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Abstract

We characterize optimal reward-based crowdfunding where production is contin-

gent on an aggregate funding threshold. Crowdfunding adapts project implemen-

tation to demand (market-testing) and its multiple prices enhance rent-extraction

via pivotality, even for large crowds, indeed arbitrarily large if tastes are correlated.

Adaptation raises welfare. Rent-extraction can enhance adaptation, but sometimes

distorts production and lowers welfare. Threshold commitment, central to All-

Or-Nothing platforms, raises pro�ts but can lower consumer welfare. Platforms

sometimes promote not-for-pro�ts to raise success rates. When new buyers arrive

ex-post, crowdfunding's market-test complements traditional �nance and optimizes

subsequent pricing. Crowdfunding is a general optimal mechanism in our baseline.
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1 Introduction

Crowdfunding is a rapidly growing phenomenon with a major promise: to bring more so-

cially bene�cial projects to fruition. Online crowdfunding platforms have sharply reduced

entrepreneurs' costs of pitching their projects to a wide range of potential funders before

sinking the costs of production. We build a model of crowdfunding to investigate how the

strategic interaction between entrepreneurs and funders determines consumer, producer

and total welfare. Our analysis, encompassing both pro�t and not-for-pro�t motivated

entrepreneurs, disentangles crowdfunding's roles in selling and funding. We locate the

main social advantage of crowdfunding in its ability to adapt production to the �crowd's

information� about market demand: entrepreneurs use crowdfunding to gauge the mar-

ket before entering. They also use it to extract consumer rent, often further improving

adaptation, but possibly lowering consumer and even total welfare relative to traditional

selling mechanisms. We investigate how platform design can limit these negative e�ects.

Introducing credit constraints, we show crowdfunding can, as its name suggests, substi-

tute for traditional �nance. But when new buyers arrive later on, crowdfunding, as a

credible market signal, can actually complement �nance, and optimize pricing.

We study the prominent case of reward-based crowdfunding where funders are com-

pensated with the project's product. So the funders are buyers. Each buyer chooses a

bid after the entrepreneur sets a funding threshold and a minimum price. Production

occurs in the �success� event where the aggregate funds, the sum of bids, reaches the

funding threshold. That is, a simple aggregate fund threshold (AFT) fully determines

production. The entrepreneur then receives these funds and has to sink her production

costs and deliver her product to all buyers who bid at least the minimal price. Buyers

can rest assured that (1) they pay nothing in the event of funding failure and (2) they

pay exactly their bids in the event of success (so bids are prices). Together with crowd-

funding's de�ning characteristic AFT, these reassuring properties explain why so many

small funders are willing to participate.1

Crowdfunding is attractive to entrepreneurs as a tool for adaptation (market-testing)

and rent extraction (price discrimination), as we now explain in our baseline model of

buyers with independent valuations, high or low, for tractability. Adaptation is simplest

when high types are frequent. The entrepreneur then sets the high valuation as minimum

price, excluding low types, and sets her �xed cost as threshold. Welfare always rises as

this threshold perfectly adapts production to actual demand; she sinks her �xed cost

precisely in the demand states that are pro�table. Crowdfunding e�ectively combines

production �nance with sales marketing in an ex-ante mechanism: the entrepreneur of-

fers a sales contract before deciding whether to produce. Her o�er, to the buyers as a

1In 2014, 3.3 million backers pledged 529 million dollars, generating over 22,000 successfully �nanced
projects on the major reward-based platform Kickstarter, alone. Overall, Massolution (2015) estimate
that global crowdfunding raised 16.2 billion dollars and predict that 2015 will see this �gure double.
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�crowd,� is explicitly contingent on their aggregate bids reaching her threshold. The bids

reveal actual demands, so this creates an incentive-compatible market test, unavailable

in traditional �nance and selling where the entrepreneur can pay for a market survey but

must �nance and implement her project before posting any price o�er.2

When high types are less frequent, the entrepreneur includes low types by lowering

her minimal price. In this inclusive strategy, she raises the funding threshold above her

�xed cost to extract rent from high types who, being sometimes pivotal, bid extra to help

reach the threshold. Caring more for project success, they pay more than low types for

the exact same good. These multiple prices, generated by pivotality, are important. The

resulting rent extraction raises welfare when it enables pro�table production on otherwise

inviable high cost projects. But the entrepreneur potentially sets her threshold too high.

Threatening not to produce extracts rent but wastes some production opportunities. At

intermediate �xed costs, welfare is lower than in traditional selling.

Multiple prices arise in our model despite our simplifying focus on a single reward.

In practice, entrepreneurs often o�er several rewards (e.g., T-shirts, signed CDs, special

editions or multiple units) at di�erent prices. Some reward variants are merely a way

of saying thanks but reward di�erentiation also provides a complementary tool for rent

extraction. This is fully compatible with both crowdfunding's demand adaptation and

pivotality-based rent extraction. Indeed, di�erentiation complements inclusive pricing,

by extracting more rent at a given threshold. Conversely, crowdfunding lowers the need

for product di�erentiation compared to traditional selling.

We now illustrate adaptation and rent extraction bene�ts for a surprisingly large

crowd, later explaining why substantial gains are representative of actual campaigns.

Illustration 1. Esther wants to produce a CD but recording costs e 2650. True fans value

her music at e 20, others are only willing to pay e 5 and most simply have no interest.

She targets 500 people who have some interest (friends, family and followers), whose

values are i.i.d. draws from {5, 20} with the high value, 20, having probability q = 0.3

in case (i), q = 0.2 in case (ii). With traditional selling, Esther only produces in case

(i), then selling at e 20 to earn an expected pro�t of e 350; in case (ii), her best posted

price of e 5 would give a loss of e 150. Crowdfunding helps in both cases by adapting the

production decision to actual demand:

(i) With q = 0.3, a e 20 minimum price and e 2650 threshold raise expected pro�t to

e 353.47 by avoiding losses when demand is low (below 133 fans).

(ii) With q = 0.2, a e 5 minimum price and e 2726.80 threshold motivate fans to pay

e 7.10, a premium of e 2.10, to raise the chance of project success and getting the CD

(108 fans are needed to reach the threshold). This optimal crowdfunding raises project

success to 20% and expected pro�t to e 17.30.

2Hummel et al. (2013) show how relying on standard surveys may lead to poor production decisions.
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Imposing a single crowdfunding price in case (ii) would induce a e 20 minimum, dec-

imating project success to just 0.02%. This sensitivity of success rates to rent extraction

encourages platforms (with a pro-rata fee on revenues) to promote success-motivated

entrepreneurs when high types are scarce. Funding successes are socially important be-

cause they generate positive externalities for ex-post consumers as well as funders, and

they allow �rst-time entrepreneurs to demonstrate their skills and develop careers. In-

deed, career motives lead most new entrepreneurs to care more about project success

than project pro�ts. So Section 3 characterizes optimal crowdfunding for each of three

objectives: pro�ts, success and welfare (relevant for some not-for-pro�ts). The two non-

pro�t objectives enhance crowdfunding's adaptation role while reducing rent-extraction.

Unfortunately, when high types are frequent, platforms bias towards for-pro�ts.

Platforms also play a role in enforcing the threshold commitment. Without enforce-

ment, entrepreneurs would self-bid, perhaps via pseudonyms, to access aggregate funds

that are below threshold but above cost. So the no commitment (NC) scenario, charac-

terized in Section 4.1, precludes above-cost thresholds. With infrequent high types, this

lowers prices and raises success rates, encouraging crowdfunder participation, but other-

wise NC makes all actors worse o�, by provoking a switch to exclusion (higher prices).

This may explain why Kickstarter enforces commitment as in our baseline, called �all-or-

nothing� (AON) in the world of crowdfunding (see Mollick, 2014, p.6, and Section 4.2).

We prove reward-based crowdfunding is a general optimal mechanism in our two-type

baseline in Section 6,3 and more generally, bene�ts entrepreneurs relative to traditional

selling, but one might expect free-riding among funders in large crowds to trivialize

pivotality-based gains, while aggregation trivializes adaptation gains by minimizing mar-

ket uncertainty. Sections 4.3 and 5 show crowdfunding is still important. First, rent

extraction and adaptation gains prove signi�cant for surprisingly large crowds, as Illus-

tration 1 demonstrated. Second, when poor targeting necessitates mass emails, adapta-

tion gains remain signi�cant if the expected number of active bidders stays moderate.

Third, within-group preference correlations or project quality shocks imply substantial

crowdfunding bene�ts for arbitrarily large markets. Indeed, larger crowds provide more

accurate pro�tability signals for �nanciers and for ex-post pricing in Section 5.

Despite the media hype around viral projects, a typical crowdfunding project actu-

ally attracts bids from only about 50 active funders on Kickstarter. These numerous,

small-to-moderate projects generate large positive externalities, via ex-post sales and en-

trepreneurial careers; those careers, in turn, motivate success-maximization (Section 3.2).

We �t the average size and success rates of actual crowdfunding projects by recognizing

that entrepreneurs self-select into crowdfunding as a function of platform fees and their

ex-ante costs of pitching projects to buyers.

Our model shows that the �funding� in crowdfunding is not fundamental. An en-

3Relaxing the reassuring crowdfunding restrictions (1), (2) and AFT, does not permit higher pro�ts.

3



trepreneur with no credit constraints uses crowdfunding purely to adapt to demand and

to extract rent. Buyers do typically pay their bids in advance, instead of just commit-

ting to buy. This is a simple way to enforce payment of high bids, even if not needed for

funding the �xed cost. So crowdfunding substitutes for traditional �nance if all potential

buyers participate during the 30-60 days of crowdfunding. But many people only hear

about a crowdfunded project after its campaign ends. Crowdfunding can then strictly

complement traditional �nance (as in Mollick and Kuppuswamy, 2014) by providing a

credible market test: in our Section 5 extension, the funds raised in crowdfunding ex-ante

signal pro�tability of the ex-post market and may convince traditional �nanciers to step

in. This signal also helps the entrepreneur to optimize pricing. The funding-contingent

price dynamic that results can readily explain why prices often rise after more successful

crowdfunding campaigns, unlike related models where the price can only fall.

We abstract from moral hazard. Taking funds and not ful�lling rewards is fraudu-

lent, and empirically, very rare (Mollick, 2014). Both reputation concerns, from future

careers and social networks, and ex-post selling in Section 5 plausibly motivate most en-

trepreneurs to sink �xed costs and deliver. Also, early backing from friends, family and

local experts help screen out complete frauds with infeasible projects (see Footnote 26).

Related Literature

The �eld of crowdfunding has become quite crowded (Agrawal et al. (2014) and Belle-

�amme et al. (2015) survey early empirics and theory) but our work stands out: we

characterize the optimal crowdfunding mechanism, showing its adaptation value as an

incentive-compatible market-test and the role of multiple prices.

This harks back to the public goods literature on heterogenous private contributions

towards a common goal, but (a) the general mechanism approach neglects AFT, central

to crowdfunding, while (b) the simple intuitive, contribution and subscription, games that

do impose AFT have only been solved fully with complete information or two players �

hardly a crowd!4 We make progress on (a) and (b): with a binary type space, we fully

characterize with AFT for any crowd size, proving crowdfunding is then general optimal.

All other crowdfunding models restrict to a unique crowdfunding price. The prior

work of Belle�amme et al. (2014) assumed crowdfunders enjoy warm-glow proportional

to their consumer valuations. High types pay a crowdfunding premium over a regular

ex-post price. By contrast, we show warm-glow is unnecessary by moving to a �nite

crowd where high types pay a premium to pivot into production.

Two contemporaneous papers also model pivotality-based price discrimination. Ku-

mar et al. (2015) study a continuum of consumers contradicting their pivotality claim and

precluding aggregate demand uncertainty to which to adapt. Sahm (2015) does treat a

4See e.g., Cornelli (1996); Ledyard and Palfrey (2007); Schmitz (1997) on (a) and Alboth et al. (2001);
Bagnoli and Lipman (1989); Barbieri and Malueg (2010); Menezes et al. (2001) on (b).
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�nite crowd, but his mechanism is suboptimal (multiple crowdfunding prices improve out-

comes) and he claims pivotality breaks down with any more than a few buyers which we

contradict (see Illustration 1). Also he assumes traditional �nance and crowdfunding are

mutually exclusive, obliging at-cost thresholds despite the ex-post revenues, but we derive

complementarities. More recently, Strausz (2015) models fraud in a simpli�ed version of

our baseline (vL = 0). Chang (2015) treats this in a pure common value environment

(see also Hakenes and Schlegel, 2014). We abstract from fraud, as motivated above.

All these papers restrict to a unique crowdfunding price, but multiple prices are salient

in practice and matter in theory: they can substantially increase e�ciency by enhancing

demand adaptation but introduce a risk of excessive extraction, crucial to our threshold

commitment results; they also reduce the need for credit and facilitate learning demand.

2 Baseline model

We present a streamlined model, deferring justi�cation and extensions. A single en-

trepreneur has a project for producing a good at �xed cost C > 0 and constant marginal

cost, normalized to zero. N buyers have unit demands for the good with private val-

ues drawn independently from the 2-type distribution: probability q on vH and 1− q on
vL < vH . The number k of these N buyers with high demand vH de�nes the demand state

and has binomial (N, q) distribution, fNk (q) =
(
N
k

)
qk(1−q)N−k; we follow the conventions(

M
k

)
= 0 if k < 0 or k > M and

(
0
0

)
= 1 and sometimes suppress q. We assume C < NvH

else production is never pro�table. Finally, we de�ne q̂ = vL/vH and SMn =
∑M

k=n f
M
k .

We �rst solve the benchmark case of traditional selling as an ex-post mechanism,

where the entrepreneur decides on production before learning about the demand state k,

posting a price to all buyers. Then we describe the potential for gains from an ex-ante

selling mechanism, setting the stage for crowdfunding. We normalize time discounting to

zero. In the baseline, the entrepreneur has unlimited wealth or unconstrained credit.

2.1 Traditional selling

In traditional selling (TS), the product is only sold after production. If the entrepreneur

decides to produce, C is sunk. A single posted price p is then optimal.5 She gets expected

revenue Np from p ≤ vL, qNp from p ∈ (vL, vH ] and 0 from higher p. So she chooses

between the �exclusive� price p = vH that excludes L-types, extracting all H-type rent,

and the �inclusive� price p = vL that includes L-types, leaving some rent to H-types.

Exclusion is optimal if q > q̂ and inclusion is optimal if q ≤ q̂. She indeed produces if

5Probabilistic o�ers and interpersonal bundling are useless given independent valuations. With inter-
personal bundling, price o�ers to one buyer can depend on other buyers' choices, but �xed costs are
sunk. So �xed costs, which are crucial to all our results, are e�ectively zero. Nonetheless, insights on
word-of-mouth advertising suggest a complementary attraction (see e.g., Chen and Zhang, 2015).
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C ≤ max{NvL, qNvH}. So traditional selling earns her the expected pro�t,

πTS =

{
(NvL − C)+ if q ≤ q̂

(qNvH − C)+ if q > q̂
(1)

where x+ denotes max (x, 0) for any x.

2.2 Crowdfunding and other ex-ante selling mechanisms

As her �xed cost C is strictly positive, the entrepreneur may improve on traditional

selling (posted prices) by using an �ex-ante� mechanism. First, she can adapt her �xed

cost production decision to actual, instead of only expected, demand, by eliciting buyer

preferences using incentive-compatible, pre-production sales contracts. Second, she can

make non-production threats to induce some buyers to pay more to raise the probability

of trade. For an upper bound on what the entrepreneur can earn, Section 6 characterizes

the optimal ex-ante mechanism where production, consumption and monetary transfers

are contingent on the full vector of buyers' expressed demands. In general, this is too

complex to be practical.

Crowdfunding is a particularly simple ex-ante mechanism: the entrepreneur chooses

an Aggregate Funds Threshold T and o�ers the good at a set of prices B ⊆ R+ that

become e�ective contingent on the sum of buyers' chosen prices or bids reaching T :

AFT: Production occurs if and only if the sum of bids exceeds threshold T .

We call bids, prices, since buyers either pay their chosen bids and receive one unit of the

good (this occurs when T is reached) or there is no production and bids are refunded.

This refund property is widespread (Kickstarter makes it salient) and we know of no

crowdfunding platform with non-AFT commitments.6

When the entrepreneur cannot restrict the set of buyer bids B, she gains by setting a

minimal price p that excludes buyers who bid below it. While super�uous in the baseline,

we already introduce this p > 0 so that b = 0 can denote a buyer's choice to make no

bid. Requiring B 3 0, the timing is then:

1. The entrepreneur chooses her o�er (T,B, p)
2. Buyers learn their private values and simultaneously choose their bid from B
3. AFT with refunds determine production, consumption and transfers

2.3 Equilibrium concept and outcomes

Given a pro�le of buyer strategies and realized buyer valuations v ∈ {vL, vH}N , the
outcome of the simultaneous bidding game (that follows the entrepreneur's choice of

6Cornelli (1996) shows refunds do not restrict the general optimum, but she never considers AFT.
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mechanism) speci�es: each buyer i's probability Pi(v) of getting the good and expected

transfer τi(v) to the entrepreneur and whether the entrepreneur produces. So, treating

buyers symmetrically, the outcome depends on i's type, L or H, and the demand state,

k. Since the entrepreneur sets the mechanism, standard mechanism design selects her

preferred Bayesian Nash equilibrium (BNE) of the ensuing simultaneous bidding game.

We also go further by studying full implementation under interim e�ciency, a mild

equilibrium re�nement (Ledyard and Palfrey, 2007). This requires all Pareto-undominated

BNE to generate the same outcome; indeed we demonstrate that, with threshold com-

mitment, the entrepreneur can uniquely implement her preferred outcome. This pro�t-

maximizing outcome is itself generically unique and to simplify the exposition we tie-break

non-generic cases by maximizing production.

3 Optimal crowdfunding design

We �rst analyze the baseline model with pro�t-maximizing entrepreneurs. Next, we

consider not-for-pro�t entrepreneurs. Then Section 3.3 characterizes welfare e�ects.

3.1 For-pro�t entrepreneurs

The entrepreneur can commit to any threshold T and bid restriction B 3 0. She need

only consider mechanisms that induce symmetric pure strategy equilibria, as we prove

below. So we let L and H type buyers bid bL ≤ bH , respectively, and B = {bL, bH}∪ {0}.
The entrepreneur's expected pro�t is 0 if T > NbH , NbL − C if bH = bL ≥ T/N , and

π(bL, bH , T, p) =
N∑
k=n

fNk (kbH + (N − k)bL − C)

if bH > bL and bH ≥ N/T , where n =
⌈
T−NbL
bH−bL

⌉
is the pivotal number of H-types that

triggers production.7 Using Lemma A.1(iii) and project success rate SNn , we rewrite as,

πn(bL, bH) = SNn
(
NbL − C + E[k|k ≥ n](bH − bL)

)
(2)

Before trading o� project success and the production-conditional expectation of revenue

minus cost, we �rst optimize bL and bH , for each pivot n. That is, we maximize pro�t

(2) subject to incentive compatibility and individual rationality constraints. In exclusive

solutions, denoted by script E, bL = 0 and the only constraint is p ≤ bH ≤ vH . In inclusive

solutions, denoted by script I, bL > 0, individual rationality requires p ≤ bL ≤ vL,

7We use dxe to denote the smallest non-negative integer larger than or equal to x.
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bH ≤ vH and H-type incentive compatibility requires:8

(vH − bH)SN−1
n−1 ≥ (vH − bL)SN−1

n (IC)

In equilibrium, each H-type believes that if he bids bL instead of bH , he only gets the

good when at least n of the other N − 1 buyers are H-type, whereas if he bids bH , only

n− 1 other buyers need be H-type. So he trades o� the higher net gain vH − bL against

lower success SN−1
n . De�ning hazard ratio,

hn =
fN−1
n−1

SN−1
n−1

= 1− SN−1
n

SN−1
n−1

we can rewrite (IC) as,

bH ≤ hnvH + (1− hn)bL (3)

or as δ ≤ hn(vH − bL) where δ = bH − bL is the H-type's voluntary additional bid.

We now characterize exclusion, then inclusion, and the overall optimal strategy.

3.1.1 Exclusion

When excluding low type buyers (bL = 0), the entrepreneur can trivially extract all

H-type rent by setting bH = vH and p ≤ bH . So she can dedicate T to adapting imple-

mentation to demand: with T = C, she sinks production cost C precisely in the pro�table

demand states, k : kvH−C ≥ 0. Equivalently, she picks nE = dñEe where ñE = C/vH via

any T ∈ ((nE − 1)vH , nEvH ]. This gives her optimized (expected) pro�t from exclusion,

πEnE
=

N∑
k=nE

fNk (kvH − C)

Here, crowdfunding reveals aggregate H-type demand and fully adapts production to it.

3.1.2 Inclusion

In an inclusive strategy with pivot n, p ≤ bL ≤ vL, the entrepreneur maximizes pro�t (2)

subject to incentive constraint (IC), which guarantees bH ≤ vH . Raising bL relaxes (IC)

and raises pro�ts, so bL = vL, extracting all L-type rent.
9 As bH raises pro�t, (IC) binds

giving bH = b̄n where,

b̄n = hnvH + (1− hn)vL (4)

8L-type incentive compatibility never binds since the entrepreneur prefers the high bid.
9For n = N , these e�ects are weak and any bL will do.
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This inclusive n-type strategy gives pro�t,

πIn = SNn
(
NvL − C + E[k|k ≥ n]hn(vH − vL)

)
(5)

Any T ∈ (T n − δn, T n] su�ces, where T n = NvL + nδ̄n, δ̄n = b̄n − vL = hn (vH − vL).

Maximum T n is uniquely optimal without bid restrictions (see Section 4.1).

The hazard ratio hn determines the fraction of the H-type's rent from buying at

vL that can be extracted using the pivotality motive.10 Both hn and E[k|k ≥ n] strictly

increase with n (see Lemma A.1(vii)), while the success rate SNn strictly decreases, creating

a tradeo� between extracting rent with high n and ensuring production with low n. πIn
is single-peaked in n and the optimal inclusive pivot nI is given by:

Lemma 1. πIn is increasing on n ≤ nI and decreasing on n ≥ nI , where nI = dñIe and

ñI =
C −NvL + q(NvH − C)

vH − vL
(6)

Notice that ñI = ñE when q = q̂ and ñI < ñE for q < q̂ since,

1− ñI
N

=
1− q
1− q̂

(
1− C

NvH

)
and 1− ñE

N
= 1− C

NvH

Also ñI and hence nI are increasing in both the cost C and probability q of H-types.

This is intuitive: the entrepreneur loses less from failing to produce in the event of few

high types, the higher is her production cost and the less likely this event becomes.

3.1.3 Overall optimum

Comparing the optimized pro�ts πEnE
, πInI

reveals that exclusion is optimal if and only if

q > q̂ = vL/vH . As with posted pricing, exclusion is more attractive when the excluded

L-types are less frequent; indeed, the cut-o�s exactly coincide.11 Summarizing,

Proposition 1. The optimal crowdfunding outcome is characterized as follows:

(E) For q > q̂ = vL/vH , L-types are excluded and H-types get the good at price vH ,

when the number k of H-types weakly exceeds the pivot nE = dC/vHe.
(I) For q ≤ q̂ = vL/vH , both L and H types get the good, paying vL and b̄nI

respectively,

when demand state k weakly exceeds the pivot nI from Lemma 1.

The sets of mechanisms with tight bid restrictions that uniquely implement these out-

comes in Pareto-undominated BNE are:12

10At n = 0, there is no pivotal motive, h0 = 0, all buyers pay vL and production takes place for sure.
At the other extreme, with n = N , production requires all buyers to be H-type, so all H-types are
fully pivotal, removing free-riding; hN = 1. The entrepreneur then extracts all their informational rent,
b̄N = vH , but production only occurs with probability SNN = qN .

11At C = 0, interpersonal bundling has no value given independent tastes; raising C along q = q̂ does
not shift the cut-o�, since nE = nI there, cancelling out the expected cost terms under E and I.

12There exist Pareto-dominated bidding equilibria where some buyers do not bid or H-types bid vL,
strictly lowering project success and H-type and entrepreneur payo�s, without bene�tting L-types.
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ME = {(T, {0, vH}, p) : 0 < p ≤ vH and (nE − 1)vH < T ≤ nEvH}

MI = {(T, {0, vL, b̄nI
}, p) : 0 < p ≤ vL and T nI

− δ̄nI
< T ≤ T nI

}.

The speci�c mechanisms, (T, p) = (C, vH) for E and (T, p) = (T nI
, vL) for I, are

natural and robust to removing bid restrictions (see Section 4.1). Note that T nI
> C

since: (1) TN = NvH > C; (2) nI b̄nI
+(N−nI)vL ≤ C with nI < N would contradict nI 's

optimality since nI + 1 could then avoid producing in unpro�table state nI and strictly

increase pro�ts in higher states. So the optimum can always use T ≥ C. This proves:

Corollary 1. The entrepreneur's optimized pro�t is non-negative in every demand state.

We illustrate this and later propositions using the representative, parameterized set,

Example 1. N = 5, vL = 5, vH = 8 (so q̂ = 0.625), 0 < q < 1, 0 < C < 40.

Figure 1: Pro�t-maximizing crowdfunding in Example 1.

Figure 1 shows the regions in (C, q)-space where each strategy type, n with E or I, is

optimal for Example 1; thus, nI = 4 is optimal on the (blue) region marked πI4 , etc. We

see exclusion E above line q = q̂ and inclusion I below it. The pivots nE, nI increase in

C, are equal on q = q̂; nI rises with q and has concave boundaries. Note that πI5 = πE5 as

b̄N = vH and L-types never get to buy when nI = N . These properties hold generally.

The project success rate is SNnE
(q) on q > q̂ and SNnI

(q) on q ≤ q̂. This decreases with

C but is non-monotonic in q, as q can induce upward jumps in nI . Nevertheless,

Corollary 2. The entrepreneur's pro�t strictly decreases with C and increases with q.
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3.2 Not-for-pro�t entrepreneurs

We now study how crowdfunding works when entrepreneurs maximize success or welfare,

instead of pro�ts. Unconstrained success-maximizers would always produce, so we impose

the canonical ex-post budget balance constraint (BB), requiring funds to always cover cost

C. This means no loss in any state k and is equivalent to T ≥ C. By Corollary 1, BB does

not a�ect the pro�t-maximizing outcomes.13 BB is appropriate when the entrepreneur,

such as an artist, is unable or unwilling to risk su�ering a loss in any demand state, but

also when she has no access to credit and no personal wealth.14 An ideal not-for-pro�t

may maximize welfare, but others focus on success. Success-maximization also captures

an unproven entrepreneur who maximizes long-run pro�ts but for whom breaking even

on her project is a vital career stepping stone.

The entrepreneur can guarantee maximum success and welfare, by setting p = vL and

T = C when C ≤ NvL, so we now assume C > NvL. Given a pivot n, the not-for-

pro�t entrepreneur still sets prices to maximize pro�ts, to relax BB. Whether inclusive or

exclusive, she also minimizes n subject to T ≥ C. Minimal n clearly maximizes success,

and also expected welfare, as production satisfying BB (no losses) always raises welfare.

So n = nE is optimal among exclusive strategies and n = nBBI = min{n : C ≤ T n}
de�nes the optimal inclusive strategy. Notice nBBI ≤ nI . Intuitively, for-pro�ts raise n to

extract rent under inclusion. Success-maximizers only care about minimizing n so they

choose inclusion unless nE < nBBI . So they are more inclusive than pro�t-maximizers

(because nBBI ≤ nI ≤ nE for all q ≤ q̂), strictly so if nBBI < nI . Welfare-maximizers

choose inclusion even more since they strictly prefer it at a �xed success rate.

Proposition 2. Both alternative objectives raise inclusivity compared to the pro�t-

maximizing baseline. The inclusion region expands from q ≤ q̂ to all (C, q) with nBBI ≤ nE

for success-maximizers, and expands weakly further for welfare-maximizers.

Figure 2 depicts success and welfare-maximizers' optimal design (identical in Ex-

ample 1), illustrating how not-for-pro�t entrepreneurs are more inclusive than pro�t-

maximizers: the (orange) exclusion region is a strict subset of that in Figure 1. Given n,

prices are as before. The large rectangle (in green) with zero pivot shows not-for-pro�ts

gain nothing from crowdfunding at low costs, even at high q, but they gain more from

crowdfunding at higher costs. In case (ii) of our more realistic Illustration 1, both success

and welfare maximizers set inclusive pivot, nBBI = 102 < nE = 133, more than doubling

both the 20% success rate, from pro�t-maximization (pivot nI = 108) to 42.9%, and wel-

fare, from 308 to 632. Multiple prices are again key: restricted to a single crowdfunding

price, the entrepreneur would set p = 20, yielding a mere 0.02% chance of success.

13See Section 8.1.2 of EH2015 for similar results with ex-ante budget balance.
14Early crowdfunding platforms like SellaBand catered to creative entrepreneurs whose main objective

was often to get their work out (project success) without getting into debt.
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Figure 2: Success-maximizing crowdfunding in Example 1.

3.3 Welfare gains and losses from crowdfunding

In the �rst-best welfare-maximizing benchmark, all buyers consume whenever production

occurs, namely, in all states k with kvH + (N − k)vL − C ≥ 0, that is, k ≥ n∗ where

n∗ = dñ∗e and ñ∗ = (C − NvL)/(vH − vL). We now analyze the welfare e�ects of

crowdfunding compared to TS (i.e., posted pricing).

In TS, ex-post budget balance restricts to producing if and only if C ≤ NvL and has

p = vL for all q. With not-for-pro�t entrepreneurs, crowdfunding unambiguously raises

payo�s of both consumers and entrepreneurs, strictly so on C > NvL, and neutral other-

wise. With pro�t-maximizers, the welfare e�ects are more involved. Figure 3 illustrates.

Crowdfunding raises welfare on the orange exclusion region q ≥ q̂ by adapting production

perfectly to demand, avoiding production in low demand states but producing in high

ones. Consumer surplus remains zero here. Welfare is also raised on the inclusive blue

rectangle with q ≤ q̂ and C > NvL where there is no production in TS. Consumer surplus

strictly increases unless nI = N . However, on q ≤ q̂ and C ≤ NvL, TS maximizes welfare

by always producing. Here, crowdfunding can only do harm. On the convex green, low

(C, q) region, crowdfunding sets nI = 0 and is welfare neutral. But on the adjacent purple

region, crowdfunding lowers welfare and consumer surplus by restricting production.

Proposition 3. (a) With for-pro�t entrepreneurs, crowdfunding's welfare impact versus

traditional selling (TS) is: (i) strictly positive if C > NvL, (ii) strictly positive for any

C if q > q̂, (iii) strictly negative if q ≤ q̂, C ≤ NvL, nI > 0, (iv) neutral otherwise; (b)

12



With not-for-pro�ts, its impact is: (i) strictly positive if C > NvL, (ii) neutral otherwise.

Figure 3: Welfare e�ects of pro�t-maximizing crowdfunding relative to TS, indicating
adaptation to produce in higher demand states and rent extraction where thresholds
induce price discrimination.

Crowdfunding has the same qualitative e�ect on consumer surplus as on welfare,

except in having a null consumer e�ect when exclusive (or inclusive with n = N). Unsur-

prisingly, given crowdfunding, not-for-pro�ts give strictly higher consumer surplus and

welfare than do for-pro�ts, whenever their strategies di�er.

4 Crowdfunding in practice

This section examines the robustness of our characterization and how well it �ts with

observed crowdfunding practice. We revisit the entrepreneur's assumed power to restrict

bids and commit to a threshold. We consider the role of platforms and policy. We also

discuss crowd size and participation costs that may deter crowdfunding.

4.1 Commitment issues

Threshold commitment has a marked e�ect on crowdfunding outcomes. This is important

because, as we explain in the next subsection, enforcing threshold commitment (and

bid restrictions) is non-trivial and platforms can choose not to o�er commitment. So

we now characterize optimal crowdfunding when the entrepreneur lacks both types of
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commitment powers, denoted NC for no commitment. We restrict attention to price-

discriminating inclusivity, q ≤ q̂ and 0 < nI < N , since threshold commitment and

bid restrictions are clearly unnecessary otherwise.15 First, we show that bid restrictions

matter less than threshold commitment in that:

Lemma 2. With threshold commitment, bid restrictions do not bind.

Naturally, to prevent bid-shaving, the entrepreneur must now pick the highest thresh-

old T nI
and minimum price vL from the set of optimal mechanisms MI described in

Proposition 1. (The proof rules out other bidding deviations and establishes unique im-

plementation as before.) It follows that a crowdfunding entrepreneur essentially picks a

pair (T, p); unlike in unique crowdfunding price models, this p is only a minimal price. In

practice, bid restrictions or suggested prices may still help coordinate buyers. Consistent

with this, Kickstarter encourages entrepreneurs to o�er buyers a choice between multiple

rewards at di�erent prices.16 Bid restrictions also help if the entrepreneur cannot commit

to a threshold or faces a richer type distribution (see EH2015, Section 4.3).

No threshold commitment, nor bid restriction (NC)

With no commitment powers (NC), the entrepreneur produces precisely when the

total sum of bids covers the �xed cost, e�ectively forcing T = C. This does not a�ect the

entrepreneur in maximizing success or welfare, so we now focus on pro�t-maximizers.17

NC strictly lowers their pro�ts, because anH-type can now shave his bid without lowering

the success rate (recall T nI
> C). The entrepreneur partly counterbalances this e�ect by

lowering her minimal price below the low type valuation, to foster high type bids.18 But

if q is high enough, she instead raises p to exclude. Overall, as we derive below, NC raises

production and total and consumer welfare if and only if inclusion remains optimal.

The local incentive compatibility condition that prevents H-types from shaving down

from bH requires equality in the n-pivotality condition (for n > 0): nbH +(N−n)bL = C.

Lowering p to p′ substitutes for the inability to raise T above C, because L-types

bidding bL = p′ < vL raises the gap T − NbL = C − NbL that motivates H-type bids.

Denoting the resulting bH by b′n and letting δ′n = b′n − p′, we have, nb′n + (N − n)p′ = C,

or equivalently,

δ′n = (C −Np′)/n (7)

15If only one price is ever paid in the baseline optimum, setting this as minimal price p already prevents
underbidding and T = C is then anyway optimal. This applies to all exclusive solutions, unique price
vH , and the corner inclusive solutions: nI = N is equivalent to exclusion; nI = 0 has unique price vL.

16Rewards typically consist of the good accompanied by small gifts like signatures, stickers and T-
shirts. Often, the price di�erences cannot be explained by vertical di�erentiation.

17NC forces weakly lower pivots, but not-for-pro�ts already choose the minimum consistent with BB.
18Surprisingly, extracting maximal rents from L-types via p = vL (so bL = vL) is no longer optimal.

Hansmann (1981) and Baumol and Bowen (1968) o�er evidence for such �underpricing.� They consider
not-for-pro�t organizations with T = C; restricting pro�t distribution credibly accentuates motivations
to raise welfare and success, and, in general, assures excess revenues go into production or quality.
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which falls with p′. From (2), the entrepreneur's pro�t for n ≥ 1 is now,

π′n = SNn (E[k|k ≥ n]− n) δ′n

For a given n > 0, the entrepreneur chooses p′ to maximize δ′n, subject to L-type individual

rationality, p′ ≤ vL, and incentive compatibility of H-types not deviating to bid p′,

δ′n ≤ hn(vH − p′) (IC′)

Solving (7) and the binding (IC′) gives the optimal p′:

p′n =
C − nhnvH
N − nhn

(8)

which is readily seen to decrease with n. This n-type strategy is only feasible if p′n ≤ vL,

or equivalently, C ≤ NvL + nhn(vH − vL) = T n. For n = 0, inclusion simply yields

π′0 = NvL − C. The optimal inclusive pivot denoted n′I again trades o� rent extraction

and project success. The resulting inclusive payo� is compared to πEnE
.

Proposition 4. Removing commitment power a�ects payo� outcomes in the price-discri-

minating case, q ≤ q̂ and 0 < nI < N , only. It then strictly lowers pro�ts and:

(a) if inclusion stays optimal, n′I ≤ nI ≤ nE, the minimal price is strictly lower, consumer

surplus is strictly higher and total surplus and the success rate also rise, strictly if n′I < nI ;

(b) if exclusion becomes optimal, consumer surplus is strictly lower and total surplus and

the success rate also fall, strictly if nI < nE.

Intuitively, new constraint (7) encourages the entrepreneur to lower n under inclusion.

The option to lower p complicates the proof that indeed n′I ≤ nI , but that still holds

since reducing p directly reduces per L-type revenues and the optimal p′n falls with n.19

This reduced minimal number of H-types reveals that, if inclusion remains optimal,

non-commitment weakly raises total welfare. The entrepreneur cannot gain from lost

commitment power and she strictly loses in the price-discriminating case. So consumer

surplus must be strictly higher. Even L-types now get a strict positive surplus because

they pay less than vL. So total and consumer welfare rise provided that inclusion remains

optimal, which holds for low values of q and C. If instead q or C is relatively high,

exclusion becomes optimal and consumer surplus falls to zero.

Figure 4 illustrates these results. The dotted black curves, representing loci C = T 1

through C = T 4, indicate feasibility of inclusive strategies with no commitment; n = 4 is

often feasible but exclusion always dominates it. Clearly, in the orange subregion below

19It also introduces multiple Pareto undominated equilibria: H-types prefer the equilibria with higher
p and weakly lower n, while L-types prefer lower p. We now assume the entrepreneur selects her preferred
equilibrium, as standard in mechanism design, but we do not need this for our key results: that n ≤ nI
and NC raises welfare provided the entrepreneur does not switch to exclusion.
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Figure 4: Pro�t-maximizing crowdfunding with no commitment (NC) in Example 1.

q = q̂ where exclusion becomes optimal, consumer surplus falls to zero and pro�ts strictly

fall as πInI
was strictly preferred. In all other regions below q = q̂, consumer surplus is

strictly higher as both types pay less, H-types strictly, and the success rate rises.20

4.2 The role of platforms

Platforms play a vital role in crowdfunding, reducing transaction costs between en-

trepreneurs and buyers. They support trust by leveraging social networks and de�ning

clear obligations: buyers cannot withdraw bids once the threshold is reached and typically

pay in advance, and entrepreneurs are obliged to ful�ll promised rewards once funds are

transferred.21 Not-for-pro�t entrepreneurs naturally do their best to ful�ll these rewards.

Pro�t-maximizers tend to do so too, thanks to potential ex-post sales and reputational

concerns, enhanced by platform's feedback forums.

Platforms typically charge a share α > 0 of revenues on successful projects, so they

care about the number and size of successful projects and they value high revenues even if

accompanied by high costs. Their revenue share can bias their interests towards those of

entrepreneurs, but they must also attract buyers to have any successes. We apply lessons

20Generically, L-types pay strictly less when n′I ≥ 1: L-types pay vL only along the dotted black curve,
C = Tn′

I
. In the green region marked πI0 , all buyers pay vL so NC does not bene�t L-types strictly.

21Platforms warn of the inherent risks in un�nished products, but avoid direct contractual responsi-
bility for reward delivery. This might change if fraud became at all frequent. Fraud is currently rare but
delivery delays from unforeseen technical and logistical problems are quite common (Mollick, 2014).
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from two-sided markets to understand platform strategies.22

First, an important strategic choice for platforms a�ecting revenues is whether to

provide threshold commitment or not. Kickstarter and other AON platforms exert e�ort

to enforce this commitment by prohibiting self-bidding, inhibiting the use of pseudonyms

and precluding adjustment of thresholds once set. Meanwhile, in ��exible funding� or

�Keep-it-All� crowdfunding, entrepreneurs can always choose to keep all funds. Neglecting

transaction costs, this corresponds to no commitment, NC, in our setting.23 So we can

apply Proposition 4 to shed light on this central platform design choice. NC always

lowers entrepreneur pro�ts, and if NC leads to more exclusion, all actors, including the

platform, are better o� with threshold commitment. So empirical work indicating more

elastic entrepreneur than consumer participation, or that NC tends to provoke minimum

price rises, could explain the predominance of AON and justify regulatory support in

dissuading manipulation via pseudonyms.24

Second, platforms can also in�uence outcomes by using project rankings to draw buy-

ers' attention to particular projects. Their revenue share biases them towards projects

they expect will generate high revenues, but does this bias them towards pro�t-maximizing

entrepreneurs to the detriment of not-for-pro�ts? In general, platforms care more for

success than pro�t-maximizing entrepreneurs because of the �xed cost: expected revenue

equals expected net pro�t plus expected cost expenditure. Using Sections 3.1 and 3.2,

we show that platforms sometimes prefer not-for-pro�ts.

Proposition 5. (a) When C ≤ NvL, there exist q̄(C) ≥ q̂ ≥ q(C) such that the

platform strictly prefers (i) not-for-pro�ts if q(C) < q < q̄(C), (ii) pro�t-maximizers

when q > q̄(C) and (iii) is indi�erent on q ≤ q(C).

(b) When C > NvL, the platform strictly prefers (i) not-for-pro�ts when q ≤ q̂ if nBBI <

nI and (ii) pro�t-maximizers when q > q̂ and nBBI = nE.

In essence, the platform biases towards pro�t-maximizers at high q, but maximizes

welfare by selecting not-for-pro�ts at low q. The intuition is clearest in case (a): pro�ts

and success rates with not-for-pro�ts are then independent of q, but are both increasing in

q with pro�t-maximizers.25 In an empirical study of Kickstarter, Pitschner and Pitschner-

Finn (2014) show that not-for-pro�t motivated entrepreneurs have higher success rates,

consistent with our �nding that nBBI ≤ nI . Excluding the top 1%, they also �nd not-for-

pro�ts generate more revenues. Warm-glow (see Belle�amme et al., 2014) could explain

this if such crowdfunders prefer not-for-pro�ts, consistent with anecdotal evidence of

22See Agrawal et al. (2014); Belle�amme et al. (2015).
23Indiegogo's �exible funding actually always disburses funds, but entrepreneurs with our binary in-

vestment technology would refund buyers for any below-cost aggregate funds; Indiegogo instructs them
to either ful�ll all rewards or fully compensate funders.

24To fully investigate �exible funding would require modeling scalable projects (Cumming et al., 2015).
25Welfare and success-maximizers are equivalent except on q > q̂, nBBI > nE , where welfare-maximizers

may be inclusive and then platforms strictly prefer pro�t or success-maximizers to guarantee exclusion.
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funders upset by entrepreneurs raking in pro�ts. However, for-pro�t platforms may well

promote not-for-pro�t entrepreneurs, even when crowdfunders are purely self-interested.

They raise expected revenues via success rates (Proposition 5). They also raise inclusivity

(Section 3.3) and reduce minimal prices (Footnote 18), which attract crowdfunders.

In practice, crowdfunding is sequential, with campaigns typically running between

30 and 60 days.26 So platforms can learn about project potential during crowdfunding

(see also Section 5.2) and guide buyers to particular projects accordingly. Platforms

clearly gain from guiding buyers towards any project close to reaching its threshold, since

converting a project into a success adds a share α on all the bids so far submitted. This use

of project rankings is consistent with the empirical evidence that most projects either fail

by a large margin or succeed by a small one (Mollick, 2014). From a welfare perspective,

platforms bias attention away from projects with a smaller chance of success and positive

externalities, towards projects that, having already passed their thresholds, guarantee a

share α on each new bid. This raises the tendency towards viral projects. Platforms also

bias towards high cost projects with a low potential to make very large revenues over

smaller but safer bets with greater expected pro�ts and social bene�ts. We motivate the

importance of social externalities from small successes in the next subsection.

4.3 Crowd size and crowdfunding costs

In our i.i.d. baseline, the private and social bene�ts of crowdfunding through demand-

adaptation and rent extraction are always positive, but could be small. In particular,

they shrink away as the crowd grows, because per capita demand uncertainty and the

relevant hazard rate both fall to zero.27 Given crowdfunding's added costs (see below) over

traditional selling, this suggests that entrepreneurs will opt for the latter when crowds

are very large, but we predict a vibrant future for both crowdfunding and traditional

selling on two grounds. First, rent extraction and especially demand adaptation bene�ts

may be substantial for surprisingly large crowds, as Illustration 1 shows.28 We predict

most crowdfunding projects to be of moderate size, and this is consistent with empirical

facts. Second, massive crowds do not preclude aggregate uncertainty when valuations are

correlated (see also Section 5.2).

26Section 8.2 of EH2015 shows: (a) substantial adaptation and rent extraction bene�ts under exogenous
sequential bidding; (b) symmetric bidders move simultaneously if they can, as high bids are strategic
substitutes. In a richer model, early funders may signal quality to later buyers (see Agrawal et al., 2015).

27Norman (2004) proves that traditional selling is asymptotically as good as the optimal general
mechanism �xing c = C/N ; Proposition 6 in EH2015 replicates in our discrete type setting.

28Extraction depends on the hazard rate, not the probability of pivotality, as bids are e�cient transfers.
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4.3.1 Self-selection and crowd size

The media and crowdfunding platforms draw attention to projects, like PebbleWatch

and Star Citizen, that attract contributions from tens of thousands of funders, but the

representative crowdfunding project is far smaller. For Kickstarter projects, the average

number of funders is 101.3, falling to 56.2 on excluding the top one per cent, and 41%

were successfully funded, of which 75% raised less than $10,000.29 So most projects are

moderate-sized and less than half are successful. We view these project failures as a sign

of market-testing in action: crowdfunding �lters out projects with too little demand, only

sinking costs in viable projects.

To explain this predominance of moderate sizes and interior success rates, we now

add two types of crowdfunding cost to the model. First, the platforms' revenue share α

(typically 5�10%) on successful projects; competitive pressures lead platforms to moder-

ate α but are limited by network e�ects, so traditional �nance tends to be cheaper for

riskless loans. Second, a (time and e�ort) cost ε for the entrepreneur to pitch and run her

crowdfunding campaign. We let πCFα denote the re-optimized crowdfunding payo�.30 The

entrepreneur now opts for crowdfunding only if πCFα − ε ≥ πTS.31 This inequality deter-

mines lower and upper bounds on the per capita cost of projects for which crowdfunding

is optimal. High cost, low success projects are not undertaken because of the pitching

cost; low cost, high success projects use traditional selling to avoid platform fees. The

range of crowdfundable projects shrinks with α, ε, and N , and, for any α, ε > 0, vanishes

for N su�ciently large. This predicts that most projects self-selecting into crowdfunding

will have moderate sized crowds and non-extremal average success rates.

We illustrate with ε = 1 and α = 0.05. We �rst derive a narrow cost range for crowd-

funding when the entrepreneur targets a large crowd, by expanding on Illustration 1(ii)

with N = 500. Recall that traditional selling is viable only when c = C/N ≤ 5 and that

frictionless crowdfunding has strict positive bene�ts for every 0 < c < vH = 20. However,

taking account of crowdfunding costs, the entrepreneur opts for crowdfunding only when

4.95 < c < 5.44. For a typical crowd size of 50, the cost range giving crowdfunding,

�xing other parameters, is three times larger (4.48 < c < 6.54), and even �ve times larger

when pitching costs scale with N (4.42 < c < 7.5). Average crowdfunding success rates

are about 30%. Of course, with imprecise targeting, the maximum potential crowd N

may far exceed the number of observed funders. In our second example, the entrepreneur

emails N = 10, 000 people, expecting only a small number of them, µ = qN = 100, to

have a positive valuation, vH = 80. Aggregate demand k is distributed, approximate

29We exclude the 1.3% of projects with over 1,000 funders in U.C. Berkeley's Fung Institute's Kick-
starter data 2009-2014, http://rosencrantz.berkeley.edu/crowdfunding/index.php.

30Platform fees e�ectively reduce buyers' valuations to (1 − α)vL and (1 − α)vH . This increases the
optimal pivot but does not a�ect the inclusivity choice.

31Introducing a cost εTS > 0 in TS or positive interest rate or credit limit reduces πTS without a�ecting
πCFα . This would simply raise self-selection of crowdfunding over TS, qualitatively like reducing α.
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normal, with mean µ = qN = 100 and standard deviation σ =
√
q(1− q)N ≈ 10. Fixing

qN = µ as N gets large, aggregate uncertainty converges to
√
µ = 10. Crowdfunding's

adaptation gain remains important relative to expected surplus for a substantial range

of costs: 77.8 < c < 96.9. Its average success rate is now 18%.

These predictions are consistent with observed data. A vast majority of projects

have modest goals that can be achieved when reaching a moderate sized crowd of ac-

tive bidders. Mass emailing is rather ine�ective, given distrust of unsolicited emails and

costs of inspecting projects. Platform promotion choices can lead to a few very large

projects (as discussed in Section 4.2), and correlated preferences can explain why some

large projects self-select into crowdfunding (see next section). Indeed, the top 1.3% of

Kickstarter projects account for nearly half of total crowdfunding revenues, but the nu-

merous smaller projects have a bigger e�ect on welfare relative to their size, as each

of their many successes has welfare bene�ts beyond the immediate realized trades be-

tween entrepreneur and funders: successes enhance entrepreneurial career prospects (see

Section 3.2) and generate ongoing sales of the crowdfunded product (see Section 5).

4.3.2 Group preference model

In practice, consumer tastes can be highly correlated within demographic and other

groups, like jazz-lovers.32 We now consider a crowd of size Nm, consisting of N groups

with m members each. Each group's common valuation is drawn independently from a

well-behaved distribution G on R+; so group values are independent while intra-group

correlation is, for simplicity, perfect. Fixing N , aggregate demand uncertainty remains

substantial for arbitrarily large m. Rent extraction via crowdfunding's price discrimina-

tion becomes ine�ective as in the poor targeting example. So to simplify, we restrict to

a single price p (also relevant when m = 1 and N is quite big if buyers need simplicity or

treat small pivotality probabilities as zero). This simpli�cation also allows us to extend

beyond the two-type distributions assumed in the baseline and to deal with general well-

behaved distributions G. Crowdfunding still yields substantial private and social bene�ts

compared to TS, by adapting production to demand using T = C.

With price p, demand is k ·m with probability fNk (q(p)) where q(p) = 1−G(p) and k

now represents the number of groups with a valuation weakly above p. The entrepreneur's

pro�t is then,

π(p) =
N∑

k=n(p)

fNk (kmp− C)

where n(p) = dC/mpe. Inside region n(p) ≡ n, price p satis�es the �rst-order condition,

0 = q(p) + pq′(p) + hn
[
(n− 1)p− cN

]
q′(p)

32With correlated preferences, Cremer and McLean's (1988) general optimum extracts full rent, but
breaks crowdfunding's attractive features.
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where c = C/Nm denotes per capita cost; we �x c. So inside each such region, p strictly
increases with c, in contrast to the standard result of �xed cost independence. At region

boundaries, n rises discretely and p jumps down to mitigate the resulting fall in success.

Note that the entrepreneur sets pTS = arg max pq(p) if producing under TS, so crowd-

funding's price is strictly higher for any c > 0. This is because crowdfunding alleviates

the negative e�ect of raising p on q = 1 − G(p); it does so by adapting production to

avoid losses in the then more frequent low demand states.

Proposition 6. With group-preferences, crowdfunding is valuable for arbitrarily large

crowds: even with a single-price, the entrepreneur sets T = C and p > pTS and makes

a per-capita gain over traditional selling that is strictly positive and independent of m.

This also increases consumer and total welfare when TS is inviable.

Given such preferences, even promoters of large concerts can have doubts about de-

mand su�ciency (see also the arbitrarily large crowd results in the next section). Concerts

and sports events usually engage in advance sales and sometimes cancel when demand

proves insu�cient, but the crowdfunding format is rarely salient because the typically

large crowd size implies very little gain from committing to a threshold T (see Sec-

tion 4.3.1). So Proposition 6 applies. It suggests that organizers of such large events may

want to in�ate their prices. Venue capacity constraints also push up prices.

5 Ex-post sales: credit and price-dynamics

Turning to the �funding� in crowdfunding, we now model limited crowdfunding reach and

ex-post sales revenues that cannot be used to fund production. We characterize when

crowdfunding substitutes for traditional �nance but also when crowdfunding raises de-

mand for, and supply of, �nance: its credible demand signals reassure �nanciers. This

mutual complementarity sheds light on evidence that venture capital and angel investors

have been joining forces with entrepreneurs after successful crowdfunding campaigns (see

Mollick and Kuppuswamy, 2014, Table 3). The �rst subsection adds ex-post buyers, re-

taining independent demands. There, the substitution and complementarity e�ects are all

driven by gauging the ex-ante demand. The second subsection introduces project quality

di�erences. This generates a correlation between ex-ante and ex-post demands, so that

crowdfunding's market-test signals future demand. We use this to generate a powerful

complementarity result for markets where most demand arrives ex-post. We also use this

project heterogeneity to study price dynamics. In particular, we explain why crowdfund-

ing prices usually rise after a big crowdfunding success, in contrast to other crowdfunding

papers that predict prices will always fall by the durable good monopoly logic. The key

insight is again that the entrepreneur learns about market demand. Crowdfunding adapts
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ex-post prices to expected future demand, with prices rising when crowdfunding is espe-

cially successful.33

5.1 Crowdfunding and credit

In the preceding sections, we completely abstracted from credit constraints, proving that

funding is not fundamental to crowdfunding but in practice buyers do generally pay

in advance, potentially funding production. So we now ask how crowdfunding a�ects

demand for credit from traditional �nance (TF). We assume the entrepreneur has no

personal funds to invest in her project and we study bank credit, normalizing the market

rate of interest to zero. We denote the entrepreneur's borrowing by B.

Corollary 1 proves that in the baseline setting, aggregate funds or revenues from buyers

always cover the entrepreneur's cost when she wants to produce. There, crowdfunding

substitutes for traditional �nance, reducing credit demand to BCF = 0; this fall is strict

for C ≤ max{NvL, qNvH} where traditional selling demands BTS = C. However, in

general, crowdfunding can also increase credit demand and supply. We note two minor

points before focusing on the major reason. First, Corollary 1 does not apply to multi-

type distributions (see Section 6); this relies on commitment to produce at a loss in some

states. Second, if crowdfunding buyers commit ex-ante to buy but only pay ex-post,

upon delivery say, the entrepreneur would need credit as sales revenues would arrive

too late to fund production. In principle, this crowdfunding variant could eliminate any

entrepreneurial moral hazard while still implementing adaptation and rent-extraction,

but it is standard to force ex-ante payments to avoid needing third-party enforcement of

all the buyers' purchase commitments.

The main reason for credit demand is limited crowdfunding reach. Owing to costs

of project inspection and advertising, many potential buyers do not participate during

crowdfunding but do learn about projects after a crowdfunding success. Revenues from

selling to these buyers who are reached ex-post cannot fund the �xed cost C. To model

this, we distinguish two classes of buyers, all with the same independent tastes: N1

crowdfunding participants or �funders� who can fund by buying in period 1, ex-ante, and

N2 �new buyers� who can only buy in period two, ex-post. Labels refer to ability, not

choice: a funder can fund or buy in period 2 or not buy at all. Neither funders nor new

buyers ever want to buy more than one unit. So we have:

Timing with two selling periods. (1) The entrepreneur sets crowdfunding o�er (p, T ).

(2) Funders choose bids. (3) If funds do not reach T , the game ends with no production

and no payments.34 If funds reach T , the entrepreneur receives the funds, sinks her �xed

33Capacity constraints with demand uncertainty (e.g., Dana, 2001; Gale and Holmes, 1993) or con-
sumers learning preferences (e.g., Courty and Li, 2000; Möller and Watanabe, 2010; Nocke et al., 2011)
can also explain price rises but our entrepreneurial learning resonates best with crowdfunding evidence.

34Platforms stop failed projects from selling to funders to prevent fee evasion and enable commitment.
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cost C, delivers the goods to active funders and the game continues. (4) The entrepreneur

sets her ex-post price p2. (5) New buyers and funders who did not buy ex-ante decide

whether to purchase at p2.

We initially focus on q > q̂, N2/N1 ≥ q̂/(q−q̂) so that, though unable to commit on p2 ex-

ante, the entrepreneur always sets p2 = vH ex-post (even if facing N1 L-type funders who

waited and N2 unknown new buyers). In optimal crowdfunding, she sets p = p2 = vH

and T = C − N2qvH < C, reduced from C by the expected ex-post revenues. The

corresponding pivotal number of H-types, n̂E =
⌈
C
vH
−N2q

⌉
≤ nE =

⌈
C
vH

⌉
; we assume

N2 > 1/q to guarantee a strict inequality: n̂E < nE. Finally, assuming C < (N1 +qN2)vH

to avoid trivial non-production, we have n̂E ≤ N1.

The demand for credit BCF under crowdfunding is stochastic; it depends on state k.

If nE ≤ N1, there are three ranges: (i) for k < n̂E, there is no production and BCF
k = 0;

(ii) for k ∈ [n̂E, nE), BCF
k = C − kvH > 0; (iii) for k ∈ [nE, N1], BCF

k = 0. If nE > N1,

range (ii) shrinks to [n̂E, N1] and range (iii) disappears.

In traditional selling (TS), only N1 + N2 matters. The optimal posted price is again

p2 = vH and the project is viable if C ≤ ĈTS ≡ (N1 + N2)qvH . Lacking any ex-ante

revenues, the entrepreneur must borrow the full �xed cost C whenever she produces, so

her credit demand BTS = C if C ≤ ĈTS and BTS = 0 if C > ĈTS, both independent of

k, which is only learned after �nance and production under TS. So we have,

Proposition 7. (a) For high �xed costs C > ĈTS, crowdfunding raises credit demand

compared to traditional selling: BCF
k ≥ BTS

k for all k, strictly on k ∈ [n̂E, nE) 6= ∅.
(b) For C ≤ ĈTS, crowdfunding reduces credit demand, strictly on k > 0, all k if n̂E > 0.

In case (a), crowdfunding raises borrowing demand since the adaptation makes pro-

duction viable and the crowd's funds do not always cover cost; it strategically comple-

ments traditional �nance. Concretely, a market test revealing funders' demand k ≥ n̂E

makes production attractive and cannot fully fund C if k < nE; state k lies in this range

(ii) with positive probability. In case (b), crowdfunding lowers credit demand for two rea-

sons. First, crowdfunding is a strategic substitute since adaptation to avoid producing in

unpro�table states lowers the production probability below 1. Second, crowdfunding is a

direct substitute source of credit on all production states with k > 0.35

Corollary 3. Crowdfunding and traditional �nance are mutual complements for high

�xed costs and crowdfunding is a substitute for credit when �xed costs are low.

35The adaptation e�ect is trivial on C ≤ N2qvH since with n̂E = 0, production is optimal for all
distinguishable states k ∈ [0, N1] (crowdfunding cannot gauge new buyers' demands). The second e�ect
is never trivial, but we doubt crowdfunding ever purely substitutes for credit, because its costs tend to
be higher: in Section 4.3.1 with α > 0, we showed how traditional selling, and �nance, instead substitute
for crowdfunding when crowdfunding's adaptative and extractive bene�ts are small. Raising the interest
rate on credit B has the opposite e�ect and encourages the entrepreneur to raise T to reduce BCF . Also,
capping credit at B̄ forces the entrepreneur to raise T to C − B̄ if B̄ < N2qvH .
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In case (a), in addition to raising credit demand by making production viable, crowd-

funding credibly reveals the crowd's demand, making �nanciers willing to supply credit.

Conversely, �nance complements crowdfunding by enabling production on region (ii);

without �nance, crowdfunding can only produce on range (iii).

Turning to lower q, exclusion becomes less e�ective as funders may wait, hoping for

p2 below p. Inclusive strategies, being una�ected, become more likely. Consider N2 = 0

and q ≤ q̂. Inclusion remains optimal and the entrepreneur can implement the optimum

without need for credit if she sets p = vL and T = T̄nI
, since even L-types are willing to

pay in advance. With free credit access, she can also set p = b̄nI
as a unique crowdfunding

price, with threshold T = nI b̄nI
, and selling to L-types ex-post. However, if C > nI b̄nI

,

credit constraints preclude this solution. In general, the optimum requires multi-price

crowdfunding.

5.2 Price dynamics and signaling future demand

So far, prices can only fall, driven by dynamic monopoly with high types buying earlier,

but in practice, entrepreneurs often raise prices ex-post. We now capture the intuitive

idea that prices rise when high crowdfunding sales signal high future demand. To do

so, we let projects di�er by their H-type probabilities, qG > qB. Ex-ante crowdfunding

sales now signal project quality, G or B, and hence future demand. The entrepreneur

uses this market-test in three ways: (1) to adapt production to expected future demand,

as well as realized demand; (2) to inform traditional �nanciers about about future, as

well as current, pro�tability; (3) to optimize ex-post pricing. We now show how this

substantially extends the relevance of our complementarity results beyond Section 5.1,

and explains why prices go up after more successful crowdfunding campaigns.

Project quality. Nature determines project quality, with G and B equiprobable, in

a prior stage 0. Nobody observes project quality directly. Buyers privately learn their,

conditionally independent, types; funders learn by inspecting ex-ante; new buyers learn

ex-post. Prob(vH |G) = qG and similarly for B, with 0 < qB ≤ qG < 1; average quality is

q̄ = (qB + qG)/2. Buyers' private valuations provide a�liated signals of project quality.

Case A demonstrates how crowdfunding now adapts production and complements

traditional �nance by signalling future demand. Complementarity is then important

even for large N2/N1 where adapting to the demand from the N2 new buyers arriving

ex-post is key. Recall that in Section 5.1, crowdfunding informed about total demand

only by revealing funders' demand, but here it also signals the demand of the N2 new

buyers. Case B demonstrates price dynamics.

Case A: Signalling future demand q̄ > q̂, C ∈
(
q̄(N1 +N2)vH , (N1 + qGN2)vH

)
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Clearly, p = vH . Also p2 = vH is optimal whenever crowdfunding sales justify production

given the cost lower bound (that makes TS inviable). Now crowdfunding reveals not

only the number k of H-types in the crowd N1, but this also provides a signal of project

quality, with accuracy increasing in N1. If N1 is large enough, the entrepreneur adapts

to this signal of current and future demand by producing when k is su�ciently high.

This signal also attracts traditional �nance, which is needed and valued when C exceeds

ex-ante crowdfunding revenues and the ex-post crowd N2 justi�es production. In sum,

Proposition 8. Crowdfunding and traditional �nance are mutual complements in case

A for su�ciently large N1.

Case B: Price dynamics q̄ < q̂ < qG, N1vL < C < (N1 +N2)vL

Since qB < q̂ < qG, if the entrepreneur learns k, she can adapt her ex-post price, even

where adapting production and extracting rent help little. Setting p = vL and T just

above N1vL, so that n is positive but small, she learns k, just inducing H-types to bid

above vL and only minimally reducing the success rate. For large N1, the success rate

is nearly one and the entrepreneur learns whether her project is good or bad with great

accuracy. Optimizing her ex-post price, her overall expected pro�t is then approximately

N1vL + 1
2
(vL + vHq

G)N2 − C, larger than (N1 + N2)vL − C because qG > q̂. This price

dynamic readily explains the phenomenon of higher ex-post prices, in big successes such

as PicoBrew Zymathic's automatic beer brewing appliance, sold at $1599 or less during

crowdfunding on Kickstarter and sold ex-post for $1999 dollars.36 Extending the argu-

ment of Section 4.2, platforms can also use this inference of project quality to update

their ranking of projects dynamically during bidding.

To the extent entrepreneurs can in�uence N1 and N2, they value high N1 for raising

crowdfunding's accuracy as a signal of demand and project type, but they must weigh

this against advertising costs and the need to compensate buyers for their higher costs

of inspecting value ex-ante than after the good has been produced and put up for sale.

Also, entrepreneurs may limit the quantity sold in crowdfunding, as did Picobrew and

PebbleWatch, to exploit their better adapted prices on a larger ex-post market.

6 General mechanism design analysis

The optimal general mechanism maximizes pro�t without imposing crowdfunding's char-

acteristic restriction AFT that aggregate funds determine production. Cornelli (1996)

solves this with a continuum of buyer types using Myerson's (1981) virtual valuation

approach. EH2015 solve with a generic discrete type space, parallelling Bergemann and

36www.kickstarter.com/projects/1708005089/picobrew-zymatic-the-automatic-beer-brewing-applia/description.

25

https://www.kickstarter.com/projects/1708005089/picobrew-zymatic-the-automatic-beer-brewing-applia/description


Pesendorfer's (2007) adaptation to treat discrete types in optimal auctions. Here we pro-

vide the explicit solution in our two type setting. This veri�es that optimal crowdfunding

is then also optimal within the class of general mechanisms.

Type L's virtual valuation is de�ned by,

wL = vL − (vH − vL)
q

1− q
=
vL − qvH

1− q

For type H, wH = vH . Production is optimal in states k where the sum of positive

virtual valuations covers the �xed cost. For q > q̂, the solution is quite trivial: wL < 0

so the general optimum only includes H-types and production requires kwH ≥ C. Since

wH = vH , this corresponds exactly to the exclusion solution under crowdfunding. For

q ≤ q̂, both types are included and the condition for production is:

(N − k)wL + kwH ≥ C (9)

Substituting the virtual valuations, this condition proves to be equivalent to k ≥ nI from

Lemma 1. So the probability that an L-type buyer obtains the good is given by PL = SN−1
nI

and for an H-type buyer this probability is PH = SN−1
nI−1. Individual rationality constrains

the maximal expected transfer from an L-type to τL = vLPL. The maximal expected

transfer τH from an H-type is given by the binding incentive compatibility condition that

an H-type not masquerade as an L-type: vHPH − τH = vHPL − τL. Dividing by PH

yields τH/PH = vH(1−PL/PH) + vL(PL/PH) = (1− hnI
)vH + hnI

vL. This equals bH and

similarly τL/PL = bL, so the optimal crowdfunding mechanism yields the same allocation

and expected payments as the general optimal mechanism.

Proposition 9. In our baseline setting, the general optimum outcome can be implemented

via crowdfunding, despite its aggregate threshold restriction (AFT).

This result proves that mixed strategies cannot raise pro�ts. It also shows that the two

type case escapes two unattractive features of the general optimum: that the production

rule generally depends on the composition, not just aggregate, of individual bids, and

must sometimes commit to ex-post losses in certain states (cf., our Corollary 1). Now

with three or more types of buyer: (1) crowdfunding restriction AFT can indeed be strictly

costly and (2) the general mechanism and also crowdfunding can require committing to

produce at a loss. We show this in a pair of three type examples. Buyer valuations

are drawn independently from V = {v1, v2, v3} with probabilities q = (q1, q2, q3). The

demand state is now summarized by k = (k1, k2, k3) where kj is the number of buyers

with valuation vj for each j = 1, 2, 3.

Example 2. Crowdfunding cannot always achieve the general optimum

Let N = 2, V = {0, 1, 2} and q = (1/4, 1/2, 1/4), with 1 < C < 2. Then the vector
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of virtual valuations is w = (−3, 1/2, 2) so the general optimum excludes type 1 and

has production in states in K∗ = {(0, 0, 2), (1, 0, 1), (0, 1, 1)}. Conditional on production,

payments are b∗ = (0, 1, 7/4) and the expected pro�t is (18 − 7C)/16. Crowdfunding

cannot implement this outcome because to have production for all k ∈ K∗ would require

a threshold of at least T = mink∈K∗{b∗ · k} = 7/4, just reached in state k = (1, 0, 1), and

this also generates production success in state (0, 2, 0) which is not in K∗.37

Notice that the general optimum requires the entrepreneur to produce in state (1, 0, 1),

despite making a loss if C > 7/4 as she then earns only 7/4 from the single type 3 buyer.

The positive commitment to produce in this state allows her to extract a high rent in other

states in the production set K∗. We now show how crowdfunding can share this feature

of incurring a loss in some states, using an example where crowdfunding implements

the general optimum despite the three types. Example 2 still hints at room for a more

complex mechanism to displace crowdfunding, but we believe crowdfunding's attractive

simplicity will ensure that its current practical relevance endures.

Example 3. Crowdfunding may involve losses

Let N = 2, V = {0, 7, 10} and q = (2/5, 2/5, 1/5), with 9.4 < C < 10. Then

virtual valuations are w = (−10.5, 5.5, 10) so the general optimum excludes type 1's and

the production set is K∗ = {(0, 0, 2), (1, 0, 1), (0, 1, 1), (0, 2, 0)}. This can be implemented

using the crowdfunding mechanism, p = 7, T = 9.4 and B = {0, 7, 9.4}.38 In state

k = (1, 0, 1), the entrepreneur produces at a loss, 9.4− C < 0.

Since traditional selling is inviable here, this also illustrates how crowdfunding and

traditional �nance can be mutual complements without any ex-post buyers.

7 Concluding remarks

We have characterized the optimal design of crowdfunding in a private value environment.

We demonstrated the twin roles of crowdfunding's threshold mechanism in adapting

production and pricing to the crowd's revealed demand and its signal of future demand,

and in price discrimination that enhances adaptation except when excessive thresholds

waste trade opportunities. Even in our i.i.d. model, both bene�ts can be substantial

for surprisingly large crowds, and, with binary types, more general mechanisms relaxing

crowdfunding's reassuring constraints cannot deliver higher pro�ts. Sections 3 and 4

stressed the fundamental role of market-testing. Section 5 showed how reward-based

crowdfunding can substitute for traditional �nance or can be mutually complementary.

37To understand why crowdfunding can fail to implement the general optimum, note that the minimum
price ensures the lowest included type's bid exactly equals that type, while higher types bid less. So the
AFT gives this least type the good too often compared to the general optimum, which weighs types by
their virtual valuations; the latter only fully count the highest type.

38Bid restrictions are not binding; type 3's bid 9.4 in any case.
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Introducing investment-based elements, as in P2P lending and equity-crowdfunding,

might, in principle, fully substitute for traditional �nance, but we expect economies of

scale from centralized monitoring (Diamond, 1984) and expertise (Gompers and Lerner,

2001) to complement the �wisdom of the crowd.� Adding �nancial rewards in the project-

quality model of Section 5 creates a common value feature (see Hakenes and Schlegel,

2014). Our tractable framework could be extended to study interdependent prices, an

important feature of reality in investment-based crowdfunding, missing in the literature.

Our reward-based insights are also relevant for donation-based crowdfunding. In the

model, funders only cared for the good, but the results also apply exactly if funders gain

recognition or �warm-glow� values vL, vH from contributing at least the minimum bid to a

charitable cause or public good. A thorough analysis should further enrich the preference

assumptions and move beyond the simple �xed-cost scenario to study scalable projects

that deliver greater bene�ts when more is invested (see Cumming et al., 2015).

We showed how crowdfunding costs, including pro-rata revenue fees to platforms,

led entrepreneurs to self-select when they expect intermediate success rates; platforms

are chasing fool's gold if they seek only project successes as that defeats crowdfunding's

purpose as a market-test. Analyzing demand aggregation led us to predict modest-sized

crowds and short-run pro�ts for the large majority of projects, consistent with empirical

evidence. The pro-rata fees also explain why platforms use project rankings to guide buy-

ers toward projects with higher revenue promise. This generated a bias towards virality

and high cost projects, but platforms do sometimes favor not-for-pro�t entrepreneurs. We

also showed why platforms often enable threshold commitment. Preventing self-bidding

is then vital, particularly if crowdfunding is to serve as a signal for attracting traditional

�nance when there is a large ex-post market.

In sum, crowdfunding enables many entrepreneurs to bring otherwise infeasible projects

to life. Its rent extraction role is particularly important at high costs. While no other

paper models multiple prices within crowdfunding, Hansmann (1981) already marshals

the evidence in Baumol and Bowen (1968) to argue that �voluntary price discrimina-

tion� is critical to the survival of theatres, museums and opera. He claims that vertical

di�erentiation alone cannot explain observed contributions. Our formal derivation of

rent-extraction permits a parallel conjecture that could be tested by exploiting the fact

that crowdfunding is, in practice, sequential: we predict that high price rewards are cho-

sen less often after than before the threshold is reached, since pivotality motives then

disappear. Further testing of hypotheses from this analysis may require cunning tech-

niques to estimate �xed costs and valuation distributions, but has the potential to draw

more re�ned policy conclusions.
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Appendix A

Mostly omitting argument q, we start by stating some useful mathematical results relating

fMk (q), SMn (q) =
∑M

k=n f
M
k (q) and hn(q) = fN−1

n−1 (q)/SN−1
n−1 (q).

Lemma A.1.

(i) fNk = qfN−1
k−1 + (1− q)fN−1

k

(ii) SNn = SN−1
n−1 − (1− q)fN−1

n−1

(iii)
∑N

k=n kf
N
k = qNSN−1

n−1 and E[k|k ≥ n] = qN
1−(1−q)hn for all N ≥ 1 and 0 ≤ n ≤ N .

(iv)
∑N

k=n(N − k)fNk = (1− q)NSN−1
n , for all N ≥ 1 and 0 ≤ n ≤ N .

(v)
∂fMk (q)

∂q
= fMk

k−Mq
q(1−q)

(vi) ∂SN
n (q)
∂q

= NfN−1
n−1

(vii) hn is strictly increasing in n for 0 ≤ n ≤ N , with h0 = 0 and hN = 1.

(viii) For 0 < n < N , ∂hn(q)
∂q

< 0.

(ix) n(1− q)hn ≥ n− qN where the inequality is strict when q > 0 and n < N
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Proof of Lemma A.1.

(i) is immediate on expanding on any one draw and N − 1 other independent draws.

(ii) Summing (i) from k = n to N and recalling that fN−1
N = 0

SNn = qSN−1
n−1 + (1− q)SN−1

n

= qSN−1
n−1 + (1− q)

(
SN−1
n−1 − fN−1

n−1

)
= SN−1

n−1 − (1− q)fN−1
n−1

(iii)
N∑
k=n

kfNk =
N∑
k=n

kqk(1− q)N−k N !

(N − k)!k!

= Nq
N∑
k=n

qk−1(1− q)N−1−(k−1) (N − 1)!

(N − 1− (k − 1))!(k − 1)!

= Nq
N∑
k=n

fN−1
k−1 = Nq

N−1∑
k=n−1

fN−1
k = NqSN−1

n−1

From (ii), SNn /S
N−1
n−1 = 1− (1− q)hn, so E[k|k ≥ n] =

qNSN−1
n−1

SN
n

= qN
1−(1−q)hn .

(iv) Using (ii) and (iii),

N∑
k=n

(N − k)fNk (q) = N
(
(1− q)

(
SN−1
n−1 − fN−1

n−1

))
−NqSN−1

n−1

= N(1− q)(SN−1
n−1 − fN−1

n−1 )

= N(1− q)SN−1
n

(v) Di�erentiating, ∂fMk (q)/∂q =

(
M

k

)
qk−1(1− q)M−k−1

[
k(1− q)− (M − k)q

]
=

(
M
k

)
qk(1− q)M−k

q(1− q)
(k −Mq) = fMk

k −Mq

q(1− q)

(vi) Di�erentiating the summation that de�nes SNn using (v) gives,

∂SNn (q)/∂q =
N∑
k=n

(k −Nq)fNk
/
q(1− q)

= (NqSN−1
n−1 −NqSNn )

/
q(1− q) (from (iii))

=
(
SNn + (1− q)fN−1

n−1 − SNn
)
N
/

(1− q) (from (ii))

= NfN−1
n−1

(vii) From the de�nition it is clear that h0 = 0 and hN = 1. We will show that hn is
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strictly increasing by induction. As a �rst step, note that hN = 1 > hN−1 since f
N
N−1 > 0,

for all q ∈ (0, 1). Now suppose that hN > hN−1 > ... > hn+2 > hn+1 for N−1 ≥ n+1 ≥ 0.

We have to show that hn+1 > hn follows.

Note that

hn+2 > hn+1 ⇔
fN−1
n+1

SN−1
n+1

>
fN−1
n

SN−1
n

⇔ SN−1
n

fN−1
n

>
SN−1
n+1

fN−1
n+1

(*)

Next observe that for any N − 1 ≥ k ≥ 0,

fN−1
k+1

fN−1
k

=

(
N−1
k+1

)
qk+1(1− q)N−k−2(

N−1
k

)
qk(1− q)N−k−1

=
q

1− q
N − k − 1

k + 1

This is clearly decreasing in k so that in particular,

fN−1
n

fN−1
n−1

>
fN−1
n+1

fN−1
n

Combined with the induction hypothesis expressed as (*), we have

SN−1
n

fN−1
n−1

>
SN−1
n+1

fN−1
n

Adding 1 to both sides of the inequality yields

SN−1
n−1

fN−1
n−1

>
SN−1
n

fN−1
n

which is precisely 1/hn > 1/hn+1, completing the proof by induction.

(viii)
∂hn(q)

∂q
=
[
(∂fN−1

n−1 /∂q)
N−1∑
k=n−1

fN−1
k − fN−1

n−1

N−1∑
k=n−1

(∂fN−1
k /∂q)

]/
(SN−1

n−1 )2

= fN−1
n−1

[
(n− 1− (N − 1)q)

N−1∑
k=n

fN−1
k −

N−1∑
k=n

fN−1
k (k − (N − 1)q)

]/
q(1− q)(SN−1

n−1 )2

=
fN−1
n−1

∑N−1
k=n f

N−1
k (n− 1− k)

q(1− q)(SN−1
n−1 )2

< 0

The inequality follows from the facts that the summation is over k > n − 1, fN−1
k > 0

on the summation range and fN−1
n−1 > 0 for n ≥ 1 and the summation range is non-trivial

for n ≤ N − 1. Note that when n takes its extremal values of n = 0 and n = N , the

derivative equals zero since hn is then �xed at 0 and 1, respectively.

(ix) Clearly the inequality holds when q = 0 or n = N . Observe next that ∀n < N ,

n < E[k|k ≥ n] = qN
1−(1−q)hn by Lemma A.1(iii), so qN > n(1− (1− q)hn) as claimed.
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Proof of Lemma 1. From (5) and Lemma A.1(iii),

πIn − πIn+1 = (NvL − C)fNn + (vH − vL)qN
(
fN−1
n−1 − fN−1

n

)
= q(NvH − C)

(
fN−1
n−1 − fN−1

n

)
+ (NvL − C) fN−1

n by Lemma A.1(i)

> 0⇔ n(1− q)
(N − n)q

=
fN−1
n−1

fN−1
n

>
C −NvL + q(NvH − C)

q(NvH − C)

The statements follow because n(1− q)/((N − n)q) is increasing in n.

Proof of Proposition 1. We show that πInI
(q) ≥ πEnE

(q) if and only if q < q̂ with a

strict inequality on q < q̂ if nI < N and on q > q̂ if nE < N . Below we prove the stronger

claim that for any N and any 0 ≤ n < N , πIn(q) > πEn (q) if and only if q < q̂. The

result for optimized strategies follows quickly from this. Consider the case with q < q̂. If

nI < N and nE = N then πInI
> πIN = (NvH − C)qN = πEN = πEnE

.39 If nI , nE < N then

πInI
≥ maxn<N{πIn} > maxn<N{πEn }= πEnE

. The proof for q > q̂ is an exact parallel. We

now prove the stronger claim.

πIn(q)− πEn (q) =
N∑
k=n

fNk (q)
[
(N − k)vL − k(vH − b̄n)

]
= N

[
(1− q)SN−1

n vL − qSN−1
n−1 (1− hn)(vH − vL)

]
(using respectively Lemma A.1(iv),(iii) and Eq. (4))

= NSN−1
n

[
(1− q)vL − q(vH − vL)

]
= NSN−1

n (vL − qvH)

> 0⇔ q < q̂

for any n ∈ {0, 1, ..., N − 1} since then SN−1
n > 0. Proposition 9 justi�es the restriction

to pure strategies.

Proof of Corollary 2. For q > q̂, where exclusion is optimal, the intuitive result that

pro�ts are decreasing in C and increasing in q is easily veri�ed from the pro�t expression:

πEnE
=

N∑
k=nE

fNk (kvH − C) = Ek[max{0, kvH − C}]

where Ek denotes the expectation operator. Since an increase in q induces a �rst-order

stochastic dominating distribution of k, and the expectation is taken over an increasing

(utility) function, the expectation is increasing in q. The impact of C is more immediate:

pro�ts fall at the rate SNnE
.

For q ≤ q̂, note that πIn = (NvL−C)SNn + (vH − vL)qNfN−1
n−1 , which is clearly strictly

39This statement holds generically, but the inequality is replaced by an equality at the knife-edge case
where nI = N − 1 and n = N deliver identical payo�s, i.e. where ñI = N − 1. This trivial complication
is just a result of the fact that pro�ts are continuous in C, q but the integer-valued nI is not.
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decreasing in C. Taking derivatives with respect to q yields,

∂πIn
∂q

= (NvL − C)(
∂SNn
∂q

) +N(vH − vL)

(
fN−1
n−1 +

∂fN−1
n−1

∂q
q

)
= (NvL − C)NfN−1

n−1 +N(vH − vL)fN−1
n−1

(
1 + q

n− 1− (N − 1)q

q(1− q)

)
(by Lemmas A.1(vi) and (v))

= (NvL − C)NfN−1
n−1 +N(vH − vL)fN−1

n−1

(
n−Nq
1− q

)
=

NfN−1
n−1

1− q

(
(NvL − C)(1− q) + (vH − vL)(n−Nq)

)
=

N(vH − vL)fN−1
n−1

1− q

(
n− ñI

)
Recall that ñI = C−NvL+q(NvH−C)

vh−vL
and nI = dñIe. So nI > ñI except at critical values

of q at which nI = ñI . These exceptional values have measure zero; they occur on

the boundary between strategy types. It follows that the maximal pro�t πInI
is strictly

increasing in q.

Proof of Proposition 2. For the missing part of the proof, note that expected welfare

is: W I =
∑N

k=nBB
I
fNk (kvH+(N−k)vL−C) under inclusivity; WE =

∑N
k=nE

fNk (kvH−C)

under exclusivity. For all k ≥ nBBI , kvH + (N − k)vL −C ≥ max{0, kvH −C}, so clearly

W I ≥ WE on nBBI ≤ nE (which includes all q ≤ q̂).

Proof of Lemma 2. Recall that under full commitment, the pro�t-maximizing mech-

anisms restricted bids to B = {0, vL, b̄nI
}, had p ≤ vL and T ∈

(
T nI
− δ̄nI

, T nI

]
. Without

bid restrictions, the maximal choices, T = T nI
and p = vL prevent bid shaving and it is

then still an equilibrium for H-types to bid b̄nI
and L-types to bid vL. Clearly, L-types

have no pro�table deviation and H-types bid at least vL. As before, H-types are indif-

ferent between bidding vL and b̄nI
. Bidding vL dominates bidding in between vL and b̄nI

.

We now rule out bidding above b̄nI
.

In general, bidding above p = vL can be attractive only if it increases the probability

of production. In a candidate equilibrium where L-types bid p = vL, H-types bid b̄n and

threshold T n = nδ̄n + NvL, an individual buyer bidding b ≥ p generates project success

rate SN−1
` where ` = d b−p

δ̄n
e. Bidding above p reduces by ` the number of the other N − 1

buyers who need to be H-type for the project to succeed. Bid increments that do not

raise ` are weakly dominated, so we need only consider bids of the form b = vL + `δ̄n

for integer values of `. To maintain these equilibrium choices without bid restrictions,

we need to check that H-types are willing to set ` = 1. Deviating to ` = 0 is not a

problem by incentive compatibility in the full-commitment solution. It remains to verify

that deviating to a bid b = vL + `δ̄n is weakly inferior for integer values of ` ≥ 2 in the

case of n = nI , but it is as simple to prove it for all n so we do.
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In the putative equilibrium without bid restrictions, with p = vL and T = NvL+nδ̄n, if

the two types continue to make respective bids, bH = vL+ δ̄n and bL, then the production

probability is SNn . From the perspective of a single buyer of the H-type playing the

equilibrium strategy, this probability is higher at SN−1
n−1 , and falls to SN−1

n if he deviates

to bid vL, but rises to S
N−1
n−` if he deviates to the proposed bid with some ` ≥ 2. The

�rst two options give this buyer the same expected utility because inequality (IC) binds

as Eq. (4); this payo� is (vH − vL)SN−1
n . The deviation option gives,(

vH − vL − `δ̄n
)
SN−1
n−`

So, substituting for δ̄n = hn (vH − vL) and dividing by (vH − vL)SN−1
n−` , we seek to show

that,

(1− `hn) ≤ SN−1
n

/
SN−1
n−` , ∀` ≥ 2

Now the right-hand side can be written as the product of (1− hn) (1− hn−1) .... (1− hn−`),
but hn is increasing in n, so this expression weakly exceeds (1− hn)`. Now hn ∈ [0, 1] so

de�ning a = 1− hn, we have a ∈ [0, 1], so for any ` ≥ 1,

1− a` = (1− a)
(
1 + ...+ a`−1

)
≤ (1− a)`

Rearranging terms and substituting back for a, this gives 1− `hn ≤ (1− hn)`, concluding

the proof of implementation.

This optimal outcome is still uniquely implemented in pure strategy Pareto undom-

inated equilibrium. The only candidates for alternative Pareto undominated equilibria

are where n 6= nI H-types are needed who all bid b′n = (T nI
− (N −n)vL)/n. It is readily

veri�ed that this breaks H's IC when n < nI and when n > nI , it is an equilibrium but

is Pareto-dominated as the entrepreneur and H-types are worse-o�: an H-type buyer

expects to obtain (vH − b′n)SN−1
n−1 < (vH − vL)SN−1

n−1 (as b′n > vL) while in the optimal

equilibrium he obtains (vH − b̄nI
)SN−1

nI−1 = (vH − vL)SN−1
nI
≥ (vH − vL)SN−1

n−1 .

Proof of Proposition 4. We prove that n′I ≤ nI . The statements about pro�ts,

consumer and total welfare follow.

We de�ne for each n,

Cn(q) =
N(vL − qvH) + n(vH − vL)

1− q
(10)

The entrepreneur sets nI = n in the region between curves C = Cn−1(q) and C = Cn(q);

Section 2.3's tie-breaker picks the more e�cient, lower nI on the boundaries. By Lemma 1,

nI = arg minn{C ≤ Cn(q)}. Feasibility of the n-type strategy requires C ≤ T n. In

particular, feasibility is guaranteed for all n ≥ 1 when C = NvL. We show �rst that the
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nI-type strategy is feasible by demonstrating that Cn(q) < T n for all n < N :

N(vL − qvH) + n(vH − vL)

1− q
< NvL + nhn(vH − vL)

⇔ N(vL − qvH) + n(vH − vL) < N(1− q)vL + nhn(1− q)(vH − vL)

⇔ n(vH − vL)(1− hn(1− q)) < qN(vH − vL)

The result follows from Lemma A.1(ix).

Next we show that there exist unique values 0 < q′1 < · · · < q′N−1 so that the en-

trepreneur is indi�erent between strategies of type n and n + 1 (as long as both are

feasible) when q = q′n, independently of C. Note that π′n = (qNSN−1
n−1 − nSNn )δ′n where

δ′n = hn(vH − p′n) = hn(NvH − C)/(N − nhn). Hence,
[
π′n+1 − π′n

]
/(NvH − C) is inde-

pendent of C. There must exist a q′n where the entrepreneur is indi�erent, because the

di�erence is strictly negative when q > 0 is very small while it is strictly positive when

q < 1 is close to one. Straightforward calculations show that a marginal increase in q

above q′n increases the di�erence π′n+1 − π′n, and the uniqueness result follows.

Similar steps show that at qn = n/N , π′n(qn) > π′n+1(qn), which implies that q′n > qn.

It then follows that the optimal inclusive strategy is of type n′I where n
′
I is the smallest

n such that both q ≤ q′n and C ≤ T n.

Proof of Proposition 5. An inclusive strategy with pivot n gives expected revenue,

RI
n(q) = SNn (NvL + E[k|k ≥ n]hn(vH − vL))

= SNn

(
(1− hn)NvL + hn(qNvH)

1− (1− q)hn

)
= NSN−1

n−1 ((1− hn)vL + hn(qvH)) (11)

using Eq. (4) and Lemma A.1(iii) then (ii). SN−1
n−1 falls with n and so does the term in

parentheses for q < q̂ since then vL > qvH ; recall that hn rises with n. RI
n(q) is then

strictly decreasing in n. In particular, when nBB < nI the platform makes strictly higher

expected pro�ts from not-for-pro�ts, proving claim b(i). (This also holds on q = q̂ except

that RI
0(q̂) = RI

1(q̂).)

An exclusive strategy with pivot n gives expected revenue,

RE
n (q) = SNn E[k|k ≥ n]vH = NSN−1

n−1 qvH (12)

Clearly, RE
n (q) is strictly decreasing on n ≥ 1 and increasing in q. Recall that en-

trepreneurs only use exclusive strategies on q > q̂ and on here qvH > vL so RE
n (q) >

RI
n(q). In particular, the platform makes strictly lower pro�t from success-maximizing

entrepreneurs if they adopt inclusive strategies with nBBI = nE, proving claim b(ii). If

instead nBBI < nE, the platform may prefer either not-for-pro�ts for their higher success
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probability or pro�t-maximizers for their higher conditional expected revenue.

When C ≤ NvL, n
BB
I = 0 < nE. For C ≤ vH , nE = 1 and NvL = RI

0(q̂) = RE
1 (q̂)

and RI
0(q) < RE

1 (q) for all q > q̂. Hence, we de�ne q̄(C) = q̂ in this region. For

C > vH , nE > 1 and RI
0(q̂) > RE

nE
(q̂). RE

nE
(q) is strictly increasing in q and RE

nE
(1) =

NvH > NvL = RI
0(q). Continuity implies uniqueness and existence of q̄(C) de�ned by

NvL = RE
nE

(q̄(C)). Finally, de�ne q(C) = (NvL − C)/(NvH − C). Then for q ≤ q(C),

nI = 0, because q(C) = C−1
0 (q) where C0 was de�ned in the proof of Proposition 4. This

proves claims a(i),(ii),(iii).

Proof of Proposition 6. Using Lemma A.1 (iii) and (ii), we can rewrite the pro�t as,

π(p) = −SNn C +mpqNSN−1
n−1 =

(
mpqN − C

)
SNn +mpqN(1− q)fN−1

n−1

Using Lemma A.1 (vi) and (v), the optimal p must satisfy,

0 =
∂π

∂p
=

(
mpqN − C

)
NfN−1

n−1 q
′ + (mqN +mpq′N)SNn

+mpqN(1− q)fN−1
n−1

n− 1− (N − 1)q

q(1− q)
q′

+
(
mqN(1− q) +mpN(1− 2q)q′

)
fN−1
n−1

Using again Lemma A.1 (ii), and de�ning c = C/Nm, this is equivalent to,

0 =
(
pqN − cN

)
fN−1
n−1 q

′ + (q + pq′)
(
SN−1
n−1 − (1− q)fN−1

n−1

)
+pfN−1

n−1

(
n− 1− (N − 1)q

)
q′

+
(
q(1− q) + p(1− 2q)q′

)
fN−1
n−1

Taking out a factor SN−1
n−1 and rearranging yields,

0 = q + pq′ +
(
(n− 1)p− cN

)
hnq

′.

Proof of Proposition 8. Given our assumptions, if production occurs, new buyers

will be charged price p2 = vH . Hence, H-type funders will bid up to vH in crowdfunding,

and, by setting p = vH , the entrepreneur learns the number k of H-types among the

crowd. This signals a posterior probability that a new buyer is H-type, given by

η(k) =
qGfN1

k (qG) + qBfN1
k (qB)

fN1
k (qG) + fN1

k (qB)
(13)

which is increasing in k. Note that η(N1) tends to qG as N1 tends to in�nity. Our

assumptions then imply that we can de�ne N1 = min{N1 : η(N1) > (C−N1vH)/(N2vH)}.
When N1 ≥ N1, signalling has some chance to convince the entrepreneur to produce and

sell ex-post at vH because that will be pro�table then. We now de�ne n̂E as the minimal

n ≥ N1 for which η(n)N2vH ≥ (N1 +N2 − n)vL:
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n̂E = min {k : η(k)N2vH ≥ max{C − kvH , (N1 +N2 − k)vL}} (14)

N1 ≥ n̂E because q̄ ≥ q̂. Consider the crowdfunding mechanism with minimal price p =

vH and threshold T = n̂EvH . If T is reached, i.e., k ≥ n̂E, the entrepreneur produces and

then sets second period price p2 = vH . This price is optimal because expected revenue in

the second period is then η(k)N2vH ≥ η(n̂E)N2vH ≥ (N1 +N2− n̂E)vL ≥ (N1 +N2−k)vL.

Moreover, the global strategy yields positive pro�ts because when production occurs, it

delivers expected pro�ts, kvH + η(k)N2vH − C ≥ n̂EvH + η(n̂E)N2vH − C > 0. When

C > T = n̂EvH , aggregate funds may not su�ce to cover �xed cost and additional TF is

needed.
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