increasing density of bidder costs implies that the mass of higher cost

bidders who respond to good news by starting to bid exceeds that of lower cost bidders

who respond to bad news by ceasing to bid. An increasing density is equivalent to local

convexity of the cumulative distribution function (CDF) of the bidding cost. So the sign

of the NE follows directly from Jensen’s inequality.

Stochastic calculus allows us to quantify PE and NE and characterize average bid-

ding slopes, both unconditionally and conditional on success and failure, for a range of

cost distributions. For the uniform distribution, the NE is neutral so the PE directly

guarantees a negative slope. Next, we prove that sufficient convexity plus sufficient suc-

cess rate variance creates a positive NE that dominates the PE and generates a positive

slope. We also highlight the bimodal distributions that arise when bidders split into two

classes: close contacts with mostly negative net costs versus distant bidders with mostly

prohibitive costs. Single-peaked densities within each class imply concavity followed by

convexity on the relevant cost range. As it takes time for enough good news to arrive and

activate the distant bidders, the positive NE from the convex region only dominates the

negative PE towards a campaign’s end. So this setting predicts a U-shape for successful

projects and a downward-sloping profile for failed campaigns, consistent with the data.

Our results generalize to discrete distributions. In the homogenous case, for any

given state, a project is either active with maximal bidding or frozen with no bidders

inspecting. We identify a downward-sloping wall of ice that separates the active from

frozen states. The frozen state is absorbing, so the probability of staying active falls over

time, causing average bidding to also decrease over time. Both bid profile and ice wall

consist of downward steps at the critical dates where freezing can occur and a discrete
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PE dominates the NE. We provide an efficient joint recursion to compute activity rates

and critical dates and thereby infer success rates.

Importantly, our framework permits welfare analysis. Our full disclosure baseline

captures the current practice of disclosing funding in real-time but is this better than

having no disclosure until after the deadline? We call the full disclosure baseline “Seq”

and the no-disclosure benchmark “Sim” since bidders moves are, respectively, essentially

sequential and simultaneous. The answer (Seq or Sim) again depends on the two forces.

If the NE is positive and dominates the PE, disclosure Seq is beneficial since it allows

early arrivals with low costs to activate higher cost bidders who arrive later. This applies

when costs are heterogenous and conditions are adverse. When bidders are scarce relative

to the campaign threshold, moderate cost bidders do not inspect in Sim. By enabling the

activation of late, high cost bidders, associated with the positive NE, Seq even encourages

moderate cost bidders from the start since they anticipate that later activation.

Conversely, when bidders are relatively homogenous, PE dominates in Seq and dis-

closure is detrimental because the decreasing pivotality trend reduces success rates and

inhibits the positive externalities from inspections. In the extreme case of pure homogene-

ity, all-inspect must be an equilibrium under no-disclosure else no bidding ever occurs for

any information structure. Disclosure can then only reduce inspection and hence success.

In principle, disclosure might still raise welfare by reducing wasted inspections.4 We do

identify a delayed disclosure rule that improves on full disclosure, but we prove that Seq

never raises welfare over Sim in the homogenous case. We prove this via a general result:

welfare contributions from bidder arrivals are time-decreasing in Seq since decreasing

pivotality has a greater negative impact on surplus than the gains associated with later

bidders adapting to news.

Lastly, we use the framework for optimal campaign design. We extend the baseline

to endogenize bidder threshold and price. An entrepreneur maximises campaign success

subject to a funding need. We show it binds and creates a price-threshold tradeoff. The

entrepreneur’s optimal bidder threshold increases with her funding need, limiting required

price rises. Her bidder threshold also increases with the expected number of bidders since

bidder abundance makes a high threshold safer. Homogeneity is an exception.5

4Bidders under-inspect given a fixed information structure but coordinating inspections also matters.
5With its sharp CDF discontinuity, homogeneity inverts the second comparative static. Under bidder

scarcity, the main risk of hitting the ice wall is at the start where low pricing is key; bidder abundance
postpones this risk so it favours higher prices and lower thresholds.
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We close on design by allowing for multiple prices, via gap-dependent pricing. Dy-

namic pricing can raise both success rates and bidder welfare. Since early bidders face

high gaps, low prices on units sold at high gaps represent early discounts (ED) and plat-

forms can readily implement ED by letting bidders choose from a fixed menu of rewards

with limited quantities. Late discounts (LD), like time-dependent prices, are not cur-

rently feasible but are theoretically instructive. We find that ED is optimal when bidders

are abundant since, as in the PE, early bidders have more successors to encourage. Under

bidder scarcity, this ED benefit is dominated by LD’s anticipation effect: early bidders

anticipate that LD will encourage later bidders. Homogeneity is again exceptional.6 We

end the paper with a brief discussion of empirical implications and tests.

Related theory. In the literature on private contributions to public goods, AON

reward-based crowdfunding is a threshold “subscription game” with exclusion (Admati

and Perry, 1991, coin this term in their dynamic extension of Bagnoli and Lipman,

1989). Ellman and Hurkens (2019b) show how crowdfunding credibly reveals market

demand before production and potentially complements traditional finance. Other early

papers study designs to mitigate entrepreneurial fraud (Strausz, 2017; Chemla and Tinn,

2020; Ellman and Hurkens, 2019a), the flexible funding alternative to AON (Chang, 2020)

and investment-based crowdfunding variants (Brown and Davies, 2020), all with a single

period of crowdfunding. In this paper, we sidestep the price discrimination in Ellman

and Hurkens’s (2019b) binary private value model by setting the low valuation to zero,

as do the entrepreneurial fraud papers. Our key departure is to introduce dynamics via

bidding costs (with an inspection-based microfoundation).

The two closest papers (Alaei et al., 2021; Deb et al., 2021) are contemporaneous

studies of similar dynamic subscription games that also feature bidding costs. They both

assume a direct sunk cost of bidding so, as explained above, our inspection cost micro-

foundation complements their work. We now highlight the more important differences.

Alaei et al. (2021) solve a discrete version of our model with homogenous costs. They

show that bidding has momentum effects that lead to polarized crowdfunding outcomes,

consistent with the increasing variance behind NE in our analysis. They do not compute

average profiles. Deb et al. (2021) model bidders with homogenous costs in the same way,
6Bidder scarcity then promotes ED to avoid early freezing, while bidder abundance promotes LD.
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but with the time interval converging to zero and they add a single donor with uncer-

tain wealth. From a range of signalling equilibria, they emphasize how discrete donation

spikes at the start and finish of a campaign can explain a rectangular U-shape (i.e., a

⊔-shaped bid profile). They assess bid profiles empirically using data they scraped from

Kickstarter, but their theory does not solve for average bidding. A unique contribution

of our paper is to use stochastic calculus (which circumvents the need for shrinking time

intervals) and to compute Markov state probabilities to precisely predict profiles. This

enables us to derive explicit theoretical results, including our two novel forces and analysis

of welfare and entrepreneurial design. In so doing, we prove that bidding profiles are in

fact downward-sloping in Alaei et al. (2021) and Deb et al.’s (2021) no donor benchmark,

since both assume homogenous costs. Importantly, we go beyond the extreme discon-

tinuity of the homogenous case. Cost heterogeneity proves vital for explaining positive

bidding slopes, the U-shape and our key result on welfare gains from bidding disclosure.7

Related empirics. Many papers highlight the U-shape or bathtub bidding patterns in

AON crowdfunding. Kuppuswamy and Bayus (2018) establish this for bid values and bid

counts in Kickstarter data. They normalize durations and average over campaigns for

each block in a time partition. Deb et al. (2021) provide richer evidence for Kickstarter

and Crosetto and Regner (2018) corroborate the U-shape for Germany’s Startnext plat-

form but only when conditioning on success. Conditioning on failure, they find a simple

downward slope. Rao et al. (2014); Etter et al. (2013); Crosetto and Regner (2018);

Colombo et al. (2015) predict success based on the bid process, campaign attributes and

social activity. Pledging during the early days of a campaign is a powerful predictor of

success, in line with our decreasing pivotality insight. Section 7 presents further evidence.

2 Model

We construct the simplest reward-based crowdfunding campaign to analyse bid dynamics

in continuous time. The entrepreneur specifies a product as the reward for crowdfunders,

a price p of that single reward, a funding threshold or goal and her campaign deadline.

Funders can pledge p if they hear about the campaign before its deadline. The campaign
7Alaei et al. (2021); Deb et al. (2021) both neglect welfare, but the latter study how disclosure rules

affect success rates. They claim that a donor is needed for Kickstarter’s disclosure policy to raise success
rates. We prove that with heterogenous costs, it can in fact raise success rates without any donor.
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is said to succeed, denoted S, if and only if the sum of these pledged funds (each restricted

to p or 0) reach or exceed the funding threshold. Equivalently, the number of bids must

exceed a bidding threshold, denoted g0. The campaign is All-or-Nothing: after a success

(S), each funder pays his pledge p to the entrepreneur who must invest in production and

deliver a unit reward to each funder. After a failure, denoted F , there are no payments

(pledges held in escrow are reimbursed) and there is no production. These crowdfunding

rules are perfectly enforced. A pledge is a binding commitment to pay p in return for the

product, contingent on funding success S. Pledges are subscriptions in the terminology

of Admati and Perry (1991); we use the briefer term, bids.

Setting time t to zero on campaign initiation, the campaign’s deadline is its duration,

denoted τ . We say that a bidder arrives at the project at the date t ≤ τ when he hears

about it. Bidders arrive at a constant Poisson intensity λ > 0 over the campaign, giving

λτ expected bidders. Neglecting zero probability events where multiple bidders arrive at

an identical instant t ∈ [0, τ ], we uniquely associate each bidder with his arrival date t.

On arrival, bidder t perceives project characteristics τ, g0, p, λ, his arrival time t, his

inspection cost ct and the current gap gt between the threshold g0 and the number of

bids Bt collected by t. We focus on gt ≡ g0 − Bt instead of working with the equivalent

bid count Bt, so the project’s publicly observable state at t is (t, gt). The gap gt evolves

over time as a function of bidder arrivals and choices.

On arrival, t does not know his private valuation vt of the product but can learn it

immediately if he pays ct. ct represents t’s cost of inspecting the proposed product and

introspecting as motivated above. Bidders always know the common and fully indepen-

dent distributions of these valuations and costs. For each t, vt ∈ {0, v} with probability

q ∈ (0, 1) on v and ct has cumulative distribution function CDF, F (·).8 To simplify the

exposition, we assume that F (·) is continuously differentiable, generalizing later.

Until design Section 6, we analyse dynamics within the bidding phase given exogenous

project variables, τ, g0, p, λ. We set p = v −1, normalizing the price discount d ≜ v −p to

unity. So, gross of ct, t’s expected net benefit from buying after learning vt = v is qd = q.

This justifies restricting the support of ct to [0, q]: (a) negative costs, as from curiosity,

enjoyment or caring for the entrepreneur, are equivalent to a zero cost, since we assume

bidders inspect when indifferent; (b) a bidder with cost strictly above q is equivalent to
8A non-zero low valuation strictly below p leads to identical outcomes.
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a non-arrival, so any support above q is equivalent to reducing arrival rate λ.

Bidders are risk neutral. Each t gets 0 by not bidding, vt − p by bidding p if the

project succeeds (event S) and 0 by bidding on a project that fails. So bidding without

inspecting gives him an expected payoff conditional on S of qv − p and 0 if F ; there is no

resale. We assume p > qv to focus on the plausible case where bidders never blindly bid

without inspecting to check that they value the good. As p = v − 1, this is equivalent to

Assumption 1 (No blind bidding, NBB). q < 1 − 1/v.

Move orders are exogenously determined by arrival dates t. Each bidder takes all

his decisions in a single episode of negligible duration so that moves are sequential (see

Section 7). On arrival, a bidder either: (A) Avoids the project and Avoids bidding, (B)

Blind bids in that he bids without inspecting to see vt, (C) or Checks out the project by

paying ct and bids if he learns that vt = v. Inspecting and always bidding or inspecting

and only bidding when vt = 0 are strictly dominated.9 So is B under Assumption 1, so

we need only consider A and C.

In sum, bidders arrive sequentially at Poisson arrival times t; each bidder t observes

τ, λ, q, F (·) and ct and state (t, gt) on arrival and chooses between substrategies A and

C. The currently superfluous notation Bt and v, p, d reappear in the design analysis.

Equilibrium concept. We solve for undominated Perfect Bayesian Equilibria, ab-

breviated to PBE. Undominated refers to the fact that we restrict to weakly undominated

strategies. For concreteness, we tie-break in favour of C among equilibria that gener-

ate identical payoff distributions. Thanks to the sequentiality of moves, this leads to a

unique PBE. So there is no strategic uncertainty, but uncertainty in arrivals, inspection

costs and valuations generate the shocks to aggregate demand and success prospects S

that are central to our study. Valuation uncertainty provides the motive for costly in-

spection. Inspection cost uncertainty enriches the dynamics and is crucial for a positive

slope. Arrival uncertainty is needed for finite aggregates with continuous time.

3 Analysis

To solve for bidding equilibria given a campaign g0, τ , p = v−1 with parameters λ, q, F (·),

we study the incentives of a bidder t after he observes his inspection cost ct and campaign
9Even if ct ≤ 0, inspecting and not bidding is strictly dominated if success can ever occur.
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state (t, g), indicating that gt = g. State (t, g) matters to bidders purely via its impact on

the project’s success prospects and bidders only affect each other via this success rate.10

Using t+ to indicate infinitesimally after t, that subgame starts at (t+, g) if he does not

bid and at (t+, g − 1) if he does bid. We denote the evolving, state-contingent success

probability by

S(t,g) ≜ P(S|(t, g)) ≡ E(t,g)
(
1gτ+ ≤0

)
, (1)

where E(t,g)(·) ≜ E(·|(t, g)). This conditions on knowing gt = g but not on whether a

bidder arrives at t. If there is a bidder at t, the success probability rises to S(t,g−1) if

he bids and stays at S(t,g) if not.11 In choosing what to do, he only cares about success

prospects if he bids. We denote this bid-contingent success probability by

Sbid
(t,g) ≜ S(t,g−1). (2)

The pivotality of a bidder arriving at t is ∆S(t,gt) where difference operator ∆ denotes the

impact of a unit reduction in g; ∆Y(t,g) ≜ Y(t,g−1) − Y(t,g) for a generic function Y . So

Sbid
(t,g) ≡ S(t,g) + ∆S(t,g). (3)

This decomposition is helpful because S(t,gt) is a martingale: by the Law of Iterated

Expectations, E(t,g)

(
E(x,gx)

(
1gτ+ ≤0

))
= E(t,g)

(
1gτ+ ≤0

)
for any x ∈ [t, τ ], so, by Eq. (1),

E(t,g)(S(x,gx)) = S(t,g). (4)

Section 3.3 will prove that pivotality ∆S(t,gt) is a supermartingale which drives towards

decreasing bidding profiles. First, we show how Sbid
(t,gt) determines bidder t’s choice.

Bidder t’s simplest option is to choose to Avoid the project entirely by doing nothing,

A. Not inspecting and not bidding always gives the same payoff, uA
t = 0. So for any

(t, g), t’s expected utility from A is UA
(t,g) = 0.

Bidding is the only weakly undominated action of a bidder t who learns that vt = v.

Conversely, not bidding is his only undominated action if he knows vt = 0. So the only

relevant substrategy involving inspection is C: Check by paying ct and bid if and only if
10By type independence, bidders infer nothing about their own or future bidder valuations and costs.

Bidder t takes the strategies of later bidders as given by the PBE; they cannot detect deviations.
11We can write t instead of t+ because S(t,g) is continuous in t for any gap g.
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the inspection reveals that vt = v. This yields ex post payoff and expected utility

uC
t = 1gτ+ ≤0

(
vt − (v − 1)

)+ − ct,

UC
(t,g) = qSbid

(t,g) − ct. (5)

In sum, a generic bidder’s strategy is a mapping from each possible observed history or

time, gap and cost trio to this duo of relevant choices, a : (t, g, c) 7→ {A, C}. PBE require

Bayes rational beliefs and choice a to be a best response at every possible information

set (t, g, c).12 Bayes rationality requires every bidder to hold the correct state-contingent

probability assessment Sbid of success given he bids, as derived below.

Eq. (5) shows that C is chosen whenever ct ≤ qSbid
(t,g). This has probability F (qSbid

(t,g)).

Since bidders arrive with Poisson intensity λ and C results in a bid with probability q,

this generates non-homogenous Poisson bidding intensity

β(t,g) ≜ λqF (qSbid
(t,g)). (6)

Arrival rate λ and taste parameter q are fixed, so the systematic variations in Sbid
(t,gt) and

resulting inspection rate F (qSbid
(t,gt)) fully determine the temporal pattern of bidding. We

now analyse these co-moving variables.

3.1 The co-evolution of success probabilities and bids

We characterize success rates by studying how bid-conditional success rates Sbid
(t,g) ≡

S(t,g−1) and bidding intensity β(t,g) interact. By the definition of a success, S(τ,g) = 1

for g ≤ 0. As g can only decrease over time, S(t,g) = 1 for g ≤ 0 and any t ≤ τ . From

this initial condition, we solve for higher gaps via a recursive step grounded in two facts.

First, by Eqs. (2) and (6), the bidding rate β(t,g) at gap g depends on Sbid
(t,g), the success

rate at gap g − 1. Second, any successful path from (t, g) with g ≥ 1 must have its next

bid’s stopping time T ∈ (t, τ ].13 T ’s density equals bidding intensity β(T,g) at (T, g) times

the probability n
(t,g)
T of no bid on interval (t, T ),

n
(t,g)
T ≜ exp

(
−
� T

t

β(x,g) dx
)

. (7)

12All sets are reached with positive probability except in trivial cases where success is impossible.
13gT = g, gT+ = g − 1 and distinguishing by bid number, T = T1+g0−g.
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The success rate from (T, g − 1) is S(T,g−1). So, taking expectations over T given (t, g),

S(t,g) =
� τ

t

n
(t,g)
T β(T,g)S(T,g−1) dT. (8)

This recursion yields a unique solution for S(t,g) given a unique solution for S(t,g−1). As

the solution is unique at unity for g ≤ 0, with Eq. (6), this proves:

Proposition 1. The crowdfunding game has a unique PBE characterized by a(t,g,c) = C

if and only if c ≤ ĉ(t,g) ≜ qSbid
(t,g) ≡ qS(t,g−1), generating bid intensity β(t,g), where

β(t,g) = λqF
(
qSbid

(t,g)

)
≡ λqF

(
qS(t,g−1)

)
, (9)

S(t,g) = 1 for g ≤ 0, (10)

S(t,g) =
� τ

t

exp
(

−
� T

t

β(x,g) dx

)
β(T,g)S(T,g−1) dT for g ≥ 1. (REC-S)

Success rates affect bidding which in turn affects success. Notice that choices and

outcomes only depend on current states and beliefs about future bidding, so S(t,g)(τ) is

invariant to g0 and to changes in t and τ that fix τ − t: S(t,g)(τ) ≡ S(0,g)(τ − t) where

τ − t is time remaining. We now probe further using martingales, pivotality and shocks.

3.2 Basic dynamic properties of the success rate

The success rate S(t,gt) is a martingale by Eq. (4). This fact implies a differential equation

linking success dynamics to bid rates and pivotality. We use it to prove that pivotality

is positive while time’s direct effect on success is negative.

At any instant, there are essentially two possibilities: either a new bid is collected so

that the gap drops one unit from gt = g to gt+ = g − 1, or the gap stays fixed. Formally,

over the infinitesimal interval [t, t + dt), one bid arrives with probability β(t,gt) dt and

otherwise no bid is collected. Since S(t,gt) is a martingale, S(t,g) = (1 − β(t,g) dt)S(t+dt,g) +

β(t,g) dt S(t+dt,g−1). This yields an ordinary differential equation (ODE) for S,

Ṡ(t,g) ≜
∂S(t,g)

∂t
= −β(t,g)

(
S(t,g−1) − S(t,g)

)
. (ODE-S)

That is, the partial time derivative Ṡ(t,g) ≡ −β(t,g)∆S(t,g).14 Jump term ∆S(t,gt) is the
14This also follows by differentiating Eq. (REC-S). Conversely, Online Appendix B derives Eq. (REC-

S) from Eq. (ODE-S) using nT of Eq. (7) as integrating factor.
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pivotality of a bid at t. Eq. (ODE-S) shows how pivotality weighted by bid intensity

exactly counterbalances the effect of time passing. We can readily sign both terms:

Lemma 1 (Success rate properties). (i) ∆S(t,g), ∆Sbid
(t,g) ≥ 0, (ii) Ṡ(t,g), Ṡbid

(t,g) ≤ 0.

The proof in Appendix A uses induction on g but both results are highly intuitive.

Pivotality is never negative: each new bid is good news for success, weakly raising S

by reducing the remaining funding gap. Conversely, no news is bad news: time passing

with no new bids lowers S by leaving less time to cover the current gap by deadline τ .

Together with Eq. (6), Lemma 1 proves that higher gaps lower success and bidding rates:

Corollary 1. For any t, S(t,g), Sbid
(t,g) and β(t,g) are all weakly decreasing in the gap g.

Lemma 1(i) shows that Sbid
(t,g) falls with t for a fixed gap g but the gap gt falls over time

and each drop pushes Sbid
(t,gt) upwards by Lemma 1(ii). Next, Section 3.3 shows that the

first effect dominates, creating a negative average effect of time on Sbid
(t,gt) and pivotality.

Section 3.4 derives PE, the effect of this pivotality trend on bidding. Section 3.5 derives

NE, the news effect from variance in Sbid
(t,gt). Pivotality plus news effects determine bid

dynamics from a given state. Section 3.6 computes gt distributions and the slope of the

bidding profile averaged across campaigns.

3.3 Decreasing pivotality (DP)

Given that S(t,gt) is a martingale, any systematic effect of time on Sbid
(t,gt) must come from

the pivotality term ∆S(t,gt). A two step logic proves that expected pivotality decreases

over time. First, a bid at t strategically complements inspection and bidding by all

subsequent bidders. Second, a later bidder has fewer such followers to influence. Each

follower is influenced positively, so higher t implies a weaker average impact on success.

That is, lower pivotality.

Formally, the change in pivotality at future date x expected from initial state (t, g),

D(t,g)
x ≜ E(t,g)(∆S(x,gx)) − ∆S(t,g), (11)

is always negative or zero. We prove this by showing that ∆S(t,gt) is a supermartingale.

The infinitesimal generator for studying expected rates of change of a generic stochastic
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process Y(t,gt) is LY
(t,g) ≜ limdt↓0

(
1
dt

(
E(t,g)

(
Y(t+dt,gt+dt)

)
− Y(t,g)

))
. In the case of pivotality,

D(t,g) ≜ lim
dt↓0

( 1
dt

(
D(t,g)

t+dt

))
≡ L∆S

(t,g). (12)

The key result on generators from Itô’s formula (mathematical details in Online Ap-

pendix B),

LY
(t,g) = Ẏ(t,g) + β(t,g)∆Y(t,g), (GEN)

is very intuitive: Ẏ(t,g) captures time’s direct effect while ∆Y(t,g) weighted by the bidding

intensity β(t,g) captures time’s expected impact via negative unit jumps in the gap gt.

Online Appendix B also shows (via Dynkin’s theorem) that Y(t,gt) is a martingale if and

only if its generator is identically zero, i.e., LY
(t,g) ≡ 0, ∀t, g. Similarly, supermartingales

and submartingales respectively correspond to everywhere weak negativity and positivity

of LY
(t,g). Note that LS

(t,gt) = 0 as S(t,gt) is a martingale, so (GEN) immediately reconfirms

Eq. (ODE-S). We now apply (GEN) to pivotality ∆S(t,gt) to prove that D(t,g) ≤ 0.

Proposition 2 (Decreasing pivotality). ∆S(t,gt) and Sbid
(t,gt) are supermartingales.

Proof. As S(t,gt) is a martingale, Eq. (3) implies L∆S
(t,g) = LSbid

(t,g). By (ODE-S)|g−1,

Ṡ(t,g−1) = −β(t,g−1)∆Sbid
(t,g). So applying (GEN) to Sbid

(t,gt),

D(t,g) = L∆S
(t,g) = LSbid

(t,g) = Ṡ(t,g−1) + β(t,g)∆Sbid
(t,g) = −∆β(t,g)∆Sbid

(t,g) ≤ 0. ■ (13)

The formula D(t,g) = −∆β(t,g)∆Sbid
(t,g) neatly captures the insight that a later bidder has

fewer successor bidders to encourage with his bid. ∆β(t,g) is the encouragement effect on

imminent followers and ∆Sbid
(t,g) is the success impact of an induced bid.

Appendix C.1 illustrates the stochastic variation behind this pivotality trend. Maxi-

mal pivotality sometimes obtains in the last moments of a campaign but DP remains true

since low and minimal pivotality are more common near the deadline: pivotality hits zero

whenever the threshold is reached before the deadline and it also tends to zero whenever

the gap is above two with the approaching deadline making failure near certain. DP,

quantified by Eq. (13), creates the first dynamic force, the PE explained next. Then we

show how these stochastics generate the second dynamic force, the NE.
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3.4 The pivotality effect (PE)

From Eq. (6) and the fact that F is an increasing function, decreasing pivotality implies

a tendency for bidding to fall. S(t,gt) is a martingale so Sbid
(t,gt) falls at the same rate as

pivotality ∆S(t,gt) in expectation. The expected fall in Sbid
(t,gt) over (t, x) changes an arrival

at x’s inspection rate by the pivotality effect

E (t,g)
x ≜ F

(
E(t,g)

(
qSbid

(x,gx)

))
− F

(
qSbid

(t,g)

)
. (14)

The effect on the bidding rate is λq times E (t,g)
x . For any gap g, E (t,g)

x ≤ 0 if t ≤ x because

E(t,g)
(
qSbid

(x,gx)

)
≡ q

(
Sbid

(t,g) + D(t,g)
x

)
, D(t,g)

x ≤ 0 from Eq. (13) and F is increasing. If F is

differentiable, D(t,g)
t+dt = D(t,g) dt + O(dt2) and the rate of change PE is

E(t,g) ≜ lim
dt↓0

( 1
dt

(
E (t,g)

t+dt

))
= qFc(qSbid

(t,g))D(t,g). (15)

3.5 Expected bid dynamics and the news effect (NE)

We apply (GEN) to the stochastic process β(t,gt) to reveal expected changes in the bid

rate from a generic state (t, g). Bidding β(t,g) is proportional to F
(
qSbid

(t,g)

)
. Like Sbid

(t,gt),

β(t,gt) falls gradually as time passes without bids and jumps up whenever a bid occurs;

time’s direct negative effect is β̇(t,g) < 0 and its indirect positive effect per bid is ∆β(t,g) ≡

β(t,g−1) − β(t,g). In contrast with Sbid
(t,gt) and ∆S(t,gt), for bidding β(t,gt), time’s direct

negative effect does not always dominate its positive effect via expected gap reductions.

The average effect depends on uncertainty and the cost distribution as we explain now.

Over an infinitesimal time interval, either one bid arrives or none do (Fig. 1 adds

details below). A bid arrival is good news, raising Sbid, while no bid is bad news, lowering

Sbid. The good news outweighs the bad news if an arrival is more likely inspect at

(t + ϵ, gt+ϵ) than when facing the (t, g) expectation of qSbid at t + ϵ. This occurs if

the density of inspection costs just above qSbid
(t,g) is greater than the density just below it.

Increasing density is equivalent to CDF convexity. In economic terms, there are increasing

returns to good news: the bidders with higher inspection costs who become willing to

inspect after good news outweigh those with lower inspection costs who cease to inspect

after bad news. In the opposite case where F is concave, the returns are decreasing.

Formally, we define the news effect as the impact of uncertainty in state (t, g) about
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bidding over interval (t, x) on the probability that a bidder arriving at x would inspect,

N (t,g)
x ≜ E(t,g)

(
F
(
qSbid

(x,gx)

))
− F

(
E(t,g)

(
qSbid

(x,gx)

))
. (16)

By Jensen’s inequality, this is positive if F is convex, negative if concave and zero if affine.

Appendix A’s proof of Proposition 4 proves that the rate of change of the NE is

N(t,g) ≜ lim
dt↓0

( 1
dt

(
N (t,g)

t+dt

))
= β(t,g)

(
∆F (qSbid

(t,g)) − q∆Sbid
(t,g)Fc(qSbid

(t,g))
)

. (17)

It is immediate that this NE rate is positive for convex F since the graph of a convex

function lies above its tangent. Similarly, it is negative if F is concave.

Time’s overall average impact sums the pivotality and news effects: by Eq. (6),

E(t,g)
(
β(x,gx)

)
− β(t,g) ≡ λq

(
N (t,g)

x + E (t,g)
x

)
, (18)

and if F is continuous, Lβ
(t,g) ≡ λq

(
N(t,g) + E(t,g)

)
. (19)

Since PE E (t,g)
x is always weakly negative, bidding is expected to fall if the NE N (t,g)

x is

small, neutral (as for affine F ), or negative (as for concave F ). In the last case, the NE

and PE push downwards together and Eq. (18) implies:

Proposition 3. A flat or decreasing inspection cost density on [0, q] (weakly concave F )

generates expected bid rates that fall from any state (t, g): ∀x > t,E(t,g)
(
β(x,gx)

)
≤ β(t,g).

In the uniform case with Fc ≡ 1/q on cost range [0, q], generalized in Section 4.1, as

F is linear, β and Sbid are exactly proportional and E(t,g)
(
β(x,gx)

)
− β(t,g) = λq E (t,g)

x ≤ 0.

The NE is then null and Lβ
(t,g) = λqE(t,g) = λqD(t,g) ≤ 0.

When instead F is convex, the positive NE from increasing returns to good news

counteracts the PE and potentially causes the expected bid rate to rise. Fig. 1 illustrates.

Over the infinitesimal delay ϵ, a bid arrives with probability ϵβ(t,g) leading to g̃t+ϵ = g −1

so Sbid
(t,gt) jumps up to Sbid

(t+ϵ,g−1). Otherwise, no bid arrives (probability 1 − ϵβ(t,g)) and the

bid-contingent success rate Sbid
(t,g) moves down to Sbid

(t+ϵ,g).

The average change in Sbid
(t,g) is negative since D(t,g)

t+ϵ = E(t,g)S
bid
(t+ϵ,g̃t+ϵ) ≤ Sbid

(t,g) ≤ 0. The

DP arrow indicates this negative trend. This DP reduces the expected incentive to inspect

at t + ϵ by −qD(t,g)
t+ϵ . Green arrow PE shows its negative effect on expected inspections.
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F
(
qSbid

)

0 1

1

EF
(
qSbid(t+ϵ,g̃t+ϵ)

)

F
(
qSbid(t,g)

)

F
(
qESbid(t+ϵ,g̃t+ϵ)

)

Sbid(t,g)Sbid(t+ϵ,g) Sbid(t+ϵ,g�1)ESbid(t+ϵ,g̃t+ϵ)

ϵβ(t,g)1 − ϵβ(t,g)

DP PE NE

Figure 1: Decreasing pivotality DP, its effect PE and the news effect NE for convex F .∗
∗ E is shorthand for E(t,g), expectations given (t, g). Curved arrows indicate state-transition probabilities.

As the density of marginal bidders is Fc, the size of the PE effect is approximately

−E (t,g)
t+ϵ ≈ −qFc

(
Sbid

(t,g)

)
D(t,g)

t+ϵ .

Finally, the orange NE arrow indicates the impact of the variance in Sbid
(x,gx) at x = t+ϵ,

N (t,g)
t+ϵ = E(t,g)

(
F (qSbid

(t+ϵ,g̃t+ϵ))
)

− F
(
E(t,g)

(
qSbid

(t+ϵ,gt+ϵ)

))
.

In Fig. 1, F is sufficiently convex for the NE to dominate the PE (the NE arrow exceeds

the PE arrow). The generator Lβ
(t,g) of β(t,gt) provides a precise sufficient condition. For

affine and quadratic F , the proof of Proposition 4 shows that

Lβ
(t,g) = λq

[
qFc

(
qSbid

(t,g)

)
LSbid

(t,g) + q2

2 Fcc

(
qSbid

(t,g)

)
νSbid

(t,g)

]
, (20)

where νSbid

(t,g) ≜ limdt↓0
(

1
dt

(
V(t,g)

(
dSbid

(t,gt)

)))
= β(t,g)

(
∆Sbid

(t,g)

)2
is Sbid

(t,gt)’s jump variance

given gt = g. As LSbid

(t,g) = L∆S
(t,g), the first term in Eq. (20) represents PE, the expected

16



impact of decreasing pivotality. The second term is NE, the news effect, driven by variance

and convexity: N(t,g) = 1
2 β(t,g)

(
q∆Sbid

(t,g)

)2
Fcc.

Beyond the quadratic case, we prove that L̃β
(t,g) ≜ RHS(20) is a lower bound on the

bid rate generator for a polynomial F with all nonlinear coefficients weakly positive, i.e.

any F = ∑
k∈{0,1,...,ρ} γkck with γk ≥ 0 for k ̸= 1. So,

Proposition 4. Sufficient uncertainty and convexity guarantee a rising expected bid rate:

for a polynomial F with non-negative coefficients on powers two and above, Lβ
(t,g) > 0 if

q

2Fcc

(
qSbid

(t,g)

)
νSbid

(t,g) > Fc

(
qSbid

(t,g)

)∣∣∣LSbid

(t,g)

∣∣∣. (21)

Proof in Appendix A. When F is a power ρ function, cFcc

Fc
= ρ − 1. Then inequality (21)

is also necessary so a positive slope at (t, g) is equivalent to

1
2

∆Sbid
(t,g)

Sbid
(t,g)

(ρ − 1) >
∆β(t,g)

β(t,g)
. (22)

3.6 Average bidding and the state transition process

Determining average bidding at time t after the initial state (0, g0) requires finding proba-

bility weights on the bid rate over possible gaps gt at t. Denoting the transition probability

from (t′, g′) to (t, g) by Q
(t′,g′)
(t,g) and letting Q(t,g) ≜ Q

(0,g0)
(t,g) , the average bid rate is given by

At =
g0∑

g=−∞
Q(t,g)β(t,g). (23)

Its time derivative is Ȧt ≜
∂
∂t

(At) ≡ d
dt

(At) as A only depends on t. The bidding profile

plots At against time. To characterize its slope, we solve recursively for transition matrices

Q
(t′,g′)
(t,g) to find Q(t,g).

Lemma 2. For any t ≥ t′, the transition process is characterized by

Q
(t′,g′)
(t,g) = 0 for all g > g′; Q

(t′,g)
(t,g) = exp

(
−
� t

t′
β(x,g) dx

)
, (24)

Q
(t′,g′)
(t,g) =

� t

t′
exp

(
−
� T

t′
β(x,g′) dx

)
β(T,g′)Q

(T,g′−1)
(t,g) dT, for g ≤ g′ − 1. (REC-Q)

Proof. Clearly, Q
(t′,g′)
(t,g) = 0 for all g > g′ and any t ≥ t′, since the gap cannot rise. For

g = g′, Q
(t′,g)
(t,g) is the probability of no bid on (t′, t), giving the second equation in Eq. (24).

Notice that Q
(t′,g)
(t,g) ≡ n

(t′,g)
t defined in Eq. (7). The recursive step parallels Eq. (REC-S):
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for any g ≤ g′ − 1, conditioning on (t′, g′) and on the first stopping time T after (t′, g′)

with density n
(t′,g′)
T β(T,g′), the Law of Iterated Expectations yields Eq. (REC-Q).

Online Appendix B.3 adds an alternative derivation of (REC-Q) via the ODE for Q
(t′,g′)
(t,g)

varying t′. It also derives the adjoint ODE (used in the final subsection) by varying t:

Q̇(t,g) = Q(t,g+1)β(t,g+1) − Q(t,g)β(t,g). (ODE-Q)

Intuitively, the rate of change in the probability that gap gt = g is the probability of

reaching this gap via a bid from state (t−, g + 1) minus the probability that the gap falls

below g via a bid in state (t−, g).

Conditioning

Profiles conditioned on campaign success or failure restrict to paths ending with gτ+ ≤ 0

or gτ+ > 0, respectively. A path with a bid in state (t, g) ends in success with proba-

bility S(t,g−1). So conditioning on success rescales the probability weights by S(t,g−1)/S0.

Similarly, conditioning on failure rescales by (1 − S(t,g−1))/(1 − S0). This gives,

AS
t = 1

S0

g0∑
g=−∞

Q(t,g)β(t,g)S(t,g−1), (25-S)

AF
t = 1

1 − S0

g0∑
g=−∞

Q(t,g)β(t,g)
(
1 − S(t,g−1)

)
. (25-F)

Conditioning on success selects for paths with more bidding. This has a gap-selection

effect: it places more weight on lower gaps where β(t,g) is higher. At t = 0, the gap is

always g0 so there is no scope for gap-selection. Success-conditioning then multiplies the

bid rate by one plus relative pivotality:

AS
0 /A0 =

β(0,g0)S
bid
(0,g0)

S0
/β(0,g0) = 1 + ∆S(0,g0)

S(0,g0)
.

Gap-selection kicks in as the range of possible gaps expands over time. This pushes the

conditional bid profiles towards fanning out over time relative to the unconditional profile

as illustrated by Fig. 3(b). It also explains Fig. 2(b) relative to 2(c) and the conditionality

of the U-shape on success.
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3.7 The slope of the average bid profile

The slope of the bid profile can be expressed as a weighted average of Lβ
(t,g).

Lemma 3. The time gradients of (i) unconditional, (ii) S-, F-conditional average bid

rates are
Ȧt =

g0∑
g=−∞

Q(t,g)Lβ
(t,g),

ȦS
t = 1

S0

g0∑
g=−∞

Q(t,g)Lβ
(t,g)S(t,g−1), ȦF

t = 1
1 − S0

g0∑
g=−∞

Q(t,g)Lβ
(t,g)

(
1 − S(t,g−1)

)
.

(26)

The proof in Appendix A uses (ODE-Q) to show that for any Y(t,g), AY
t ≜ E(0,g0)Y(t,gt),

ȦY
t ≡ Dt

(
E(0,g0)Y(t,gt)

)
= Dt

 g0∑
g=−∞

Q(t,g)Y(t,g)

 =
g0∑

g=−∞
Q(t,g)LY

(t,g) ≡ ALY

t . (27)

Setting Y(t,g) = β(t,g) proves part (i). (ii) follows from the product rule and Eq. (ODE-S).

This lemma implies that an everywhere positive Lβ
(t,g) is sufficient for a monotone increas-

ing bid profile, and everywhere negative Lβ
(t,g) guarantees a decreasing profile.

Corollary 2. If Lβ
(t,g) ≥ 0 for all (t, g), the aggregate and conditional bid profiles are

increasing over time. If instead Lβ
(t,g) ≤ 0 ∀(t, g), they are decreasing.

Applying Corollary 2 to Propositions 3 and 4, delivers two results:

Proposition 5. A weakly concave CDF F (c) generates a weakly decreasing average bid

profile: Ȧt ≤ 0, ∀t. Strict concavity implies a strictly negative slope if g0 ≥ 2.

The strict claim uses two facts: Q(t,g0) > 0 for any t and if the cost distribution has

full support, Lemma 1 holds with strict inequalities for any g0 ≥ 2.

Proposition 6. Imposing Proposition 4’s convexity and uncertainty conditions (21) at

all g ≥ 2 guarantees a strictly increasing average bid profile, Ȧt > 0, ∀t, if g0 ≥ 2.

Both Propositions 5 and 6 also hold for the conditional bid profiles. By contrast,

conditioning does affect the sign of bid profile slopes when the sign of the infinitesimal

generator varies across states. Section 4.3 shows how this sheds light on the U-shape.
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4 Canonical Distribution Classes

In this section, we apply our results to specific functional forms of the CDF F (c) of

inspection costs, beginning with linear, quadratic and higher power distributions. Linear

and general affine CDF’s correspond to uniform distributions, precluding any news effect.

The pivotality effect then perfectly explains the shape and negative slope of the bidding

profile. Quadratic and power CDF’s illustrate the impact of positive and negative NE’s.

Turning to single-peaked distributions, the NE is always negative if the modal cost is

negative and always positive if the mode is above q. Combining these cases gives a

bimodal distribution that generates a U-shaped bid profile.

When F contains atoms, it is neither concave nor convex. Atoms cause bid rate

discontinuities on a zero measure set of critical dates where PE’s are discrete. Our

generator-based results hold at all other dates. NE’s remain continuous and are positive

in states corresponding to cost atoms. We characterize the case of homogeneous bidder

inspection costs via campaign survival probabilities.

As justified in Section 2, we restrict F (c)’s support to [0, q] by truncating a generic F

to F/F (q) on 0 < c ≤ q while reducing the arrival rate to λ′ = λF (q) and then replacing

negative values by a mass z = F (0)/F (q) atom at 0. This atom represents bidders who

already know their taste for the entrepreneur’s product or have negative (net) inspection

costs, perhaps because they are fans, friends or contacts. Later comparative statics use

the fact that first-order stochastic domination (FOSD) raises S.

Lemma 4. If F (·) ⪰
FOSD

F ′(·) then S(t,g) (F ′) ≥ S(t,g) (F ) for all t, g.

Intuitively, high costs dissuade inspection so they lower success rates. By corollary,

proportionate probability shifts from positive costs to zero raise success rates. Also,

Lemma 5. λ and q both increase S(t,g) for all t,g.

This intuitive result uses Eq. (9) within the inductive Appendix A proof of Lemma 4.

4.1 Affine CDF

If inspection costs follow a uniform distribution with atom z at c = 0, the CDF is affine

(linear if z = 0):

F (c) = z + (1 − z)
(

c

q

)
. (28)
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Fcc ≡ 0, so the news effect is null. With decreasing pivotality as the only force, the bid

profile has a negative slope. The bid rate generator for the quadratic CDF applies to the

affine CDF. Setting Fc = 1−z
q

in (20) and recalling LSbid

(t,g) = L∆S
(t,g),

Lβ
(t,g) = λq(1 − z)L∆S

(t,g) ≤ 0, (29)

so average bid slopes are decreasing. Online Appendices C.2 and C.3.1 use this to compute

average pivotality and bidding for distinct thresholds g0 (explicitly for g0 = 2). Empir-

ical tests could combine the comparative static effects of changing g0 with Section 6.1

predictions of how p and g0 vary as a function of the funding need G.

4.2 Quadratic CDF

A linear density with atom z ∈ [0, 1) at c = 0 produces the quadratic CDF,

F (c) = z + (1 − z)
(

c

q

)2

. (30)

Proposition 4 applies to this convex polynomial so we expect a positive bidding slope

given enough news. That is, sufficient variance in Sbid for the NE to dominate the PE.

A sufficient mass z of the zero-cost types guarantees this by raising bidding enough to

activate late-arriving higher cost bidders often enough.

Proposition 7. Quadratic CDF (30) creates a strictly increasing profile for any z > 3/4.

Proof in Appendix A. The zero atom z has a non-monotonic effect on the slope. As

z approaches 1, the bidding slope flattens since neither the PE nor NE affect zero-cost

types. The slope is always positive at z < 1 because the PE goes to zero faster than

the NE (arrival and taste uncertainty maintain success rate variance, νSbid

(t,g) , while LSbid

(t,g) is

proportional to ∆β(t,g) which converges to zero as z tends to 1). Online Appendix C.3.2

illustrates while C.4 shows how higher power distributions generate steeper slopes.

4.3 A compelling bimodal distribution

Empirical studies of crowdfunding highlight two relevant classes of bidders. One consists

of the entrepreneur’s fans, friends and family. These “close” bidders are often reasonably

informed about the entrepreneur’s project in advance or more curious or feel obliged to
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show an interest in it. As a result, their net inspection costs are mostly negative. They

are well-represented by a single-peaked density with mode below 0. Normalizing onto the

[0, q] cost range censors costs above q as non-arrivals and truncates negative costs into

an atom of zero types who are irresponsive to the PE and NE. The normalized density of

close bidders is monotonic decreasing on (0, q]. If all bidders were close, this fact would

guarantee a negative NE and therefore a negative sloped bid profile.

The second class of standard or “distant” bidders have costs high enough to make most

of them unwilling to inspect a given crowdfunding project. So their cost distribution is

best captured by a single-peaked density with mode above q. That normalizes to give an

increasing density or convex CDF on (0, q] and possible positive NE and bidding slope.

Fig. 2(a) illustrates the bimodal density from combining these two classes: the left

peak represents the “close” bidders (the blue area creates an atom z at 0) and the right

peak represents “distant” bidders, shown with a tight, low variance.15 As the lower

tail of distant bidders barely extends below q, the positive NE from distant bidders is

only significant late in a campaign. In successful campaigns, this creates a late upward

slope after an early downward slope from the negative NE and PE arising when close

bidders dominate activity. This combination creates the U-shape shown in Fig. 2(b).

On failing campaigns, the NE remains essentially dormant and always dominated by

the PE, explaining Fig. 2(c). This conditionality of the U-shape on success concords

with the evidence in Fig. 3(ii) of Crosetto and Regner (2018) and our Kickstarter data

computations in Online Appendix F. Raising the success rate S0 places more weight on

the U-shaped curve so that the unconditional average can also be U-shaped. See also

Section 7 on final bidding spikes caused by bidders delaying.

4.4 The homogenous case

Cost homogeneity implies a discontinuous CDF: F (ct) = 1 if ct ≥ c and 0 otherwise.

Average pivotality still decreases continuously but this smooth DP now has discrete PE’s

at a finite set of critical date and gap states where all bidders switch from inspecting to

avoiding. The NE is either zero or dominated by the PE in this special case. As a result,

the bid profile is a downward flight of steps. We provide a succinct characterization that

is useful for optimizing design in the next section. See Online Appendix D for details.
15A full analysis would add valuation differences; e.g., zealous fans and close family always bid.
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(a) Density

(b) (c)

Figure 2: Bimodal density from two normal distributions, 0.65 on N(0, 0.1), 0.35 on
N(q, 0.02); g0 = 20, (τ, λ, q) = (50, 0.7, 0.75). Blue area in (a) truncates to atom z at 0.

We focus on a cost c ∈ (0, q) because the average bid profile is flat at zero for c ≥ q

and flat at λq for c ≤ 0. As bidders are identical, strategic complementarity implies

that states (t, g) can be categorized as active, all bidders choose C at (t, g), or frozen,

all choose A. The frontier between frozen and active states is defined by the critical

or maximal gaps for activity, ĝ =
(
ĝt

)
t∈[0,τ ]

and associated critical dates t̂g or least

durations τ̂g ≡ τ − t̂g sufficient for activity; ĝt ≜ sup
{
g ∈ Z : Sbid

(t,g) ≥ c
q

}
; for g ≥ 2,

Sbid
(t̂g ,g) ≡ Sbid

(τ−τ̂g ,g)(τ) ≡ Sbid
(0,g)(τ̂g) ≡ c

q
. We call it the wall of ice since a campaign instantly

freezes when its path crosses into the region with gt > ĝt. Fig. 3(a) illustrates this wall

in violet. The region above it is frozen and a campaign is active at t if its trajectory

g =
(
gt

)
t∈[0,τ ]

has not crossed ĝ before t. Setting ĝτ+ ≜ 0, success is equivalent to staying

weakly below the wall until τ+. If g0 > ĝ0, equivalent to τ < τ̂g0 and t̂g0 < 0, the campaign

is born frozen. So we focus on g0 ≤ ĝ0. 3(a) also exhibits four possible paths: (1) and

(2), in red, end up failing: they freeze on crossing the wall at t = 23.5 and 49.5 where

ĝ23.5 = 14 and ĝ49.5 = 2; (3) and (4), in green, successfully stay below the wall, gt ≤ ĝt

for all t ≤ τ and gτ+ ≤ ĝτ+ ≡ 0.

3(b) shows discrete drops in average bidding precisely coinciding with the vertical steps

of the wall in 3(a). 3(c) shows the smoothly decreasing pivotality. This DP generates
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(a) Wall of ice (b) Bid profiles (c) Pivotality profile

Figure 3: Wall of ice and simulated gap paths beside pivotality and average bid profiles
for homogenous inspection cost c=0.2, g0=25, (τ ,λ,q)=(50,0.75,0.75), giving S0 = 0.57.

Legend: (a) (b) (c)

discrete PE’s at each critical date. The bid rate on an active campaign is λq since each

arrival inspects and therefore bids with probability q. On freezing at any t = t̂g ≡ τ − τ̂g,

all inspections stop, giving discrete PE, E (t,g)
t+ ≜ limdt↓0

(
E (t,g)

t+dt

)
= −z = −1. The PE rate

E is zero in all other states. At critical states, the NE rate N is positive but dominated

by the discrete PE. Elsewhere the NE is zero unless the gap is exactly one above the wall

or critical gap but then the variance is zero so the NE is again zero.

The fall at t̂g is λq times the atom z = 1 times the probability of hitting the vertical

segment of the ice wall at t̂g, namely P
(
gt̂g

= g
)
. The vertical drops decrease over time

because paths that cross the wall by t never hit it again, while paths that diverge below

the wall rarely come back to cross it. The wall-of-ice is approximately linear so the

bid profile is approximately convex from the first critical date onwards. Red profile AF
t

has bigger drops as the ice wall directly influences failing paths. Despite never freezing,

the green profile AS
t still has downward steps via selection of enough early bids to stay

below the wall. Conditioning on failure selectively weights lower gaps as the campaign

progresses, causing the profiles in 3(b) to fan out over time (see Section 3.6).

Appendix D.2 illustrates for g0 = 2: τ̂2 : q(1 − e−λqτ̂2) = c so t̂2 = τ − 1
λq

ln
(
1 − c

q

)−1
.

Averaging bidding At is λq till t̂2 where it drops by λq times the probability of hitting

the vertical wall of ice at t̂2 to give At = λq
(
1 − e−λqt̂2

)
from then on.

Explicit recursion for bidding and success rates.

The active-frozen dichotomy under homogeneity permits an explicit characterization
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of bid rates via survival probabilities. It replaces Proposition 1’s generic integral-based

recursion for success rates with a finite recursive sum. Section 3.6’s transition probabilities

give the probability that a campaign survives from state (t, g) till t′ > t,

α
(t,g)
t′ ≜

∑
g′≤ĝt′

Q
(t,g)
(t′,g′). (31)

The probability of surviving till t given starting gap g0 is α
(0,g0)
t . The average bid rate is

At = λqα
(0,g0)
t and the success rate is S(t,g) = α(t,g)

τ+ . Using Poisson probability function,

P(b; Λ) ≜ Λbe−Λ

b! , (32)

for b ≥ 0 bidding events and Poisson parameter Λ ≥ 0, we prove in Appendix A,

Proposition 8. Success and average bid rates under homogeneity are characterized by

S(t,g) = α(t,g)
τ+ , At = λqα

(0,g0)
t , (33)

where ∀ g, t ≤ t′, (i) α
(t,g)
t′ = 1 if t′ ≤ t̂g, (ii) α

(t,g)
t′ = 0 if t̂g < t, (iii) on t ≤ t̂g < t′≤ τ+,

1 − α
(t,g)
t′ = P

(
0; λq(t̂g − t)

)
+

g−ĝt′ −1∑
b=1

P
(

b; λq(t̂g − t)
)(

1 − α
(t̂g ,g−b)
t′

)
; (REC-α)

1 − c/q =P
(

0; λq(t̂g−1 − t̂g)
)

+
g−2∑
b=1

P
(

b; λq(t̂g−1 − t̂g)
)(

1 − α(t̂g−1,g−1−b)
τ+

)
. (REC-t̂g)

Corollary 3. S(t,g) ≡ 1 for all g ≤ 0 initiates a recursive solution for generic S(t,g) via

1 − S(t,g) = P
(

0; λq(t̂g − t)
)

+
g−1∑
b=1

P
(

b; λq(t̂g − t)
)(

1 − S(t̂g ,g−b)

)
. (REC-S-hom)

Corollary recursion (REC-S-hom) provides S(t,g) given S(t̂g ,g−1), ..., S(t̂g ,1) and t̂g. As

(REC-t̂g) reveals t̂g given t̂g−1 and S(t̂g ,g−1), ..., S(t̂g ,1), combining these recursions solves

for both S(t,g) and t̂g given their solutions at gaps g − 1 and below; recall that t̂1 = τ .

This explicit linear recursion greatly speeds up computations which is useful for opti-

mizing design where numerical calculations become more intensive.
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5 Welfare and Transparency

Our baseline model Seq is transparent as it fully discloses the gap, summarizing past

bidding, in real time. To investigate transparency’s welfare and success consequences,

we define the no-disclosure benchmark Sim and characterize its outcomes in Section 5.1.

In Section 5.2, Proposition 10 shows DP drives decreasing welfare contributions in Seq,

albeit neutral under homogeneity (Lemma 6). A later decomposition of the binomial

case shows how high cost bidders gain more when arriving later. Section 5.3 uses these

results to compare Seq and Sim, first with homogeneity and then heterogeneity with

binary costs, uniform costs and a family of atomless distributions, varying bidder scarcity.

Section 5.4 concludes by showing the optimality of intermediate transparency rules.

We define expected welfare W as bidders’ aggregate surplus V plus a success surplus

RS0 where R captures societal benefits and the success-maximising entrepreneur’s gains

from success. Bidder surplus V is the expectation over realized arrival sequences {tn}N
n=1,

V = E

 N∑
n=1

u
atn
tn

 , (34)

where atn ≡ a(tn,gtn ,ctn ) ∈ {A, B, C} is the substrategy chosen by bidder n. In sum,

W = V + RS0. (35)

Superscripts distinguish the cases so, e.g., W Seq denotes welfare in Seq.

5.1 The simultaneous move benchmark

In benchmark Sim, bidders arrive over time as in Seq but their bids are not disclosed (till

after bidding ends at τ) so moves are effectively simultaneous. Sim is equivalent to the

simultaneous-move Poisson game with parameter λτ determining the bidder population

(Myerson, 1998). Favouring Sim, we assume coordination on the unique Pareto efficient

equilibrium. This maximises inspection.

In Sim, a bidder t knows the initial gap g0 but nothing else about the bidding path

(g′
t)

t′≤t. Assumption 1 again precludes blind bidding so bidders again decide between C

and A. Replacing Sbid
(t,g) with SbidSim in Eq. (5) for C’s payoff implies a threshold strategy:

play C if c ≤ ĉ, else play A, where ĉ ∈ supp {F} ∪ {0}; ĉ = 0 indicates always playing
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A when supp {F} ̸∋ 0. Each bidder inspects and bids with probability qF (ĉ) so the λτ

Poisson distribution of bidders implies Poisson parameter λqτF (ĉ) on bids.16 So

SbidSim = σg0−1
(
τF (ĉ)

)
where σg(x) ≜ 1 −

∑g−1
b=0

(λqx)b

b! e−λqx. (36)

We later suppress g when g = 1: σ(·) ≜ σ1(·). Setting UCSim(ct; ĉ) ≜ UCSim

t of this

ĉ-equilibrium,

UCSim(ct; ĉ) = qσg0−1
(
τF (ĉ)

)
− ct. (37)

Equilibrium requires UCSim(ct; ĉ) ≥ 0, ∀ ct < ĉ, UCSim(ct; ĉ) ≤ 0, ∀ ct > ĉ. As g0 ≥ 2, a

trivial equilibrium exists when F (0) = 0. Selecting the best equilibrium in Sim,

ĉSim = sup{c ≥ 0 : UCSim(c; c) ≥ 0}. (38)

So ĉSim = qσg0−1
(
τF (ĉSim)

)
≥ 0, strictly if F (0) > 0. ĉSim < q since UCSim(q; q) < q−q = 0

as σg0−1 (τ) < 1 given g0 > 1. ĉSim = 0 if UCSim(c; c) < 0 ∀c ∈ supp {F}. In sum,

Proposition 9. The simultaneous move benchmark Sim has a unique Pareto optimal

equilibrium where all bidders play the trigger strategy, C when c ≤ ĉSim, A when c > ĉSim.

If ĉSim = 0, the only equilibrium is trivial and V Sim = SSim
0 = 0; that requires F (0) = 0.

In general, bidder surplus and campaign success rate are given by

V Sim = λτF (ĉSim)
[
ĉSim − E

(
ct | ct ≤ ĉSim

)]
, (39)

SSim
0 = σg0

(
τF (ĉSim)

)
. (40)

5.2 Bidder surplus dynamics in the baseline model

By Proposition 1, the dynamic cost threshold for C is ĉ(t,g) ≜ qSbid
(t,g) in Seq. So bidder

surplus increases at rate λ times the expected surplus of a bidder arriving at (t, g),

V(t,g)/λ ≜ Ec

(
U

a(t,g,c)
(t,g,c)

)
= F (ĉ(t,g))Ect

(
qSbid

(t,g) − ct|ct ≤ ĉ(t,g)
)

= F (ĉ(t,g))ĉ(t,g)−
� ĉ(t,g)

0
c dF (c).

(41)
16Arrivals play C on measure x = τF (ĉ) of the campaign.
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Aggregating over t,

V =
� τ

0
AV

t dt, where AV
t ≜

g0∑
−∞

Q(t,g)V(t,g) (42)

again averages over gaps. Using Eq. (27), ȦV
t = ALV

t . Integrating (41) by parts, V(t,g) =� ĉ(t,g)
0 λF (c) dc. Applying Eq. (GEN) and simplifying,

LV
(t,g) = λF (ĉ(t,g))qD(t,g)+β(t,g)

� ĉ(t,g−1)

ĉ(t,g)

λF (c) dc = β(t,g)

� ĉ(t,g−1)

ĉ(t,g)

λ
(
F (c) − F (ĉ(t,g−1))

)
dc.

(43)

This proves that LV
(t,g) ≤ 0 and bidder surplus trends downwards, ȦV

t ≤ 0 for all t:

Proposition 10. In Seq, the average surplus contribution AV
t is time-decreasing.

Decreasing pivotality underlies this result. Bidders with ct = c < ĉ(t,g) strictly prefer C

to A at all (t + dt, gt+dt). By DP, these inframarginals’ expected payoffs UC
t,g = qSbid

(t,g) − c

trend downwards at rate qD(t,g). Bidders with c ∈ (ĉ(t,g), ĉ(t,g−1)) gain from more in-

formation on arriving later as they switch from A to C, gaining UC
t,g−1 = ĉ(t,g−1) − c

when, with probability β(t,g) dt, a bid lowers the gap to gt+dt = gt−1. So they generate

β(t,g)
� ĉ(t,g−1)

ĉ(t,g)
λ(ĉ(t,g−1) − c) dF (c) which equals the second term of LV

(t,g) in Eq. (43).17 The

information gain is bounded by q∆S(t,g−1) and weighted by inframarginal bidding so the

DP effect on inframarginals dominates.

In the homogenous case, LV
(t,g) is zero at all non-critical dates since β(t,g) = 0 if

frozen and if active, F (c′)=F (ĉ(t,g−1))=1, ∀c′ ∈ [ĉ(t,g), ĉ(t,g−1)]. At critical states, (t̂g, g),

a(t,g,c) = C switches to A fixing a 0 payoff by indifference, except in the zero probability

event of a bid at that instant. So AV
t is constant and V = τV(0,g0) = λτ(qSbid

(0,g0) − c).

Lemma 6. AV
t is time-independent when costs are homogenous.

5.3 Welfare comparisons

Homogenous costs. Dynamic responses in Seq can only reduce the success rate S0

below SSim because if Sim has a non-trivial equilibrium, it is all-C: all arrivals play

C, F (ĉ) = 1, maximising bidding and success. By Eqs. (37) and (38), the condition

is τ ≥ τ̂Sim
g0 ≜ σ−1

g0−1(c/q). Moreover, since all-C maximises strategic complementarity
17Marginal bidder c = ĉ(t,g) switches from C to A if no bid arrives, but this has no surplus effect.
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and hence the chance that any bidder play C in any information structure, τ < τ̂Sim
g0 also

implies trivial outcomes in Seq. Sim strictly raises success rates for any τ ≥ τ̂Sim
g0 because

a positive mass of Sim’s successful bidding paths have late bids and cross the wall of ice

(defined in Section 4.4), implying failure in Seq: SSeq
0 < SSim

0 ∀τ ≥ τ̂Sim
g0 .

A bidder arriving at t = 0 in Seq plays C in this case, but with g0 > 2, the campaign

may freeze even if he bids. That strictly lowers Sbid
(0,g0) so V(0,g0) < V Sim/τ . Lemma 6 then

implies V Sim > V Seq ≡ V . When g0 = 2, V Seq = V Sim though SSeq
0 < SSim

0 . This proves,

Proposition 11. With homogenous costs and τ > τ̂Sim
g0 , (i) SSeq

0 < SSim
0 , (ii) V Seq ≤ V Sim

with equality only for g0 = 2; (iii) W Seq < W Sim unless g0 = 2 and R = 0.

Here Sim maximises strategic complementarity and hence also the success rate. It

involves more costly inspection than Seq but generally raises welfare.

Heterogeneity. With enough moderate cost bidders, hiding information ensures

their mutual positive externalities as with homogeneity. Then Sim still yields higher

welfare than Seq. When instead such bidders are too scarce, Seq becomes optimal

since good success rates require dynamic coordination where moderate and higher cost

bidders exploit any good fortune from low cost arrivals in early stages. Anticipation of

the possible encouragement in Seq of bidders who never inspect in Sim can raise ĉ(0,g0)

above ĉSim. We illustrate with binary and uniform distributions and then provide a more

general sufficient condition with F (·) continuous.

Binary costs. In general, if F (ĉSim) = 1, SbidSim is maximal so V0 ≤ V Sim/τ and by

Proposition 10, V ≤ V Sim. In the binary cost distribution with weight z on cL = 0 and

1−z on cH ∈ (0, q), F (ĉSim) = 1 and Sim is again welfare optimal for cH ≤ qσg0−1(τ).

When instead cH > qσg0−1(τ), ĉSim < cH and Seq has uniformly higher bid rates than

Sim because L-types again always inspect, sometimes lowering gt fast enough to activate

H-types.18 Clearly, S0 and L-type bidder surpluses rise and H-types gain too, so:

Proposition 12. W Seq > W Sim for any binary CDF with cL = 0 and cH ∈ (qσg0−1(τ), q).

We know ȦV
t ≤ 0 but it is instructive to decompose AV

t by cost type, into AV L

t ≜

λzE0,g0

(
U

a(t,g,cL)
(t,g,cL)

)
and AV H

t ≜ λ(1 − z)E0,g0

(
U

a(t,g,cH )
(t,g,cH)

)
. Average surplus contributions

18Appendix D.3 generalizes to discrete distributions. With cL = 0, there is no wall of ice but there is
a frontier (t, ĝH

t ) below which H-types activate. Note that P(ĉ(t,gt) ≥ cH) ≥ P(gt ≤ 1) ≥ σg0−1(tz) > 0.
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are fixed on [0, t̂H
g0 ] while for t > t̂H

g0 , we readily confirm the negative effect of DP on L-

types and the positive information benefit of time on H-types, akin to the news effect.19

Proposition 12 is robust to small cL > 0: Seq’s welfare gain over Sim holds for small cL

as qSbid
(t,g) > 0 on t < τ when cL = 0 and equilibrium actions vary continuously as cL rises

from 0. cL > 0 adds a wall of ice but the risk of freezing vanishes as cL → 0.

Uniformly distributed costs. When F (c)≡c/q, g0=2 and λ=1/q has V(t,g)=λq2/2q

= 1/2, ∀g ≤ 1, V(t,2)=σ(τ−t)2/2 and Q(t,2)=e−t, giving V = 1
2

(
τ(1 − 2e−τ ) + e−τ (1 − e−τ )

)
which is strictly positive for any τ > 0. By contrast, V Sim = λτ ĉSim

q
ĉSim

2 = τ
2

(
ĉSim

q

)2
. Using

Lambert productlog’s principal branch W(·), ĉSim=q
(

1 + W(−τe−τ )
τ

)
.20 W(−τe−τ )/τ =

−1 on τ ≤ 1 and is strictly rising on τ ≥ 1. So Sim is non-trivial for τ > τ̂ = 1/λq = 1.

V Seq > V Sim for all τ and V Seq/V Sim falls as τ rises.

Generalizing, bidder scarcity (low enough λτ) eventually leads to zero welfare in Sim

for any cost distribution lacking an atom at zero. Then Seq fares strictly better given any

positive mass of bidders in the neighbourhood of zero. Those bidders allow the campaign

to heat up and succeed. Formally (Proof in Appendix A),

Proposition 13. Any atomless cost distribution with support containing (0, ϵ) for some

ϵ > 0 has W Seq > W Sim for sufficiently low λτ .

When instead λτ gets large, V Sim and V Seq again converge as success becomes virtually

guaranteed with or without information transparency. Seq is dominant for all τ in this

specific uniform example but if costs have an upper bound below q then V Sim welfare

dominates V Seq at large enough λτ .

5.4 Constrained social optimum

Crowdfunding platforms could adopt time-based disclosure rules, as was standard pre-

internet, so we now ask if any intermediate information structure improves on the full

and no-disclosure extremes of Seq and Sim? We answer affirmatively by solving the

information design problem of a welfare-maximising platform able to set any rule for

disclosing bidding news. For expositional simplicity, we treat homogenous costs and
19ȦV L

t =λzQ(t,ĝt+1)qD(t,ĝH
t +1)=−λ2z(1−z)Q(t,ĝt+1)q∆ĉ(t,ĝH

t +1)<0. ȦV H

t =λ(1−z)Q(t,ĝH
t +1)λzq×

(ĉ(t,ĝH
t )−cH)>0. Summing confirms ȦV

t =λ2z(1−z)Q(t,ĝt+1)q(ĉ(t,ĝH
t +1) − cH)<0.

20ĉSim is the maximal solution of qσ(τ ĉSim)=ĉSim. Equation wew = x has two real solutions in w for
x ∈ [−1/e, 0): w = W0(x) and w = W−1(x) of which the principal branch W0(x) ≡ W(x) is maximal.
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g0 = 2; the platform can then just commit to Disclose gaps from some tD
2 ∈ [0, τ ]

onwards.

Setting tD
2 ≤ t̂2 is strategically equivalent to Seq because bidders do not respond

to gap changes prior to t̂2 in Seq so being uninformed has no impact; the equilibrium

remains unique. Setting tD
2 = τ hides the gap till the end so that is equivalent to Sim.

For τ ≥ τ̂2, retaining Pareto optimal equilibrium selection, intermediate tD
2 extends the

Seq equilibrium: bidders always play C on [0, tD
2 ], then only playing C if gt ≤ 1 over the

later, full transparency phase. This information structure generates S
tD
2

0 ∈ (S0, SSim
0 ) and

V tD
2 = λ

[
tD
2
(
qσ (τ) − c

)
+ (τ − tD

2 )(q − c)σ
(
tD
2

)]
. (44)

Lemma 7. With homogenous costs and a threshold of two, the bidder optimal rule has

full disclosure from tD∗
2 ∈ (t̂2, τ). Transparency is strictly between that of Seq and Sim.

Appendix A proves tD∗
2 ∈ (t̂2, τ). The intuition is two-fold. First, raising tD

2 marginally

above t̂2 induces some near-indifferent bidders in Seq to switch from A to C; by C’s

positive externality, that raises welfare. Second, lowering tD
2 just below τ causes bidders

who face g ≥ 2 on arriving just before τ to switch to A from playing C in Sim; their cost

saving raises expected welfare given the negligible success chances in that contingency.

Maximising social welfare W = V + RS0 with R > 0 simply raises tD∗
2 towards τ .

6 Campaign Design

We study an entrepreneur who designs her campaign to maximise project success subject

to a funding constraint: she needs G ≥ 0 units of money to fund fixed costs of production.

We focus on the uniform distribution. A range of smooth distributions are qualitatively

similar. We also treat the special case of homogeneity. Section 6.1 identifies and studies

the entrepreneur’s price-threshold tradeoff while 6.2 studies gap-dependent pricing and

the resulting price dynamics driven by DP, anticipation effects and risk compensation.

6.3 assesses the welfare-implications of gap-dependent pricing.

6.1 Endogenous threshold and pricing with a single reward

The entrepreneur has funding need G and marginal cost κ, so she sets g0 and p to,
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max
g0,p

S0(p) subject to G ≤ (p − κ)g0. (45)

S0(p) ≡ S(0,g0)(p) generalizes Proposition 1’s recursive solution; see 6.2. We justify con-

tinued neglect of blind bidding B by replacing Assumption 1 with

Assumption 2 (Sufficient condition for NBB). κ ≥ qv.

This suffices since the funding constraint requires price above marginal cost κ. The direct

effect of generalizing p beyond p = v − 1 is that Eq. (6) becomes,

β(t,g)(p) = λqF
(
(v − p)qS(t,g−1)(p)

)
. (46)

Lowering p raises the discount d ≜ v − p. That encourages inspection given any gap g,

so S(t,g)(p) rises.21 This creates a tradeoff because lowering p obliges a higher initial gap

g0 to cover funding need G. As raising g0 lowers S0, the success objective implies:

Lemma 8. The funding constraint weakly binds so we can set p = p(g0) ≜ G/g0 + κ.

With the above machinery, we find the optimal threshold g∗
0 by comparing integers

g0 with p = p(g0).22 We set κ=q=0.2 to satisfy Assumption 2. Normalizing v to 1,

we consider gaps g0 ≥ ⌈G/(1 − κ)⌉ since nobody ever bids if p > v. We focus on (I)

the uniform distribution on [0, qv] = [0, q], F (c) = c/q, as a neutral case, but also solve

special case (II) homogenous cost c = 0.07. Fig. 4 shows how the resulting optimized

thresholds g∗
0 (turquoise, integer-valued) and prices p∗ (brown) depend on G and λτ .23

In the uniform case (I), Fig. 4a shows that λτ raises g∗
0 and lowers p∗. Intuitively,

low λτ makes it hard to reach a high g0 even if every bidder bids. Fig. 4b shows that g∗
0

increases in G: high budgetary needs amplify price reductions from raising g0. Price p∗

also mostly increases in G, but drops back when integer-valued gap g0 jumps up.

Homogenous case (II) is special because lowering price only helps by reducing the risk

of freezing. Lowering p rotates the wall of ice up around (t, g)=(t̂1, 1)≡ (τ, 1) so it is most

effective early on. Bidder scarcity, low λτ , pushes the wall of ice downwards and low p

21Formally, the induction logic used to prove Lemma 5 generalizes so a change that increases β(t,g) at
fixed S(t,g−1), also increases S(t,g). Moreover, g0 lowers S(g0,0) as Corollary 1 generalizes to any p.

22p(g0) has negative, increasing first forward differences, −G/
(
g0(g0 + 1)

)
).

23We solved for a range of funding needs G and expected bidder arrivals λτ . In each optimization, the
plot of S0 against g0 is single-peaked (Fig. 11, Online Appendix E) and identifies a unique optimal g0.
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(a) (G = 5) (b) (λτ = 7.75 · 30) (c) (G = 5) (d) (λτ = 7.75 · 30)

Figure 4: g∗
0 and p∗ for (I) uniform (a,b) and (II) homogenous (c,d) distributions.

mitigates the implied early freezing risk. At high λτ , the wall is higher and freezing is

only a risk later on where p is less effective, so the price-threshold tradeoff implies a low

g∗
0. Fig. 4c confirms p rising and g0 falling in λτ . Similarly, Fig. 4d shows g∗

0 now rising

fast enough that p∗ trends downwards in G to avoid starting too near the wall. In sum,

Observation 1. The optimal threshold g∗
0 is increasing in funding need G in both (I) and

(II); g∗
0 is also increasing in bidder abundance λτ in (I) but decreasing in (II).

The optimal price p∗ has jumps but neglecting those integer effects: in (I), p∗ is increasing

in G and decreasing in λτ ; in (II), p∗ decreases in G and increases in λτ .

6.2 Gap-dependent pricing

With unrestricted gap-dependence, the entrepreneur sets prices pg0 = (pg0 , pg0−1, . . . , p1)

where pg applies at gap g and their sum meets her total budgetary need.24 She optimizes

in two stages, first, for pricing p∗ given each potentially optimal g0, second, for g∗∗
0 , the

optimized threshold under multiple prices. We focus on the first stage which tells us

when to expect early bird discounts. Generalizing problem (45), her challenge is to

max
pg0

S0(pg0) subject to G ≤
∑g0

g=1(pg − κ) = (v − κ)g0 −
∑g0

g=1 dg. (47)

As only current and future prices affect bidder incentives, we let pg ≜ (pg, pg−1, . . . , p1).

Again imposing Assumption 2 to justify neglect of blind bidding,25 we need only derive

when bidders choose C and the success rate S0(pg0) ≡ S(0,g0)(pg0), given by:
24Prices on post-completion units, g ≤ 0, are not pinned down by success maximization. A lexico-

graphic profit concern would predict price hikes on reaching the threshold.
25It suffices since setting any pg < κ is dominated by removing that price and reducing g0 by one.
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Proposition 14. With gap-dependent pricing, the crowdfunding game has a unique PBE:

a(t,g,c) = C if and only if c ≤ q(v − pg)S(t,g−1)(pg−1). Bid intensity β(t,g)(pg) satisfies

β(t,g)(pg) = λqF
(

q(v − pg)S(t,g−1)(pg−1)
)

, (48)

where S(t,g)(pg) = 1 if g ≤ 0 and

if g ≥ 1, S(t,g)(pg) =
� τ

t

exp
(

−
� Tg0−g+1

t

β(x,g)(pg) dx

)
β(T,g)(pg)S(T,g−1)(pg−1) dTg0−g+1.

Tn is the n’th stopping time. Bid intensity β(t,g)(pg) depends directly on the price

pg of unit n = g0 − g + 1 and indirectly on successive unit prices pg−1. Earlier bidders,

at gaps g′ > g, anticipate increased bidding at gap g from a low pg raising v − pg in

Eq. (48), which raises Sbid
(t,g′) in Eq. (48)|g=g′ . Amplifying gains from later price discounts,

this anticipation effect suggests lower prices at later/lower gaps; late discounting (LD)

has pg increase in g. A high S0 attenuates this anticipation effect by bunching up Sbid
(t,g′)

near unity so that late discounts have little effect; high Sbid
(t,g′) enhances pg′ ’s direct effect.

A low pg also creates a time effect: more bidding at gap g shifts down Tn, the stopping

time of the g:g−1 transition so that successors at gaps g′ ≤ g − 1 have lower t and by

Lemma 1, higher Sbid
(t,g′). This time effect is greater for bidders at higher gaps as they have

more successors, so it suggests early discounts (ED) except at low S0 where LD’s strong

anticipation effect is a better way to motivate early bidders and create the time effect.

Bidder abundance raises S0 towards unity while bidder scarcity lowers S0 to zero. So

for the uniform and power distributions, we predict ED at high λτ and LD at low λτ .

In the special case of homogeneity, extremal elasticities make it optimal to compen-

sate for failure risk 1 − Sbid even though discounts are multiplied by Sbid. Sbid
(t,gt) is a

supermartingale, as in DP, so failure risks tend to rise, but when S0 is low, failure risks

tend to fall along any path that ends in success. At high λτ , S0 is high, the campaign

starts far from the ice wall, delaying the risk of freezing. LD optimally compensates for

this late risk by raising the later section of the ice wall. Conversely, at low λτ , it is

optimal to use ED to raise the then critical early section of the ice wall.

The above solution method supports these comparative static predictions on all pa-

rameter ranges considered. Fig. 5 illustrates graphically: in panel (a), optimal prices in

case (I), uniform costs, with g0=10 feature ED at low λτ , moving to LD as λτ increases;
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panel (b) reveals the converse for case (II), homogenous cost.26 Formally,

(a) Uniform (G=3.5) (b) Homogenous (G=4)

Figure 5: Gap-dependent pricing with g0 = 10.

Observation 2. The optimal gap-dependent price scheme given g0 units has, ∀ 1<g′<g:

p∗
g − p∗

g′ is positive at low λτ and negative at high λτ in case (I);

p∗
g − p∗

g′ is negative at low λτ and positive at high λτ in case (II).

We leave a full analysis to future work but do prove an intuitive explanation in a

stylized variant with extreme bidder scarcity: let exactly g0 bidders arrive in sequence.

Now success requires every single arrival at each gap g ≥ 1 to bid. Having only one

possible successful path shuts down time effects. It also implies multiplicative separability,

removing risk compensation motives when F is a homogenous polynomial. So in uniform

case (I), only the anticipation effect applies and LD is optimal:27

p∗
g = v − 1

2g

(
(v − κ)g0 − G

1 − 2−g0

)
, g0 ≥ g ≥ 1. (49)

Price falls as g falls over time; the discount doubles on each gap reduction. LD is also

optimal for general atomless (z = 0) power distributions from Eq. (65); the ratio of

optimal discounts is then dg−1/dg = 1 + ρ. The extent of late discounting increases with

elasticity parameter ρ as bidders become more sensitive to changes in Sbid.

Turning to homogenous case (II), ED is optimal, driven by the risk factor:

p∗
g = v − c

qg
, g0 ≥ g ≥ 1. (50)

26Observation 2 still holds at g∗∗
0 (λτ) instead of fixing g0=10; g∗∗

0 =g∗
0=10 on λτ ≥ 210 in (I), 187.5 in

(II). (i)’s LD-ED shift also holds with g′ = 1 but in case (II), p1 is totally inelastic and always maximal.
27Online Appendix E.1 provides detailed derivations for all cases.
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The anticipation effect is trivial as inspection is necessarily maximal along the one success-

ful path. To motivate those inspections, the discount d must compensate for risk at every

gap g: dg = c/qg as Sbid = qg−1 on the potentially successful path through g.28 Prices

(50) are independent of G and κ but only implementable if G ≤ (v − κ)g0 − c
(

q−g0 −1
1−q

)
.

Our framework readily permits computation of bidder surplus and total welfare.

6.3 Welfare implications of gap-dependent pricing

Figure 6: Bidder surplus V for gap-dependent pricing (GD) relative to a single price (SP).

Gap-dependent pricing unsurprisingly enables the entrepreneur to maximize success

more effectively than when restricted to a single price. We find that in our examples, as

well as raising the success rate S0, gap-dependence raises bidder surplus and therefore

welfare. Fig. 6 demonstrates this for the uniform CDF of Fig. 5a by plotting the bidder

surplus ratio for the optimized gap-dependent prices, p∗∗ at g∗∗
0 , relative to the optimized

single price p∗ at g∗
0 (equal to g∗∗

0 over the range plotted): the ratio is always above 1.29 It

is highest at low λτ , where gap-dependent pricing is most effective at raising the success

rate. For example, we have roughly VSP = 0.03, VMP = 0.05 at λτ = 120; VSP = 0.23,

VMP = 0.27 at λτ = 135; and VSP ≈ VMP = 1.53, λτ = 180. The ratio converges to one

as λτ becomes large. This is intuitive since the entrepreneur can then achieve a very high

success rate simply by setting a low single price. This observation is consistent with the
28In this special case, the budget constraint need not bind so, for uniqueness, we assume the en-

trepreneur lexicographically prefers to maximise profits among designs that generate the same S0.
29To produce Fig. 6, we calculate the surplus contributions under GD by extending Eq. (41) to GD

pricing: ĉ(t,g) becomes S(t,g−1)(pg−1)(v − pg) and we derive V(t,g)/λ = [S(t,g−1)(pg−1)(v − pg)]2q/2 using
F (c) = c/q. Numerical integration, weighted by state-transition probabilities gives V via Eq. (42). We
neglect post-completion surplus contributions, consistent with SP restricting to g0 units; c.f., Footnote 24.
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falling price in Fig. 4a and the concentration of prices in Fig. 5a at high λτ .

The homogenous cost case with the parameters of Fig. 5b delivers qualitatively similar

results. These welfare results reflect the close alignment between welfare and success

motives. However, when entrepreneurs maximize profit, gap-dependent pricing might

well raise profits at the expense of S0 and V .

7 Concluding discussion

This paper’s principal objective was to investigate how strategic complementarities and

positive externalities affect dynamic participation and welfare in a canonical finite-duration

game. Our key contributions are the explicit welfare results and the novel pair of dynamic

forces – the pivotality and news effects. Since the framework that we developed closely

fits the most popular crowdfunding paradigm, empirical evidence on funding dynamics

can test our theory. We have shown how the new forces, PE and NE, can readily account

for prominent dynamics, including the much-commented U-shape. In addition, our re-

sults on optimal campaign design can guide entrepreneurs seeking to exploit the potential

of crowdfunding, while our welfare results inform debates on platform implementation.

Concretely, we established that full dynamic disclosure welfare-dominates static imple-

mentation when bidders are scarce, because disclosure allows lower cost types to motivate

later high cost types who would otherwise never participate.

As we intentionally chose a parsimonious framework, we close by discussing its lim-

itations in fitting the data, model extensions to improve explanatory power and steps

towards testing based on our optimal design results and proxies for the cost distribution.

We tentatively illustrate some first steps with a small dataset.

Delays. We explained the U-shape profile using only bidding costs, but imposing

no delays and no prior arrivals precludes the discrete bidding spikes at campaign start

and end dates that some suggest in empirical work (Crosetto and Regner, 2018; Deb

et al., 2021). So we now revisit those assumptions. Seq supposes bidders never delay.

This is key for the tractable Markovian state space. No delays is appropriate if bidders

generally react to a campaign without delaying, out of curiosity or impulsivity or the

efficiency of deciding within a single thinking episode. That is often reasonable since

those who contemplate delay must decide on delay, remember to return and then re-focus
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on the project to finally decide on bidding. Nonetheless, our welfare analysis in Section 5

indicates how higher cost bidders might gain enough from delaying to compensate these

added refocusing costs and “Remind-Me” buttons lower memory costs.

So we endogenize delays in a follow-up study, Ellman and Fabi (2021). Delays natu-

rally create bidding spikes at campaign deadlines. Additionally recognizing pre-campaign

arrivals, who wait to bid when the campaign starts, creates a sharp U-shape. Deb et al.

(2021) instead explain these spikes as early signalling and last-minute top-ups by a single

donor (see also Crosetto and Regner, 2018, on self-bidding by entrepreneurs). They use

a price proxy to decompose bids between donations and purchases and to estimate sepa-

rate profiles. The U-shape is more pronounced for purchases, supporting our explanation.

The decomposition also indicates multiple actors delaying, as in our sequel.

Endogenous arrivals. Advertising drives, word-of-mouth and platforms’ promotion

strategies shift bidding dynamics by making the arrival rate λ depend on both time and

gap. Click data onto campaign pages could proxy for arrival rates (Kuppuswamy and

Bayus, 2017; Kim et al., 2019) to identify dynamics in λ. Platforms’ revenue shares give

them an interest in helping to convert near-successes into successes. Consistent with this,

Kickstarter’s “Nearly funded” list raises bidding near completion (Deb et al., 2021).

Common values. At the individual campaign level, common values would readily

create momentum effects in the form of positive and negative cascades, but no obvious

prediction for the bid profile averaged across campaigns. Extending to common values

greatly impedes tractability as gaps no longer summarize bidding paths.30

Making a difference and warm-glow. Kuppuswamy and Bayus (2017) suggest

that when bidders gain a utility from making a difference, goal proximity raises the

motive to bid. We formally capture making a difference as pivotality and show that it

is non-monotonic in goal proximity but we support Kuppuswamy and Bayus’s (2017)

refined and more conclusive test which interacts goal and deadline proximity. By DP,

such motivations would reinforce the downward-sloping tendency.

Pivotality motives also predict decreased bidding after the completion date at which

funds reach the threshold (Kuppuswamy and Bayus, 2017). Our Seq model can predict a

post-completion decrease but only for high thresholds or early completions. In any case,

such motives only predict that donations should decrease and there is no strong evidence
30Absent bidding costs, relative bid timings perfectly reveal bidder signals in Liu’s (2020) common

value equilibria but absolute timings are indeterminate, precluding bid profile conclusions.
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of post-completion decreases in purchases. To fully investigate this motive, plus altruism

and warm-glow, increasing in bid size (Andreoni, 1990), requires multiple bid options by

multiple actors as in Ellman and Hurkens’s 2019b’s (static) model.

Cost distribution proxies. The bid profile predictions in Section 4.3 from com-

bining “close” and “distant” bidders depend on the relative prevalence of close and dis-

tant bidders, so they can be tested using recent proxies for proximity from geographic

data (Agrawal et al., 2011) and link traffic data that identifies arrival via social media

(Kuppuswamy and Bayus, 2017; Kim et al., 2019). Online Appendix F uses Fan-Osuala

et al.’s (2018) Kickstarter dataset to break down profiles by outcome and project cate-

gory. Emerging patterns fit Section 4.3’s bimodal case: most categories feature apprecia-

ble downward slopes, especially early on, with flatter, late upward slopes that are mostly

absent when conditioning on failure.

Design-based predictions. Section 6 predicts that bidder threshold g0 rises with

funding goal. In the uniform case of Section 4.1, raising g0/λτ makes the initial decreasing

slope steeper. A tentative comparison of categories with relatively large campaign funding

goals (technology, design, games, and film-and-video) versus relatively small goals (music,

comics, dance and craft) is broadly supportive (Appendix F), though highly tentative

since, while τ varies minimally, parameters including λ may vary systematically.31

Future work could find proxies for entrepreneur preferences and move beyond success-

maximization. We conjecture higher welfare gains from disclosure if entrepreneurs max-

imise profit since dynamic coordination polarizes failures and successes and only profit-

maximisers value the additional marginal revenues of an extreme success. Much remains

to be done on design as well. Beyond multiple prices, rebates when the crowdfunding

threshold is strictly exceeded would help encourage inspection. Most platforms do not al-

low endogenous prices but some allow profit-sharing which works like a rebate and others,

like Kickstarter, allow stretch goals which similarly encourage inspection by promising

to use additional funding to improve quality. Finally, we hope that recent progress on

crowdfunding with inspection and common values in the static case will inspire attempts

to study dynamics despite the lack of a Markovian state space.
31Cordova et al. (2015) and Mollick (2014) associate high funding thresholds with poor success rates.

Cordova et al. (2015) find a positive effect of campaign duration in a technology projects sample. Mollick
(2014) finds the opposite for generic campaigns. Higher duration may reduce bidders’ attention because
of increased inter-project competition, impatience or changing tastes.
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Appendix A Proofs

Proof of Lemma 1. Bid intensity β(t,g) cannot be negative so (i) and Eqs. (2) and (ODE-S)

immediately imply (ii). So we need only prove ∆S(t,g) ≥ 0, ∀g; this implies the second

inequality in (i) since Sbid
(t,g) ≡ S(t,g−1). We prove ∆S(t,g) ≥ 0 by induction. First, if g ≤ 0,

S(t,g) ≡ 1 so ∆S(t,g) = 0. Second, ∆S(t,1) = 1 − S(t,1) = e−λq(τ−t) ∈ (0, 1]. For g ≥ 2, we

integrate Eq. (8) by parts, using dnT = −nT β(T,g) dT from Eq. (7), to give

S(t,g) = −
� τ

t

S(T,g−1) dnT =
� τ

t

nT Ṡ(T,g−1) dT −
[
nτ S(τ,g−1) − ntS(t,g−1)

]
. (51)

S(τ,g−1) = 0 ∀g ≥ 2 and nt = e0 = 1 imply
[
nT S(T,g−1)

]τ
t

= S(t,g−1). So using Eq. (ODE-S),

∆S(t,g) = −
� τ

t

nT Ṡ(T,g−1) dT =
� τ

t

nT β(T,g−1)∆S(T,g−1) dT.

Now β(t,g) ≥ 0 and nx > 0 ∀x ≤ τ , so (i) holds at g − 1 =⇒ (i) holds at g.

Proof of Lemma 3. Eq. (27) follows from (ODE-Q), Q̇(t,g) = Q(t,g+1)β(t,g+1) −

Q(t,g)β(t,g), as follows:

Dt

(
E(0,g0)Y(t,g)

)
= Dt

 g0∑
g=−∞

Q(t,g)Y(t,g)

 =
g0∑

g=−∞

(
Q̇(t,g)Y(t,g) + Q(t,g)Ẏ(t,g)

)
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=
g0∑

g=−∞

((
Q(t,g+1)Y(t,g+1) − Q(t,g)Y(t,g)

)
Y(t,g) + Q(t,g)β̇(t,g)

)

=
g0∑

g=−∞
Q(t,g)

(
Y(t,g)

(
β(t,g−1) − β(t,g)

)
+ β̇(t,g)

)
=

g0∑
g=−∞

Q(t,g)LY
(t,g) (52)

since Q(t,g0+1) = 0 implies ∑g0
g=−∞ Q(t,g+1)β(t,g+1)β(t,g) = ∑g0

g=−∞ Q(t,g)β(t,g)β(t,g−1).

(i) Ȧt = Dt

(
E(0,g0)β(t,g)

)
so the result is immediate Eq. (27).

(ii) As shown in part (i) for the average of Y(t,g) = β(t,g), the time derivative of any

average with weights Q(t,g) is the same weighted average of the generator of Y(t,g). By

Eq. (GEN), LβSbid

(t,g) = β(t,g)Ṡ(t,g−1) + β̇(t,g)S(t,g−1) + β(t,g)
(
β(t,g−1)S(t,g−2) − β(t,g)S(t,g−1)

)
=

Lβ
(t,g)S(t,g−1) + β(t,g)

(
β(t,g−1)∆S(t,g−1) + Ṡ(t,g−1)

)
= Lβ

(t,g)S(t,g−1) as LS
(t,g−1) ≡ 0 given S(t,gt)

is a martingale. Hence, ȦS
t = 1

S0

∑g0
g=−∞

(
Q(t,g)LβSbid

(t,g)

)
= 1

S0

∑g0
g=−∞ Q(t,g)Lβ

(t,g)S(t,g−1).

Similarly, Lβ(1−Sbid)
(t,g) = Lβ

(t,g)(1 − S(t,g−1)). So ȦF
t = 1

1−S0

∑g0
g=−∞ Q(t,g)Lβ

(t,g)

(
1 − S(t,g−1)

)
.

Proof of Lemma 4. Let F ′ have lower costs than F in that F ⪰FOSD F ′: F ′(c) ≥

F (c) for all c ∈ [0, q]. Let H ′, H denote the CDF of Tg under F ′, F , respectively and

E(S(T,g−1)|H) indicates expectation over Tg ≡ T distributed according to H. Similarly, we

use S ′, β′ and S, β to distinguish results for F ′ and F . By the inductive hypothesis at g−1,

S ′
(t,g−1) ≥ S(t,g−1) so β′

(t,g) ≥ β(t,g) by Eq. (9) and so n′
T = exp

(
−
� T

t
β′

(x,g)(z) dx
)

≤ nT

for all T . For any t, g (suppressed), HT ≡ 1 − nT so H ′ ≥ H for all T ; i.e., H ⪰FOSD H ′.

Now, S, S ′ are decreasing in T by Lemma 1 so by FOSD, E(S(T,g−1)|H ′) ≥ E(S(T,g−1)|H);

to prove this FOSD result, we integrate by parts as in Eq. (51) (Ṡ ≤ 0 by Lemma 1):
� τ

t

S(T,g−1) dH ′
T −

� τ

t

S(T,g−1) dHT = S(τ,g−1)
(
H ′

τ − Hτ

)
−
� τ

t

Ṡ(T,g−1)(H ′
T − HT ) dT

since H
(t,g)
t = 0 =⇒ Ht = H ′

t = 0 and S(τ,g−1) = S ′
(τ,g−1) (= 0 if g ≥ 2, = 1 if g = 1).

Finally, applying Eq. (REC-S) and then the inductive hypothesis,

S ′
(t,g) −S(t,g) = E(S ′

(T,g−1)|H ′)−E(S(T,g−1)|H) ≥ E(S(T,g−1)|H ′)−E(S(T,g−1)|H) ≥ 0. ■

Proof of Proposition 4. The chain rule for generators (see Appendix B.1) states that

Lh(Y )
(t,g) = hY LY

(t,g) + β(t,g)
(
∆h(Y(t,g)) − hY ∆Y(t,g)

)
. (53)

Setting Y(t,g) ≡ qSbid
(t,g) and h(·) ≡ λqF (·) so that β(t,gt) ≡ h(Y(t,gt)) and hY (·) ≡ λqFc(·),

provides an expression for Lβ
(t,g) which we equate with its PE-NE decomposition (19),
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λq
(

qFc LSbid

(t,g) + β(t,g)
(
∆F (qSbid

(t,g)) − Fc q∆Sbid
(t,g)

))
= λq

(
E(t,g) + N(t,g)

)
, (54)

where Fc ≡ Fc(qSbid
(t,g)). Cancelling E(t,g) = qFc LSbid

(t,g) by Eqs. (13) and (15) proves N(t,g) =

β(t,g)
(
∆F (qSbid

(t,g)) − Fc q∆Sbid
(t,g)

)
. If F is polynomial with maximal exponent ρ ∈ N+,

∆F (qSbid
(t,g)) = Fc(qSbid

(t,g))q∆Sbid
(t,g)+

Fcc(qSbid
(t,g))

2
[
q∆Sbid

(t,g)

]2
+

ρ∑
k=3

Dk
c (F )

(
qSbid

(t,g)

) [
q∆Sbid

(t,g)

]k
k! .

The instantaneous variance of Sbid
(t,g) equals the intensity of the underlying Poisson

process gt times the jump size squared, so νqSbid

(t,g) = β(t,g)(q∆Sbid
(t,g))2 = q2νSbid

(t,g) (details in

B.4).

If ρ = 2, this implies N(t,g) = q2

2 νSbid

(t,g)Fcc(qSbid
(t,g)). So Eq. (19) implies that Lβ

(t,g) satisfies

(20) and condition (21) guarantees N(t,g) ≥ E(t,g), hence Lβ
(t,g) ≥ 0. If ρ ≥ 3,

N(t,g) = q2

2 νSbid

(t,g)Fcc(qSbid
(t,g)) + β(t,g)

ρ∑
k=3

Dk
c

(
F (c)

) [
q∆Sbid

(t,g)

]k
k! . (55)

k’th derivatives for k > ρ are zero. If F (c) ≡ ∑
k′∈{0,1,...,ρ} γk′ck′ for 3 ≤ k ≤ k′ ≤ ρ,

the k’th summation term from positive polynomial coefficient γk′ is a positive multiple

of ck′−k. So condition (21) is sufficient for the NE to prevail over the PE and produce an

increasing expected bid rate from state (t, g); if ρ = 2, (21) is also necessary.

Proof of Proposition 7. Eq. (30) gives Fc(qSbid
(t,g)) = 2(1−z)Sbid

(t,g)
q

and Fcc(qSbid
(t,g)) =

2(1−z)
q2 . Substituting for νSbid

(t,g) , LSbid

(t,g) = L∆S
(t,g) from equation Eq. (13), and using the expres-

sions for Fc, Fcc, Eq. (20) reduces to

Lβ
(t,g) = λq(1 − z)∆Sbid

(t,g)

(
−2Sbid

(t,g)∆β(t,g) + β(t,g)∆Sbid
(t,g)

)
.

Simplifying further using (Sbid
(t,g−1))2 − (Sbid

(t,g))
2 = ∆Sbid

(t,g)(Sbid
(t,g−1) + Sbid

(t,g)), we obtain

Lβ
(t,g) = (λq)2(1 − z)

(
∆Sbid

(t,g)(z)
)2
[
z − (1 − z)Sbid

(t,g)(z)
(
2Sbid

(t,g−1)(z) + Sbid
(t,g)(z)

)]
. (56)

If z ≥ ζ(t,g)(z) ≜ 1 − 1
1 + Sbid

(t,g)(z)
(
2Sbid

(t,g−1)(z) + Sbid
(t,g)(z)

) , (57)

Lβ
(t,g) from Eq. (56) is positive, strictly so for z < 1 and g > 1 which ensure that νSbid

(t,g) > 0

and Fcc(qSbid
(t,g)) > 0. Maximising Sbid

(t,g), Sbid
(t,g−1) at 1 gives ζ(t,g)(z) ≤ 3/4.

Proof of Proposition 8. (i) If t′ ≤ t̂g, α
(t,g)
t′ = 1 since the project is safely below the
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wall of ice and cannot freeze between t and t′. (ii) If t > t̂g, the campaign is already

frozen at t so it can neither survive nor succeed: α
(t,g)
t′ = α(t,g)

τ+ = 0. (iii) If t ≤ t̂g < t′,

both freezing and survival are possible. On [t, t̂g], bids arrive with intensity λq so b has

Poisson parameter Λ = λq
(
t̂g − t

)
there. Eq. (REC-α) holds because there are two ways

to fail to survive till t′: either b = 0 on [t, t̂g] or b ∈ {1, ..., g − ĝt′ − 1} on [t, t̂g] and then

the campaign fails to survive from state
(
t̂g, g − b

)
till t′. As g ≤ 0 guarantees success

and implies t̂g = τ+, α(t,g)
τ+ = 1 for any t ≤ τ+, providing the initial step in Eq. (REC-α).

Recursion (REC-t̂g) for t̂g at g ≥ 1 combines S(t̂g ,g−1) = Sbid
(t̂g ,g) = c/q from Eq. (66)

with recursion Eq. (REC-α) at t′ = τ+ and starting state (t̂g, g − 1); recall that ĝτ+ = 0.

The initial step for t̂g at g = 1 follows from the general result that t̂1 = τ since at g = 1

bidders play C at any date during the campaign; conversely, ĝτ = 1.

Proof of Lemma 7. The first-order condition for the optimal disclosure date tD∗
2 ≜

arg max V , where V is given by Eq. (44) is

DtD
2

(V ) ≡
(
qσ (τ) − c

)
+ (q − c)

[
λq(τ − tD

2 )
(

1 − σ
(
tD
2

))
− σ

(
tD
2

) ]
= 0. (FOC)

This has a unique solution tD∗
2 that achieves a maximum since D2

tD
2

(V ) = −(λq)2(τ −

tD
2 )(1 − σ(tD

2 )) < 0. tD∗
2 lies strictly between t̂2 and τ , as DtD

2
(V ) = (q − c)λq(τ − tD

2 )(1 −

σ(tD
2 )) > 0 at tD

2 = t̂, and DtD
2

(V ) = −c(1 − σ (τ)) < 0 at tD
2 = τ .

Proof of Proposition 13. With F (0) = 0, UCSim(ct; 0) < 0, ∀ct > 0 so ĉ = 0 is a PBE

of Sim. A sufficient condition for no other equilibria, so ĉSim = 0, is Dc

(
UCSim (

c; c)
))

< 0;

that is,

Dc

(
qσg0−1(τF (c))

)
≡
[
λq2τFc(c)

]
P(g0 − 2, λqτF (c)) < 1, (58)

as Dx(σg0(x)) = ∑∞
b=g0 Dx

(
(λqx)b

b! e−λqx

)
= ∑∞

b=g0 λq
(

(λqx)b−1

(b−1)! e−λqx − (λqx)b

b! e−λqx

)
= λq (λqx)g0−1

(g0−1)! e−λqx ≡ λqP(g0 − 1, λqx).

Clearly, condition (58) holds for sufficiently small λ, q and τ or sufficiently large g0 (P is

the Poisson probability mass defined by Eq. (32)).

By contrast, λqτ > 0 implies S(t,g) > 0 for all t < τ as we now prove by induction. At

g ≤ 0, S(t,g) = 1. If S(t,g) > 0, ∀ t < τ , then Sbid
(t,g+1) > 0 and β(t,g+1) > 0 so the integrand

in (REC-S) is positive, implying S(t,g+1) > 0. Hence the Seq equilibrium is non-trivial

and V Seq > V Sim = 0 and W Seq > W Sim = 0.
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Online Appendices (NOT FOR PUBLICATION)

A Theory of Crowdfunding Dynamics
Appendix B provides background theory behind the main analysis. Appendix C delves

into the stochastic paths of pivotality and offers explicit comparative statics. Appendix D

provides full details on the homogenous case and expands on discrete distributions. Ap-

pendix E covers the optimization procedure employed in Section 6 on design. Appendix F

computes Kickstarter bid profiles using the dataset of Fan-Osuala et al. (2018).

Appendix B Supplementary theory

This appendix adds details behind the infinitesimal generator and related results used in

the paper to characterize dynamics. B.1 provides a full definition. B.2 uses it for a formal

proof of Eq. (ODE-S) and offers an alternative derivation of Eq. (REC-S). B.3 presents

full details on the differential equations that determine the transition probabilities. B.4

and B.5 derive jump variance and martingale equivalences.

B.1 Infinitesimal generator

The Poisson count process Bt equals the number of bids by date t. Recall our state

variable is gt ≜ g0 − Bt. Denoting the change in gt over an infinitesimal interval of length

dt by dgt ≜ gt+dt −gt, the stochastic differential equation (SDE) for gt is dgt = (−1)×dBt

(SDE-g). Given that the instantaneous probability of a bid is β(t,g) dt and that of two

or more bids occurring simultaneously is negligible, P
(
(−dgt) = 0|(t, g)

)
= 1 − β(t,g) dt +

O(dt)2,P
(
(−dgt) = 1|(t, g)

)
= β(t,g) dt + O(dt)2 and other values can be ignored.32 So

for any process Y(t,gt) adapted to gt, Itô’s formula applied to the Poisson jump process

(SDE-g) yields the jump-diffusion

dY(t,gt) = Ẏ(t,gt) dt +
(
Y(t,gt−1) − Y(t,gt)

)
(− dgt). (SDE-Y )

32We use big-O notation, writing y(t) = O(h(t)) as t → 0 if ∃M, ϵ :
∣∣y(t)

∣∣ ≤ Mh(t) for all |t| ≤ ϵ.
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The infinitesimal-generator of Y(t,gt) is its limit expected rate of change and satisfies

LY
(t,g) ≜ lim

dt↓0

E(t,g)
(
Y(t+dt,gt+dt)

)
− Y(t,g)

dt
= Ẏ(t,g) + β(t,g)∆Y(t,g). (GEN)

Recall that ∆Y(t,g) ≜ Y(t,g−1) − Y(t,g), distinct from dY(t,gt).

Unlike total derivatives in standard calculus, the generator L satisfies the follow-

ing adapted chain rule: for any twice differentiable function h(·) of Y(t,gt) with hY ≜

∂h(Y )/∂Y ,

Lh(Y )
(t,g) = hY LY

(t,g) + β(t,g)
(
∆h(Y(t,g)) − hY ∆Y(t,g)

)
. (GEN-h(Y ))

To see this, substitute h(Y(t,g)) for Y(t,g) in Eq. (GEN), noting that ∂
∂t

h
(
Y(t,g)

)
= hY Ẏ(t,g)

and substitute for Ẏ(t,g) from Eq. (GEN).

B.2 Alternative derivation of the success probability recursion

As S(t,gt) is a martingale, LS
(t,g) ≡ 0 (see B.5), so Ṡ(t,g) = −β(t,g)

(
S(t,g−1) − S(t,g)

)
.

Since β(t,g) is determined by S(t,g−1), we solve this first-order, linear, non-homogeneous

differential equation (Eq. (ODE-S)) for S(t,g) given S(t,g−1): the integrating factor is

n
(t,g)
T = exp

(
−
� T

t
β(x,g) dx

)
(Eq. (7)’s probability of no bid on (t, T ) given gap gt = g),

DT

(
n

(t,g)
T S(T,g)

)
= −n

(t,g)
T β(T,g)S(T,g) + n

(t,g)
T Ṡ(T,g) = −n

(t,g)
T β(T,g)S(T,g−1).

Integrating, using n
(t,g)
t = 1 and S(τ,g) = 0 for g ≥ 1, (ODE-S)’s unique solution is

S(t,g) =
� τ

t

n
(t,g)
T β(T,g)S(T,g−1) dT.

S(t,g) ≡ 1 ∀g ≤ 0 completes this recursive solution as alternative derivation of (REC-S).

B.3 State transition probabilities

As with the alternative derivation of Eq. (ODE-S) provided in Section 3.2, we begin

by proving Eq. (REC-Q) via the adjoint to Eq. (ODE-Q). This adjoint is called the

Kolmogorov backward equation because it fixes the target state (t, g) and solves for Q

by integrating backwards to the earlier state (t′, g′). To derive the adjoint, we sum the

2



probabilities of reaching (t, g) from (t′, g′) via (t′ + dt′, g′) with no bid on infinitesimal

interval (t′, t′+dt′) and the alternative path via (t′+dt′, g′−1) with one bid on (t′, t′+dt′):

Q
(t′,g′)
(t,g) =

(
1 − β(t′,g′) dt′

)
Q

(t′+dt′,g′)
(t,g) +

(
β(t′,g′) dt′

)
Q

(t′+dt′,g′−1)
(t,g) + O

(
dt′
)2

.

So lim
dt′→0

Q
(t′+dt′,g′)
(t,g) − Q

(t′,g′)
(t,g)

dt′ = −β(t′,g′)

(
Q

(t′,g′−1)
(t,g) − Q

(t′,g′)
(t,g)

)
.

So Dt′

(
Q

(t′,g′)
(t,g)

)
= −β(t′,g′)

(
Q

(t′,g′−1)
(t,g) − Q

(t′,g′)
(t,g)

)
. (ODE-Q-backward)

The integrating factor to solve (ODE-Q-backward) is n
(t′,g′)
T . For g ≤ g′−1, this generates

the recursive solution33

Q
(t′,g′)
(t,g) = β(T,g′)

�
t

t′

n
(t′,g′)
T Q

(T,g′−1)
(t,g) dT ≡ E(t′,g′)

[
Q

(Tg0−g′+1,g′−1)
(t,g)

]
,

which is precisely Eq. (REC-Q). For g = g′, given that Q
(t,g)
(t,g) = 1 and Q

(t,g′′)
(t,g) = 0 for all

g′′ < g, the solution is Eq. (24), confirming the overall solution derived in the text.

To derive the Kolmogorov forward equation that we use in Lemma 3, we instead fix

the initial state (t′, g′) = (0, g0), restricting away from the general case, and look forward

to assess the probability of marginal shifts in the later state (t, g). A campaign reaches

(t + dt, g) via either a bid from just prior state (t, g + 1) or via (t, g) with no intervening

bid on the interval [t, t + dt). So

Q(t+dt,g) = Q(t,g)(1 − β(t,g) dt) + Q((t,g+1))β(t,g+1) dt.

Using Q(t+dt,g) − Q(t,g) = Q̇(t,g) dt and dividing by dt and taking limits as dt → 0, this

gives the differential equation Eq. (ODE-Q). We suppress the “-forward” qualification

since the main paper only needs this single variant.
33Since Tn is the n’th stopping time, the next bid after (t′, g′) occurs at Tg0−g′+1.
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B.4 Jump variance

Using Eq. (SDE-Y ) and neglecting terms of order O(dt2),

νY
(t,g) ≜ lim

dt↓0

V(t,g)
(
Y(t+dt,gt+dt) − Y(t,g)

)
dt

= lim
dt↓0

V(t,g)
(
dY(t,g)

)
dt

= lim
dt↓0

E(t,g)

[(
Y(t+dt,g−1) − Y(t,g)

) (
− dgt

)]2

dt
=β(t,g)

(
∆Y(t,g)

)2
,

since the instantaneous variance of the underlying Poisson process gt equals its intensity

β(t,g); each bid causes Y(t,g) to jump by ∆Y(t,g); squaring that scale factor gives the result.

B.5 Martingale equivalences

Using the transition probabilities determined in Lemma 2, the expected generator at time

x given an initial state (t′, g′) can be expressed as

E(t′,g′)
(
LY

(x,gx)

)
=
∑
g≤g′

Q
(t′,g′)
(x,g) LY

(x,g).

To see that the generator of a martingale process Yt,gt must be identically zero and always

positive for a submartingale, always negative for a supermartingale, notice that

d
dt

� t

t′

∑
g≤g′ Q

(t′,g′)
(x,g) LY

(x,g) dx

 ∣∣∣∣∣∣
t′=t

=
∑

g≤g′ Q
(t′,g′)
(t′,g) LY

(t′,g) = LY
(t′,g′).

So the martingale property is violated if there exists a (t, g) such that LY
(t,g) ̸= 0. The proof

for supermartingales and submartingales is also immediate from this identity. To prove

the converse implication and complete the proof of the equivalences, it suffices to apply

Dynkin’s Theorem, that for any t′ ≤ t: E(t′,g′)(Y(t,gt)) − Y(t′,g′) =
� t

t′ E(t′,g′)
(
LY

x,gx

)
dx.34

Appendix C Further analysis of canonical cases

C.1 demonstrates the stochastic paths behind the decreasing pivotality trend, using the

uniform distribution. C.2 highlights the exact parallel between pivotality and bidding
34See for example Theorem 1.24 in Øksendal and Sulem (2007)—Applied Stochastic Control of Jump

Diffusions, Springer, volume 498.
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in that case and discusses the impact of bidder scarcity (the threshold relative to the

expected number of bidders). C.3 derives explicit slopes and comparative statics.

C.1 Pivotality and bidder success rates - stochastic paths

It is perhaps surprising that average pivotality decreases from any state (t, g). If gt does

not change, Sbid
(t,gt) falls with t by Lemma 1 but Sbid

(t,gt) rises whenever gt falls by Corollary 1.

Proposition 2 shows that the average direct effect of time always dominates the positive

average indirect effect of downward jumps in the gap and does so for any cost distribution.

Fig. 7 probes this averaging effect for a project with initial gap g0 = 10, duration τ = 20,

bidder arrival intensity 0.95, valuation probability q = 0.8 and uniform cost distribution

on [0, q]. Sbid
(t,g) ≡ S(t,g−1) and pivotality ∆S(t,g) ≡ S(t,g−1) − S(t,g), so we only plot S(t,g)

against time.

(a) Three gap paths; colour indicates S(t,gt)
∗ (b) S(t,g) versus time fixing gaps at (g)10

0

Figure 7: Time profiles of g and S; F (c) = c
q
, c ∈ [0, q], g0=10, (τ ,λ,q) = (20,0.95,0.8).∗

∗By Markov property, path likelihoods after crossing points are independent of prior paths. S0=0.65.

Panel (a) depicts three simulated paths of S(t,gt). The highest path shows a failing

project and the darkening blue colour reflects the increasingly low success prospects with

S(t,gt) nearing zero by t = 10: almost all positive cost types choose A since gap g10 = 8

with τ − 10 = 10 units of time left is near hopeless. At the other extreme, the path that

ends up lowest becomes increasingly yellow, reflecting nearly and then fully, guaranteed

success as g nears 0 with plenty of time left and then falls below 0.
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Panel (b) presents curves of S(t,g) as t varies for each fixed gap g. The diamonds in

(a) at g = 7 map to those in (b): S(t,gt) slides down S(t,7), marked (7). By contrast,

moving from empty to solid circle at t = 13.5 in (a) depicts a drop in g from 4 to 3 and

causes S to jump up by pivotality ∆S(13.5,4) equal to the dashed vertical distance between

curves (4) and (3) in (b). Initial pivotality is about 0.85 − 0.65 = 0.2 from curves (10)

and (9) at t = 0 in (b) since g0 = 10. At any fixed gap g ≥ 2, ∆S(t,g) first increases

and then decreases over time. ∆S(t,gt) falls to 0 when campaigns are clearly failing or

clearly succeeding towards their ends but ∆S(t,gt) can stay high if gt falls at a specific

intermediate rate; indeed if gτ = 1, ∆S(τ,gτ ) = 1, the distance between curves (0) and (1)

at t = τ = 20. Average pivotality is still decreasing because this is rare.

C.2 Pivotality and bidding trends in the uniform case

Fig. 8 exhibits the downward bid slopes for averages across all projects (in black), con-

ditioned on success (in green) and failure (in red). The black, unconditional bid profiles

in panels (a) and (d) are exact rescalings of the average pivotality profiles of (b) and (e),

because the pivotality effect operates in isolation.

(a) Bid profile for g0 = 18
(S0=0.69)

(b) Pivotality for g0 = 18
(S0=0.69)

(c) Pivotality for g0 = 16
(S0=0.94)

(d) Bid profile for g0 = 20
(S0=0.17)

(e) Pivotality for g0 = 20
(S0=0.17)

(f) Pivotality for g0 = 22
(S0≈0)

Figure 8: Profiles of bids and pivotality against time t for a
linear CDF with z = 0.2 given g0 ∈ {16, 18, 20, 22} and (τ, λ, q) = (50, 0.7, 0.75)
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To see how the threshold g0 affects the shape, panels (c) and (f) add pivotality profiles

for g0 = 16 and 22 so that g0 rises from 16 to 18, 20, 22 moving anti-clockwise from panel

(c) to (b),(e),(f). Average pivotality and bidding profiles become increasingly convex as

g0 rises. For g0 = 16 and 18, the pivotality profile is initially concave and becomes convex

as the deadline approaches. To see why, recall that pivotality is the vertical difference

between the fixed-g success curves in Fig. 7b. When g0 is low enough to give S0 near

unity, those curves initially bunch up near the unit upper bound; they diverge as time

passes, creating the initial concavity. As time starts to run out, the curves are increasingly

constrained by the lower bound of 0, causing the later convexity; pivotality ends up at

zero in the last moments except, rarely, on ending up with gap exactly 1. More generally,

Observation 3. The pivotality profile is less concave and more convex at higher g0/λτ .

At very high thresholds, early bids are critical, so pivotality and bid profiles are convex

from the start, as in panel (f) where g0 = 22 and S(0,22) ≈ 0. Higher thresholds do not

always raise slopes since they scale down pivotality and bidding (towards zλq) but they

do raise curvature, which is maximal in (f).

The atom z of types that always inspect also has a non-monotone effect on the slope.

By Lemmas 4 and 5, z and q raise S. If g0 is high or λ, q, τ low, raising z initially

amplifies the downward slope as positive cost bidders react more to gap reductions, but

as z grows, the insensitivity of zero types to Sbid has the opposite effect. Appendix C.3.1

provides explicit comparative statics when g0 = 2.

C.3 Explicit profile slopes and comparative statics

Lemma 3 permits closed-form profile slopes for the uniform and quadratic distributions

of 4.1 and 4.2 with g0 = 2 and we conduct comparative statics on the atom z = F (0).

C.3.1 Linear CDF

With the linear CDF of Eq. (28), the constant bid intensity of λq at any gt ≤ 1 implies

a zero generator. When gt = 2, Eq. (29) gives,

Lβ
(t,2) = −λq(1 − z) ∆S(t,1) ∆β(t,2) = −(λq)2(1 − z)

[
1 −

(
z + (1 − z)S(t,1)

)] (
1 − S(t,1)

)
= −

(
λq(1 − z)

)2 (
1 − S(t,1)

)2
= −

(
λq(1 − z)

)2
e−2λq(τ−t). (59)
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To weight this by the probability Q(t,2) that gt = 2, we use Eq. (24) to find

Q(t,2) = exp
[
−
� t

0
λq
(

z + (1 − z)S(x,1)

)
dx

]
so, as S(x,1) = 1 − e−λq(τ−x),

= exp
[
−λq

t − (1 − z)
� t

0
e−λq(τ−x) dx

] = exp
−λqt + (1 − z)

(
e−λq(τ−t) − e−λqτ

) .

Hence, the slope of the average profile equals

Ȧt = Q(t,2) Lβ
(t,2) = −

(
λq(1 − z)

)2
exp

[
−λq(2τ − t) + (1 − z)

(
e−λq(τ−t) − e−λqτ

)]
< 0.

(60)

The partial derivative of this slope’s magnitude with respect to z is negative:

Dz

∣∣∣Ȧt

∣∣∣ = −(λq)2(1 − z) exp
[
−λq(2τ − t) + (1 − z)

(
e−λq(τ−t) − e−λqτ

)]

×
(

2 + (1 − z)
(
e−λq(τ−t) − e−λqτ

))
≤ 0. (61)

This monotonicity is specific to g0 = 2 and to the uniform distribution as we show next.

C.3.2 Quadratic CDF

For g0 = 2, similar to the affine case, the slope is determined by the product of

Lβ
(t,2) = (λq)2(1 − z)e−2λq(τ−t)

[
z − (1 − z)

(
1 − e−λq(τ−t)

)(
3 + e−λq(τ−t)

)]
(62)

and Q(t,2) = exp
[
−λq

� t

0
z + (1 − z)

(
1 − e−λq(τ−x)

)2
dx

]

= exp
{

−λqt + (1 − z)
[
2
(

e−λq(τ−t) − e−λqτ
)

− 1
2

(
e−2λq(τ−t) − e−λqτ

)]}
.

So Ȧt = (λq)2(1 − z)
[
z − (1 − z)

(
1 − e−λq(τ−t)

)(
3 + e−λq(τ−t)

)]
× exp

{
λq(t − 2τ) + (1 − z)

[
2
(

e−λq(τ−t) − e−λqτ
)

− 1
2

(
e−2λq(τ−t) − e−λqτ

)]}
. (63)

The first term in square brackets determines the sign of the profile slopes. It is positive

if condition Eq. (57) holds, i.e., for

z ≥ ζ(t,2) = 1 −
(
1 + Sbid

(t,2)

)−2
= 1 −

(
4 − 4e−λq(τ−t) + e−2λq(τ−t)

)−1
∀t ∈ [0, τ ]. (64)
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A strict inequality implies a strictly positive slope for any ζ(t,2) < z < 1. For t = 0 and

λqτ = 0.126, the lower bound on z is ζ(0,2)=0.2.

C.4 Higher power distributions

Generalizing to the power-ρ CDF

F (c) = z + (1 − z)
(

c

q

)ρ

, ρ ≥ 0. (65)

This is concave for ρ ∈ (0, 1] and yields a decreasing profile. ρ > 2 gives a steeper positive

slope than the quadratic case owing to the higher convexity of F , when we raise z to fix

S0; higher ρ raises inspection costs and this lowers S0 by Lemma 4. Fig. 9 illustrates: S0

is lower in panel (a) than (b) so we raise z to compensate and fix S0 at its value in (a),

giving the steeper slope of (c). Raising the power ρ creates more convex profiles; the NE

arises later in the campaign as high-cost types are mostly activated increasingly late.

(a) (ρ, z)=(2, 0.5)
(S0 = 0.61)

(b) (ρ, z)=(3, 0.5)
(S0 = 0.36)

(c) (ρ, z)=(3, 0.58)
(S0 = 0.61)

Figure 9: Average bids against time t, for a power-ρ CDF and
a campaign with g0=20, (τ, λ, q)=(50, 0.7, 0.8)

Appendix D Discrete distributions

This appendix provides full details and derivations for the homogenous case of Section 4.4,

digging deeper into the intuitions and extending some of the ideas (in D.1 and D.2). We

also briefly explain the extension to general discrete distributions (in D.3).

To be self-contained, we repeat the definitions of the critical states. At g ≤ 1, the

project is always active. At g ≥ 2, the campaign freezes when time remaining falls

9



below the minimal duration τ̂g needed for cost c bidders to inspect. τ̂g is well-defined by

Sbid
(0,g)(τ̂g) = c/q since Sbid

(t,g)(τ) ≡ Sbid
(0,g)(τ − t) ∈ [0, 1) and continuous, decreasing in t: as

λq > 0, Sbid rises towards unity with enough time left and falls to zero at or before t = τ .

We also define associated critical dates t̂g ≜ τ − τ̂g, so for g ≥ 2,

Sbid
(t̂g ,g) ≡ Sbid

(τ−τ̂g ,g)(τ) ≡ Sbid
(0,g)(τ̂g) ≡ c

q
. (66)

The frontier between active and frozen states can also be described by the maximal

or critical gaps at which the campaign is just active for any given date t: ĝ =
(
ĝt

)
t∈[0,τ ]

where

ĝt ≜ sup
{

g ∈ Z : Sbid
(t,g) ≥ c

q

}
. (67)

These gaps and the critical dates trace out the frontier that we called the wall of ice.

We explain bidding patterns with PE and JE but note that the survival probability

approach of the explicit recursion already proves the slope is downward: (1) The frozen

state is absorbing because the gap cannot fall while all bidders play A, so Sbid
(x,g) does not

rise as time passes and bidders continue to choose A. (2) The probability of an absorbing

state can only increase over time and bid intensity is 0 when frozen, λq > 0 while active.

D.1 Bid rate decomposition

The first step towards a dynamic analysis is to capture the evolution of average pivotality.

Despite the discontinuity in bidding provoked by homogenous costs, average pivotality

decreases smoothly over time, as shown in Fig. 3(c). It is continuous because success

rates are integrals over time remaining of the finite functions in Eq. (REC-S).

The perfectly flat plateau at the start of the average pivotality profile in Fig. 3(c)

owes to the fact that g0 must start below the critical gap in a campaign that is not born

frozen. Given g0 < ĝ0(τ), the campaign faces no risk of freezing until t = t̂g0 . DP is trivial

on interval [0, t̂g0 ] because any arriving bidder already inspects there, removing the scope

for additional strategic complementarity of earlier bidders on [0, t̂g0 ]: they have more

successors on [0, t̂g0 ] but cannot influence them as they are already maximally active.

Their average influence on later successors is the same, fixing average pivotality until t̂g0 .

Eq. (13) confirms this: D(t,g) = 0 for t ≤ t̂g0 given ∆β(t,g) = 0. Larger durations τ extend

this plateau and diminish the downward steps and the failure probability.

10



Moving to the average effect of pivotality on bidding, this continuity is broken by the

discontinuity in F (·): bidding β(t,gt) depends on F (S(t,gt) + ∆S(t,gt)) by Eq. (6). Eq. (15)

applies at all non-critical dates since F (·) is only discontinuous at c. PE is zero except

at critical dates: marginal changes in Sbid
(t,g) only affect bidding β(t,g) = λqF

(
qSbid

(t,g)

)
at

dates when qSbid
(t,g) = c. On the other hand, since Fc = 0 at non-critical dates, the NE is

then given by Eq. (17) as N(t,g) = β(t,g)∆F (qSbid
(t,g)). This product is always zero in the

homogenous case because the difference term is zero for gaps below the wall of ice and

the bid rate is zero for gaps strictly above the wall of ice. For intuition, recall the NE’s

two necessary components. First, local convexity or concavity here requires a non-zero

difference ∆F but ∆F is zero below the wall of ice because gap reduction cannot raise

the inspection probability when already maximized at unity. Strictly prior to a critical

date, the unique cost type always inspects even if a small amount of time passes with no

bid. That is, the project is maximally active, and hence equally active after both good

and bad news. Second, uncertainty requires the possibility of a bid but strictly above the

frontier the campaign is frozen and generates no news at all so the NE is zero there too.

For a quick mathematical proof: note that ∆F (qSbid
(t,g)) = 0 except when the gap gt is

one unit above the critical gap for that high cost; at such gaps, ∆F (qSbid
(t,g)) = 1 but then

β(t,g) = 0 at all such gaps and N(t,g) = 0 even there. In Appendix D.3, additional mass

points allow for positive variance and hence Jensen effects that create positive slopes.

Because all the action takes place in proximity of critical dates, we zoom-in on a small

neighbourhood of time starting at a critical date t̂g and terminating ϵ later. Fig. 10,

like Fig. 1, provides a graphical decomposition of the bid rate into PE and NE for a

campaign at the edge of the wall of ice, with (t, g) = (t̂g, g). It illustrates how the PE’s

discrete negative effect always dominates the NE at such moments and creates a discrete

downward jump. The DP arrow shown in magenta is negative. It is only of order ϵ, but

has a discrete effect shown by the PE in green because F (·) is discontinuous at t: E (t,g)
t+ϵ

equals −1 for any ϵ > 0. Uncertainty in Sbid
(t+ϵ,g̃t+ϵ) around ESbid

(t+ϵ,g̃t+ϵ) creates the positive

but only order ϵ NE N (t,g)
t+ϵ shown in orange. So the negative PE dominates as ϵ → 0+.

In brief, the NE is positive but infinitesimal, since ESbid
(t+ϵ,g̃t+ϵ) lies just below c/q but

the chance of a bid arriving in any instant ϵ converges to zero. In Fig. 10, t = t̂c
g, so

ĝc
t = g and ĝc

t+ϵ = g −1 so at t+ϵ, g is exactly one unit above the wall of ice. By contrast,

the PE is discrete; the project freezes if no bid arrives at the critical date. As ϵ → 0,
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1

1 F (qSbid)

1

0 Sbid

(t+ϵ,g−1)Sbid

(t+ϵ,g)

EF
(
qSbid

(t+ϵ,g̃t+ϵ)

)

F
(
qSbid

(t,g)

)

F
(
qESbid

(t+ϵ,g̃t+ϵ)

)

Sbid

(t,g)=c/qESbid

(t+ϵ,g̃t+ϵ)

ϵβ(t,g)1 − ϵβ(t,g)

DP PE NE

Figure 10: DP, PE and NE for the homogenous case

Sbid
(t+ϵ,g) → Sbid

(t,g) so DP D → 0 and NE N → 0 but PE E stays fixed at −1.

D.2 Illustration with initial gap g0 = 2.

The campaign success rate is S0 = S(0,2). To collect at least two bids, with at least one

by t̂2, S(0,2) = 1 −
[
e−λqt̂2 +

(
λqt̂2e

−λqt̂2

)
e−λq(τ−t̂2)

]
. The bracket sums the probability of

no bids on [0, t̂2] plus the probability of one on [0, t̂2] and none on [t̂2, τ ]. Simplifying,

S0 = 1 −
[
e−λqt̂2 + λqt̂2e

−λqτ
]

. (68)

While g = 2, bidders only inspect if t ≤ t̂2, whereas bidders always inspect at g ≤ 1.

So the average bid rate is constant at At = λq up till t̂2 and drops at that date by λq

times the probability 1 − α
(0,2)
t̂2

= Q
(0,2)
(t̂2,2) = e−λqt̂2 of hitting the vertical wall of ice at t̂2.

It then remains constant at At = λq
(
1 − e−λqt̂2

)
. S(t̂2,1) = 1 − e−λq(τ−t̂2) = c/q, so

t̂2 = τ − 1
λq

ln
(

1 − c

q

)−1

. (69)

12



or equivalently, e−λqτ̂2 = 1 − c/q. Intuitively, t̂2 is lower in adverse settings as bidders at

g = 2 then give up earlier: t̂2 falls with c and rises with λ and q. Substituting in Eq. (68),

S0 = 1 − e−λqτ

λqτ +
(

1 − c

q

)−1

− ln
(

1 − c

q

)−1
 . (70)

D.3 Richer discrete distributions

For a generic discrete distribution, let the CDF F have mass zk atoms at c = ck for

k ∈ {0, 1, 2, ..., K} indexed so that 0 = c0 < c1 < ... < cK ; z0 can be 0, K can be infinite.

The analysis is similar to the homogenous case except that the multiple atoms now lead

to positive news effects away from critical dates because bidding variance is only trivial

below the lowest atom’s frontier. For example, in the binary case, discrete PE’s at critical

dates, corresponding to the two cost types punctuate continuous positive NE’s associated

with the higher type to create a tooth-shaped profile.

Formally, for any g and ck < q, by Lemma 1 and limτ→∞ Sbid
(t,g)(τ) = 1, a unique

duration τ̂ k
g satisfies Sbid

(0,g)(τ) = ck/q. For cK = q, g ≥ 2, we let τ̂K
g = ∞. τ̂ k

g = 0 if g ≤ 1

or k = 0. Otherwise, τ̂ k
g ∈ (0, ∞). At t = t̂k

g ≜ τ − τ̂ k
g , E (t,g)

t+ = −zk. This multiplies the

set of NE’s but for each type k and date t, there is at most one gap g = ĝk
t + 1 at which

type k’s start to inspect after a bid, creating a positive NE. At non-critical dates, the rate

of NE in Eq. (17) is well-defined: as Fc = 0, N(t,g) = β(t,g)∆F (qSbid
(t,g)) = β(t,g)

∑
k:g=ĝk

t +1 zk.

Appendix E Design optimization details

We begin by illustrating optimization of g0 in case (I) with parameters configured as in

Fig. 4b, with G=3.5 and 5, to illustrate the same g∗
0 = g∗∗

0 that is convenient for multiple

prices in Section 6.2 and a higher value corresponding to a larger financial goal.

Fig. 11 displays S0(g0, p(g0)) for g0 = 1, 2, . . . , 22. The bar plot in dark blue corre-

sponds to the higher value G = 5. Only values g0 ≥ 7, marked by the solid dark blue

line, are feasible. The success rate is essentially zero (below one percent after round-

ing) outside the range of g0 values between 8 and 18. The optimal single-price design is

(g∗
0, p∗(g∗

0)) = (12, 0.6167) and achieves a success rate of S(12, 0.6167) = 0.53. The yellow

plot treats G = 3.5. The now wider range g0 ≥ 5 of feasible g0 values starts at the solid

yellow line. Success rates are also non-trivial for a wider g0 region, starting at g0 = 5 and
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Figure 11: S0(g0, p(g0)) in case (I), highlighting optimal g0 values

terminating at g0 = 21. The optimal single-price design (g∗
0, p∗(g∗

0)) = (10, 0.55) yields

S0 = 0.99. Importantly, in both bar plots, reducing the price, or equivalently raising the

bidder threshold, initially raises and later decreases S0(g0, p(g0)). This implies a unique

maximizer. For instance, for G = 5, increasing g0 from 9 to 10 reduces the implied price

by 0.056, more than compensating for its direct effect on S0. By contrast, raising g0 from

14 to 15 reduces the implied price by only 0.024 and the success rate drops.

E.1 Deterministic sequential arrival of g0 bidders

Since a success requires a bid from every bidder at each of the sequence of gaps from g0

down to 1, in this simplified model with exactly g0 bidders known to arrive, every single

arrival at every gap g ≥ 1 must bid. Letting πg denote the probability of a bid at g

given bids by all prior bidders, the success probability from gap g − 1 onwards, denoted

S(g−1), satisfies S(g) = πgS(g−1) by cost independence and S(1) = π1 since S(0) = 1. Solving

recursively gives S(g) = ∏
g′≤g−1 πg′ and S0 ≡ S(g0) so

S0 =
g0∏

g=1
πg. (71)

Power law distribution

Using the generic power distribution in Eq. (65) with z = 0 and all dg ∈ [0, q], πg =

qdρ
gSρ

(g−1), so that S(g) = qdρ
gS1+ρ

(g−1). Solving recursively Eq. (71) using g instead of g0 to
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compute intermediate S(g) combined with π1 = qdρ
1 gives

S0 = q
∑g0

g=1(1+ρ)g0−g
g0∏

g=1
dρ(1+ρ)g0−g

g = q
(1+ρ)g0 −1

ρ

g0∏
g=1

dρ(1+ρ)g0−g

g . (72)

Dropping the discount-independent q term, (47)’s Lagrangian with budget constraint

multiplier l is

L =
g0∏

g=1
dρ(1+ρ)g0−g

g − l

 g0∑
g=1

dg −
(
(v − κ)g0 − G

) . (73)

Differentiating with respect to each dg gives first-order conditions

ρ(1 + ρ)g0−g

dg

g0∏
g=1

dρ(1+ρ)g0−g

g = l so dg

d1
= (1 + ρ)1−g. (74)

Imposing the budget constraint,

(v − κ)g0 − G = d1

g0∑
g=1

(1 + ρ)1−g = d1
1 + ρ − (1 + ρ)1−g0

ρ
.

So d1 = ρ

1 + ρ − (1 + ρ)1−g0

(
(v − κ)g0 − G

)
, dg = ρ

(1 + ρ)g − (1 + ρ)g−g0

(
(v − κ)g0 − G

)
.

The optimal prices in Eq. (49) follow on subtracting this dg from v, with ρ = 1 (case I).

Homogenous inspection costs

The argument given in Section 6.2 proves that prices (50) are optimal. The associated

implementability restriction follows on substituting optimal prices (50) into the budget

constraint of problem (47): G ≤ ∑g0
g=1

[
(v − κ) − c/qg

]
= (v − κ)g0 − c

(
q−g0 −1

1−q

)
.

Appendix F Kickstarter profile plots

The dataset from Fan-Osuala et al. contains daily data for 618 Kickstarter campaigns

collected between April 1st and May 2nd 2014. The Figs. 12 and 13 profile plots divide

campaign duration into 20 blocks and measure bidding as total collected per time block

divided by the goal. Data are fitted by a spline with smoothing parameter 0.005.

15



(a) Unconditional average (b) Conditional on success (c) Conditional on failure

Figure 12: Bid profiles by outcome from Kickstarter data
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Figure 13: Profiles by category; average and median amounts pledged in USD and number
of campaigns observed in parentheses (av,med,#) plotted against time as % of duration.
Categories with less than 20 campaigns are omitted.
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