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Abstract

What is the role of monetary policy in a bubbly world? To address this question,

we study an economy in which financial frictions limit the supply of assets. The ensuing

scarcity generates a demand for “unbacked” assets, i.e., assets that are backed only by

the expectation of their future value. We consider two types of unbacked assets: bubbles,

which are created by the private sector, and money, which is created by the central bank.

Bubbles and money share many features, but they also differ in two crucial respects.

First, while the rents from the creation of bubbles accrue to entrepreneurs and foster

investment, the rents from money creation accrue to the central bank. Second, while

bubbles are driven by market psychology, and can rise and fall according to the whims of

the market, money is under the control of the central bank. We characterize the optimal

monetary policy and show that, through its ability to supply assets, monetary policy plays

a key role in the bubbly world. The model sheds light on the recent expansion of central

bank liabilities in response to the bursting of bubbles.
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1 Introduction

We live in a world of low interest rates and volatile asset values. Over the last three decades,

real interest rates have declined continuously throughout advanced economies, having been in

negative territory throughout much of the last decade. Although there are different views as to

the ultimate cause of this decline, most agree that it reflects some form of asset scarcity, i.e.,

an increased demand for assets that raises their price thereby depressing returns. Over these

same three decades, Japan, the United States, and parts of the Eurozone have all exhibited

large booms and busts in asset prices with significant consequences for economic activity. The

long slump that characterized Japan during the 1990s, as well as the most recent recessions in

the United States and the Eurozone periphery in the aftermath of the global financial crisis, all

coincided with the bursting of real estate and equity bubbles.

How should monetary policy be conducted in this bubbly world? Most of the debate sur-

rounding this question has focused on the ability of interest rate policy to prevent or control the

appearance and growth of bubbles. But there is an alternative aspect of policy that was central

to all of these episodes: the collapse of asset prices was accompanied by a fall into a liquidity

trap and a substantial growth of central bank balance sheets. As the value of private assets

evaporated, market participants turned to central banks for stores of value, which supplied them

by expanding the monetary base (mostly in the form of reserves, but also through cash). In the

United States, for instance, the monetary base grew fivefold, from approximately $880 billion

in 2008 to a peak of $4.1 trillion in 2014. The Eurozone’s monetary base experienced a similar

expansion, from approximately e800 billion in 2008 to e3.5 trillion in 2018. This suggests that

a key aspect of monetary policy in dealing with bubbles and their aftermath has been precisely

to supply stores of value. Yet this role is completely absent in the New Keynesian paradigm

that has dominated monetary economics over the last few decades, which emphasizes the role

of money as a unit of account and of nominal rigidities as drivers of monetary transmission

(e.g., Gaĺı (2009) and Woodford (2011)).

Without denying the usefulness of this paradigm, the events outlined above suggest that a

shift in perspective may be called upon. In a bubbly world (i.e., a world of low interest rates,

and large booms and busts in asset prices), we can no longer disregard the role of money as a

store of value, and the role of monetary policy as a supplier of stores of value. This raises a

number of fundamental questions. When is money valuable as a store of value? How is this

value connected to the rise and bursting of bubbles? Can the central bank always supply stores

of value? If so, how much should it supply? This paper develops a framework to address these

questions.
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To be sure, we are not the first to think of money as a store of value, as there is an old tradition

in economics of adopting this perspective (e.g., Wallace (1981)). We build on that tradition and

its insights, but combine it with the recent literature on asset bubbles and financial frictions

(e.g., Martin and Ventura (2018)). The framework that emerges provides a unified view on the

connection between low interest rates, booms and busts in asset prices, and the role of money

as a store of value. In particular, it enables us to study the similarities and differences between

money and bubbles, their interaction, and the conduct of monetary policy in a bubbly world. In

order to make the results as stark as possible, we completely neglect the role played by money

as a unit of account and by nominal rigidities emphasized in the literature. Nonetheless, as we

shall see, monetary policy retains a powerful role.

The main elements of this view are easily explained. Consider an overlapping-generations

world, in which some agents (entrepreneurs) want to borrow because they have productive

investment opportunities, and other agents (savers) want to save because they do not have

them. Normally, entrepreneurs would supply “backed” assets, i.e., assets backed by the fruits

of their investment, and savers would demand these assets as stores of value. Financial frictions,

though, restrict the supply of backed assets and depress the interest rate. This opens the door

for “unbacked”assets to be issued, i.e., assets that are backed only by expectations of their future

value. Unbacked assets can be thought of as pyramid schemes, in which present contributions

to the schemes (present purchases of the asset) give the right to receive future contributions

(future purchases of the asset). As long as the expected return to these assets or pyramid

schemes is sufficiently high, agents will be willing to hold them in equilibrium.

The dynamics of unbacked assets are driven by two forces, with differing effects on economic

activity. First, their creation generates a wealth effect. New unbacked assets generate a rent

for their creators because they are costless to produce and yet they have positive market value.

For example, if an entrepreneur issues debt that is unbacked because the market expects it to

be rolled over indefinitely, then she receives a pure rent. Second, the existence of unbacked

assets generates an overhang effect. Old unbacked assets must be purchased and this diverts

resources that could have been used for productive investment. In our example, the savers that

actually finance the roll-over of the entrepreneur’s debt must divert their funds from other uses.

In short, the wealth effect of unbacked assets depends on their issuer, whereas the overhang

effect depends on their buyer.

We consider two types of unbacked assets. The first one is created by private entrepreneurs,

and we refer to it as a bubble. The second one is created by a public central bank, and we

refer to it as money. Money can be valued as an asset if its expected rate of return (the
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inverse of the rate of inflation) equals the real interest rate. In this case, the economy is in a

liquidity trap. Both bubbles and money have wealth and overhang effects, but they differ in

two crucial respects. First, bubbles are superior to money because their wealth effect accrues

to entrepreneurs and, as a result, they foster investment. The wealth effect of money (i.e.,

seigniorage) accrues instead to the central bank, and its effect depends on how it is distributed

among economic agents. Second, bubbles are inferior to money because they are driven by

market psychology, so that their behavior may be volatile and unpredictable, whereas money is

under the control of the central bank. Ultimately, nothing guarantees that the size of bubbles

supplied by the market will be optimal.

We analyze the role of monetary policy in this bubbly world. To constrain the role of policy

as much as possible, we restrict the central bank’s actions along three key dimensions. First,

we assume that the central bank lacks fiscal backing, so that it cannot use tax proceeds to

back the value of money. Second, we assume that the central bank is constrained in its use of

seigniorage, so that it cannot choose how to distribute this revenue between entrepreneurs and

savers. Finally, we assume that the central bank cannot affect market psychology, so that it

must take the evolution of private bubbles as given. Despite these restrictions, we show that

monetary policy has the ability to supply unbacked assets and – through this ability – plays a

powerful role.

We find two main results. First, we show that the central bank can always intervene in the

bubbly world, adjusting the money supply to provide unbacked assets over and above those

supplied by private bubbles. Should it choose to do so, moreover, we show that the central

bank can fully stabilize the economy’s total supply of unbacked assets at a target of its choice!

The choice of target is constrained by the market psychology that governs private bubbles,

however. In particular, the central bank can only add to – but not substract from – the

unbacked assets supplied by private bubbles, and it is limited to implementing policies that

guarantee non-explosive paths for these bubbles.

Second, we show that the central bank should intervene in the bubbly world. We characterize

an optimal monetary policy that – by adjusting the supply of unbacked assets – raises the

consumption of all generations along all histories. To derive this result, we identify sequences

of unbacked assets that are Pareto optimal, in the sense that – given any such sequence – it is

impossible to raise the consumption of any one generation without reducing it for some other

generation. The intuition here is the familiar one, i.e., unbacked assets are beneficial insofar as

their overhang effect crowds out dynamically inefficient investments. By adjusting its supply

of unbacked assets, monetary policy can ensure Pareto optimality.
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In a nutshell, the main takeaway of the theory is that central banks have a key role to play

in the bubbly world: to supply assets. This resonates well with the conduct of monetary policy

in the wake of the global financial crisis, when central banks expanded their balance sheets in

response to the bursting of bubbles. But it is also quite different. In a standard balance sheet

expansion, the central bank issues some assets and purchases others, leaving the net supply of

assets available to the private sector unchanged. In the bubbly world, instead, the key aspect

of welfare-enhancing interventions is that they expand the net supply of assets available to the

private sector, thereby soaking up inefficient investment.

Finally, the theory also clarifies how the central bank’s ability to supply assets is shaped

by different aspects of its institutional design. First, although the absence of fiscal backing

does not limit the central bank’s ability to supply assets, it may lead to volatile inflation.

The reason is that the central bank can always expand the supply of real balances when there

is demand for unbacked assets, but – without fiscal backing – the only way of reducing real

balances when there is no such demand is by inflating their value away. Thus, if inflation

volatility is costly, so is asset-supply stabilization in the absence of fiscal backing. Second, the

distribution of seigniorage is crucial in shaping the aggregate effects of monetary policy. In

our benchmark, bubbles outperform monetary policy because the central bank cannot target

the distribution of seigniorage to entrepreneurs. If it could do so, seigniorage could be used to

foster investment and monetary policy could potentially replicate the effects of private bubbles.

Somewhat paradoxically, we show that this might come at the cost of creating the volatility

typically associated with bubbles. Finally, the interaction between monetary policy and market

psychology is central. Our benchmark shows that monetary policy is powerful even when the

central bank cannot affect market psychology: if it could do so, monetary policy would be even

more powerful in the sense that it could prevent “undesirable” bubbles altogether.

1.1 Related literature

We build on the traditional models of rational bubbles (Samuelson, 1958; Tirole, 1985) and on

the recent literature connecting bubbles and credit (Caballero and Krishnamurthy, 2006; Farhi

and Tirole, 2011; Martin and Ventura, 2012, 2015, 2016; Miao and Wang, 2012, 2018). Although

we share many similarities with these frameworks, these papers do not study monetary policy.

A small literature has considered the role of monetary policy in economies with rational bubbles,

but it abstracts from credit and financial frictions (Gaĺı, 2014, 2017). We are thus among the
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first to provide a model of rational bubbles, credit cycles and monetary policy.1

Our model draws heavily on the framework of Martin and Ventura (2012, 2016). They

showed that financial frictions can give rise to bubbles, and that bubbles can expand economic

activity by relaxing borrowing constraints. They also argued that governments could use their

ability to tax to sustain equilibrium bubbles. In this paper, we substantially enhance our

general understanding of the framework. First, we extend the model along a key dimension

by introducing money and by studying the conduct of monetary policy. We show that, even

without taxation or fiscal transfers, a central bank can use monetary policy to control the

supply of assets. Second, we characterize Pareto optimal monetary policies, i.e., the optimal

control of public bubbles in response to fluctuations in private bubbles. To the best of our

knowledge, this is the first paper in the literature to do so.

Our work is also closely related to the literature on the “financial accelerator,” in which

borrowers’ net worth in general - and asset prices in particular - determine the level of financial

intermediation and economic activity (Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997).

Building on this literature, some recent work has shown that balance sheet policies by the

central bank can help alleviate financial frictions during periods of financial stress (Gertler and

Kiyotaki, 2010; Gertler and Karadi, 2011; Del Negro et al., 2017). Our paper differs from this

body of work in two key dimensions. First, in our theory net worth and asset prices are not

just a transmission channel for fundamental shocks: instead, they are driven by expectations

and can therefore be a source of shocks themselves. Second, in these models the central bank

expands its balance sheet to increase lending to constrained agents, or to sustain asset prices

and thus the value of their collateral. We emphasize instead a different role for balance sheet

policies. In our theory, the economy’s supply of assets is scarce due to financial frictions, leading

to inefficient investment. Against this background, the central bank expands its balance sheet

to increase the economy’s stock of assets and to reduce inefficient investment. We thus show

that a balance sheet expansion by the central bank might increase welfare, even if it does not

lead to an increase in borrowers’ net worth or in the value of their collateral.

Our paper also contributes to the vast literature on liquidity traps (Krugman, 1998; Eggerts-

son and Woodford, 2003; Di Tella, 2018). In particular, it is related to the work identifying

financial shocks as the source of liquidity traps (Eggertsson and Krugman, 2012; Guerrieri and

Lorenzoni, 2012). Different from existing work, we provide a framework where financial shocks

arise due to changes in expectations. Our paper is also closely related to the literature on secular

stagnation (Hansen, 1939; Summers, 2013; Krugman, 2013), which is the idea that structural

1In contemporaneous work, Wang et al. (2017) also study the role of monetary policy in a world with rational
bubbles. However, they do not consider the central bank’s role as a supplier of stores of value.
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factors can depress interest rates and generate long-lasting liquidity traps. A recent literature

has formalized the secular stagnation hypothesis in microfounded frameworks (Benhabib et al.,

2001; Eggertsson and Mehrotra, 2014; Caballero and Farhi, 2014; Benigno and Fornaro, 2015;

Bacchetta et al., 2015). We contribute to this literature by showing that a long-lasting liquidity

trap can be the outcome of a bubble crash, which depresses the economy’s supply of assets.

2 A model of money and bubbles

We develop an overlapping-generations model with bubbles and money. Entrepreneurs invest

and raise funds by issuing debts and bubbles. The former are backed by future output, while

the latter are not. Savers purchase these assets, and they might also hold money if inflation is

low enough. The focus of the model is on the interaction between money and bubbles. Both

are unbacked assets, but they differ in two crucial aspects. First, bubbles are issued by the

entrepreneurs, while money is issued by the central bank. Second, there is an arbitrarily small

but stable demand for money, while there is no such demand for bubbles.

2.1 Setup

We consider an economy populated by overlapping generations of individuals that live for two

periods. All generations have the same size, which is normalized to one. Time is discrete and

infinite, t ∈ {0, ...,∞}. This economy does not experience technology or preference shocks,

but it displays stochastic equilibria with asset price and monetary policy shocks. We define ht

as the realization of these shocks in period t; ht as a history of shocks until period t, that is,

ht = {h0, h1, ..., ht}; and Ht as the set of all possible histories until period t.

The technology to produce goods takes the standard Cobb-Douglas form:

Yt =
(
γt · Lt

)1−α ·Kα
t , (1)

with α ∈ (0, 1), where Yt, Lt and Kt denote the output, the labor force and the capital stock

in the economy. Labor productivity grows at rate γ > 1. Each generation supplies one unit of

labor during youth, so that Lt = 1. Capital fully depreciates in one period. To produce one

unit of capital for period t+ 1, one unit of goods must be invested in period t. Factor markets

are competitive so that all factors are employed and paid their marginal products:

Wt = (1− α) · γ(1−α)·t ·Kα
t (2)
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RK
t = α · γ(1−α)·t ·Kα−1

t (3)

where Wt and RK
t are the wage and the rental rate, respectively.

Each generation contains two agent types: entrepreneurs and savers. Both types maximize

old-age consumption:

U i
t = EtC

i
t+1, (4)

where U i
t and Ci

t+1 are the utility and consumption of agent i of generation t.2 Thus, young

agents save their entire income and choose those assets that offer the highest expected return.

All agents are endowed with one unit of labor when young, but they differ in terms of the

assets that they can hold and issue. While entrepreneurs can hold capital and issue private

assets in the financial market, savers can do neither. Throughout, we assume that the share of

entrepreneurs ε is small, i.e., ε < 1
2
.

Entrepreneurs issue two types of assets. The first one is debt backed by the return to a unit

of capital. Creating these debts costs a fraction φ of the investment. Thus, the return to these

debts is given by
RKt+1

1+φ
. One interpretation of the intermediation cost φ is that there is some need

to monitor or screen entrepreneurs.3 The second type of asset is unbacked and we refer to it

as a bubble. Let Bt be the value of all bubbles started by earlier generations of entrepreneurs,

i.e., “old” bubbles. Let Nt be the value of all bubbles started by the current generation of

entrepreneurs, i.e., “new” bubbles. Free-disposal implies that old and new bubbles must be

non-negative: Bt ≥ 0 and Nt ≥ 0. The return to holding all bubbles from t to t+ 1 is given by
Bt+1

Bt+Nt
. To see this, note that the value of all bubbles traded in period t is Bt +Nt in period t,

and Bt+1 in period t+ 1.

There is a central bank that issues unbacked money. Let Mt be the real value of money in

period t. Let µt+1 be the (gross) growth rate of nominal money from t to t + 1. Thus, the

return to holding money from t to t+ 1 is given by:

π−1
t+1 = µ−1

t+1 ·
Mt+1

Mt

(5)

where πt+1 is the (gross) inflation rate from period t to period t+ 1. Seigniorage (or the value

2All variables are indexed by ht. We could be more explicit about this dependence by writing Cit+1,ht+1 ,
but we prefer to streamline the notation and omit the history sub-index.

3E.g., suppose each entrepreneur has access to an unbounded pool of investment projects. Each project
allows an entrepreneur to convert a unit of the consumption good into a unit of productive capital. The
projects, however, also allow the entrepreneur to divert all the returns to capital for private consumption
unless a monitoring cost is paid. This cost consists of φ units of consumption good per project. It is then
straightforward to show that: (i) the equilibrium return to projects financed by savers is RKt+1/(1 + φ), since
backed debt contracts are only possible if monitoring costs are paid; and (ii) the equilibrium return to projects
financed by entrepreneurs is RKt+1, since monitoring is not needed for self-financed projects.
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of “new” money printed in period t) is given by µt−1
µt
·Mt. The rest is “old” money printed in

earlier periods. New money is distributed lump-sum among the old. Since the central bank

does not have the ability to tax, seigniorage must be non-negative, i.e., µt ≥ 1 for all t and ht.

For technical reasons, namely to generate a positive demand for money, we assume that there

is a small subset of savers, with mass υ ≈ 0, who do not participate in financial markets and

use all their labor income to purchase money. We refer to these savers as money holders.4

2.2 The value of money and bubbles: three regimes

Let Rt+1 be the real interest or the required expected return to assets in the financial market.

Then, the value of bubbles and money is determined as follows:

Bt +Nt =
1

Rt+1

· EtBt+1, (6)

Mt = max

{
υ ·Wt,

1

Rt+1

· Et
{
Mt+1

µt+1

}}
. (7)

Equation (6) says that the value of bubbles today is their expected value tomorrow discounted.

Equation (7) says that, if the expected value of money tomorrow discounted is large enough,

savers hold money and its value exceeds the savings of money holders: Mt > υ ·Wt. In this

case, Etπ
−1
t+1 = Rt+1, and we say that the economy is inside the liquidity trap. If instead the

expected value of money tomorrow discounted is not large enough, savers do not hold money

and Mt = υ ·Wt. In this case, Etπ
−1
t+1 < Rt+1, and the economy is outside the liquidity trap.

This economy can be in one of three regimes depending on the value of unbacked assets. In

the first regime, unbacked assets fall short of the combined savings of money holders and savers,

i.e., Mt + Bt +Nt < (1− ε) ·Wt. Savers hold backed assets and, possibly, also some unbacked

assets. Entrepreneurs invest their wage plus the proceeds from selling assets. Thus, we have

that:

Kt+1 = ε ·Wt +Nt +
(1− ε) ·Wt −Mt −Bt −Nt

1 + φ
, (8)

Rt+1 =
RK
t+1

1 + φ
. (9)

The capital stock equals the wage of the entrepreneurs plus the revenue raised by selling assets.

4All monetary models introduce a small (transactions-motivated) demand for money. This is often done by
including money in the utility function, or by adding a cash-in-advance constraint. One can interpret our money
holders in one of these two ways. Or one can interpret them as agents that have a high cost of participating in
the financial market.

9



Since bubbles are costless to issue, they generate one unit of capital per unit sold. Since debts

are costly to issue, they generate only (1 + φ)−1 units of capital per unit sold. Since the marginal

buyer of unbacked assets is a saver, the required return to unbacked assets is
RKt+1

1+φ
.

In the second regime, unbacked assets equal the combined savings of money holders and

savers, i.e., Mt + Bt + Nt = (1− ε) · Wt. In this regime, savers hold only unbacked assets.

Entrepreneurs do not hold unbacked assets and invest their wage plus the proceeds from selling

bubbles. Thus, we have that:

Kt+1 = ε ·Wt +Nt, (10)

Rt+1 ∈
[
RK
t+1

1 + φ
,RK

t+1

]
. (11)

The capital stock equals the wage of the entrepreneurs plus the revenue from selling bubbly

assets. The value of unbacked assets has grown large enough to crowd out all debts. Since the

marginal buyer of unbacked assets depends on the direction of the change, the required return

to unbacked assets is now higher than
RKt+1

1+φ
, but lower than RK

t+1.

In the third regime, unbacked assets exceed the combined savings of money holders and

savers, i.e. Mt + Bt + Nt > (1− ε) ·Wt. In this regime, both savers and entrepreneurs hold

unbacked assets. Thus, we have that:

Kt+1 = Wt −Mt −Bt, (12)

Rt+1 = RK
t+1. (13)

The capital stock equals the wage of the entrepreneurs, plus the revenue from selling bubbles

minus their purchases of money and bubbles. The value of unbacked assets has grown so large

that it does not only crowd out all debts, but it also crowds out some investments financed by the

entrepreneurs themselves. Since the marginal buyer of unbacked assets is now an entrepreneur,

the required return to unbacked assets is RK
t+1.

We summarize this discussion as follows:

Kt+1 = min

{
ε ·Wt +Nt +

(1− ε) ·Wt −Mt −Bt −Nt

1 + φ
,Wt −Mt −Bt

}
, (14)

Rt+1


=

RKt+1

1+φ
if Mt +Bt +Nt < (1− ε) ·Wt,

∈
[
RKt+1

1+φ
, RK

t+1

]
if Mt +Bt +Nt = (1− ε) ·Wt,

= RK
t+1 if Mt +Bt +Nt > (1− ε) ·Wt.

(15)
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Equations (14)-(15) show the evolution of the capital stock and the real interest rate as a

function of factor prices and the value of unbacked assets.

We define a competitive equilibrium of this economy as an initial condition K0 and a non-

negative sequence for
{
Wt, R

K
t , Bt, Nt,Mt, µt, Kt, Rt

}
that satisfies Equations (2)-(3), (6)-(7)

and (14)-(15) and Kt > 0 and µt ≥ 1 for all t and ht ∈ Ht. This guarantees that all individuals

maximize and all markets clear in all periods and histories.

It is worth here to say a few words about the sources of uncertainty and, therefore, the

collection of sets Ht (one for each t) that need to be considered. In period t, all individuals

know {Bt, Nt,Mt, µt, Kt}. It follows from Equations (2)-(3) and (14)-(15) that Kt+1 must be

known also.5 There are however, two potential sources of uncertainty that individuals could

face. The first one is the value of bubbles and money tomorrow, i.e., {Bt+1, Nt+1,Mt+1}. As

we shall see, under some parameter conditions, there are random sequences for these variables

that satisfy Equations (6)-(7). When this is the case, we say that there are asset price shocks

since individuals cannot perfectly forecast the value of future bubbles and money. The second

potential source of uncertainty is future money growth, i.e., {µt+1}. Monetary policy could be

uncertain because it responds to asset price shocks. Monetary policy could also add additional

sources of uncertainty. When this is the case, we say that there are monetary policy shocks since

individuals cannot perfectly forecast future money growth conditional on asset price shocks.

Thus, the collection of sets Ht must be specified for each competitive equilibrium.

2.3 Constructing competitive equilibria

To study the dynamics of this economy, we define kt as the capital stock in efficiency units, i.e.,

kt ≡ γ−t · Kt. Also, we define bt, nt and mt as the value of bubbles and money as a share of

aggregate wages, i.e., bt ≡ Bt
Wt

, nt ≡ Nt
Wt

and mt ≡ Mt

Wt
. By using these de-trended variables, we

make the system stationary.

A useful property of this model is that we can construct competitive equilibria recursively.

Substituting Equations (2)-(3) and (14)-(15) into Equations (6)-(7), we obtain the following

system of equations:

bt + nt


= [1−mt − bt + φ · (ε+ nt)] · 1−α

α
· Etbt+1 if mt+bt

1−ε−nt < 1,

∈
[
(1 + φ) · (ε+ nt) · 1−α

α
· Etbt+1, (ε+ nt) · 1−α

α
· Etbt+1

]
if mt+bt

1−ε−nt = 1,

= (1−mt − bt) · 1−α
α
· Etbt+1 if mt+bt

1−ε−nt > 1,

(16)

5Note that factor prices and the real interest rate are functions of Kt and t only. Thus, it is enough to focus
on {Bt, Nt,Mt, µt,Kt}.
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mt = lim
υ→0

max {υ,m∗t} , (17)

where m∗t is given as follows:

m∗t


= [1−m∗t − bt + φ · (ε+ nt)] · 1−α

α
· Et

{
mt+1

µt+1

}
if

m∗t+bt
1−ε−nt < 1,

∈
[
(1 + φ) · (ε+ nt) · 1−α

α
· Et

{
mt+1

µt+1

}
, (ε+ nt) · 1−α

α
· Et

{
mt+1

µt+1

}]
if

m∗t+bt
1−ε−nt = 1,

= (1−m∗t − bt) · 1−α
α
· Et

{
mt+1

µt+1

}
if

m∗t+bt
1−ε−nt > 1.

(18)

Note that, from now on, we focus on the limiting case in which υ → 0. When money balances

are only held by money holders, we will abuse language and say that mt = 0, even though it

should be understood that the real value of money in our setting is always positive.

The key observation is that the capital stock is not present in Equations (16)-(17)-(18) and,

as a result, the model has a recursive structure. Any non-negative sequence {bt, nt,mt, µt}
such that mt + bt < 1 and µt ≥ 1 is part of a competitive equilibrium if it satisfies Equations

(16)-(17)-(18) for all t and ht.6 Let E be the set that contains all such sequences. The first step

to construct a competitive equilibrium is to pick a sequence from this set.

The second step is to determine the implications of the chosen sequence for the capital stock

and consumption. It follows from Equations (2) and (14) that:

kt+1 = max

{
1−mt − bt + φ · (ε+ nt)

1 + φ
, 1−mt − bt

}
· 1− α

γ
· kαt , (19)

ct = [α + (mt + bt) · (1− α)] · kαt (20)

where ct ≡ γ−t·Ct and Ct is the average consumption at time t.7 For any sequence {bt, nt,mt, µt},
Equations (19)-(20) describe the evolution of the capital stock and consumption from any initial

condition k0 > 0.

Unbacked assets have two key effects, as shown by Equations (19)-(20). The first one is an

intragenerational transfer equal to the supply of new bubbles that young entrepreneurs sell to

young savers, i.e., nt. This “wealth” effect of bubble creation transfers resources from savers

to entrepreneurs, raising the capital stock. Note that money creation also has a wealth effect

that transfers resources to the central bank in the form of seigniorage: given our assumption

on the distribution of seigniorage to the old, however, it does not affect capital accumulation.

The second effect is an intergenerational transfer equal to the supply of money and old bubbles

6The condition mt + bt < 1 is equivalent to kt+1 > 0.
7Formally, Ct = RKt ·Kt +Mt +Bt, since the old finance their consumption with their capital income, plus

the proceeds of selling their (old plus new) money, and their (old) bubbles.
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that the old sell to young savers, i.e., mt + bt. This “overhang” effect is the same for money

and bubbles, and – by transferring resources from savers to the old – it raises consumption by

reducing the capital stock. Most of the analysis that follows can be understood in terms of

these two transfers or effects. Their relative strength determines whether unbacked assets have

an expansionary or a contractionary effect on capital accumulation.

3 Monetary policy: general considerations

We know now how to construct competitive equilibria and evaluate them. For each sequence

{bt, nt,mt, µt} ∈ E , Equation (19) generates a unique path for kt from any initial condition

k0 > 0. Thus, we refer somewhat loosely to E as the set of all equilibria. The next steps are to

characterize this set, and then choose equilibria within it.

3.1 The bubbly world

The set E contains all sequences {bt, nt,mt, µt} that are part of a competitive equilibrium.

Sequences such that {bt, nt,mt, µt} = {0, 0, 0, µt} for all t and ht describe equilibria in which

there is no demand for unbacked assets. All other sequences describe equilibria in which there

are some histories with a positive demand for unbacked assets in some periods. We say that

this demand is extreme if the economy is in the second or third regimes described in Section

2.2. Recall that in these regimes only bubbles are traded in the financial market. If the demand

for unbacked assets is not extreme, the economy is in the first regime of Section 2.2. Here, both

backed debts and bubbles are traded simultaneously in the financial market.

The following proposition provides a characterization of the set E in terms of these regimes.

Proposition 1 E always contains sequences such that {bt, nt,mt, µt} = {0, 0, 0, µt} for all t

and ht.

1. Non-bubbly world. If α
1−α > max

{
1 + φ · ε, 1

4
· 1+φ

1−ε

}
, then E contains no additional

sequences.

2. Bubbly world. If α
1−α < max

{
1 + φ · ε, 1

4
· 1+φ

1−ε

}
, then E also contains sequences with a

positive demand for unbacked assets. Moreover,

(i) if (1 + φ) · ε < α
1−α , then E contains no sequences with an extreme demand for

unbacked assets;
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(ii) if (1 + φ) · ε > α
1−α , then E also contains sequences with an extreme demand for

unbacked assets.8

Our proof of this result proceeds as follows. First, showing that the set E contains a sequence

{bt, nt,mt, µt} = {0, 0, 0, µt} for some {µt} is straightforward. Second, we characterize the

“most sustainable” sequence {bt, nt,mt, µt} ∈ E where bt > 0 and/or nt > 0 and/or mt > 0 for

some t and ht. If this sequence implies an explosive path for either bubbles or money, there

cannot be another sequence with the property that bt > 0 and/or nt > 0 and/or mt > 0 for some

t and ht that is non-explosive.9 We show that the condition α
1−α > max

{
1 + φ · ε, 1

4
· 1+φ

1−ε

}
is necessary and sufficient for this most sustainable sequence to be explosive. Instead, the

condition (1 + φ) · ε > α
1−α is necessary and sufficient for it to be explosive if the equilibrium is

ever outside of the first regime described in Section 2.2.

Figure 1 provides a graphical illustration of Proposition 1. The demand for unbacked assets

is positive whenever the return to backed debts is low enough. This depends on the values of α

and φ.10 A low value of α reduces the marginal product of capital. A high value of φ reduces

the share of this marginal product that can be appropriated by the savers. Both depress the

return to backed debts and create the conditions for unbacked assets to have positive values.

The unshaded region at the top of the figure depicts the non-bubbly world, where the return

to backed debts is high, and there is thus no demand for unbacked assets. Instead, the other

two regions depict the bubbly world, where the return to backed debts is low, and there is thus

a potential demand for unbacked assets. This demand is not extreme in the shaded region of

the figure, but it is extreme in the unshaded region.

In the non-bubbly world, the capital stock and consumption are given by:

kt+1 =
1 + φ · ε

1 + φ
· 1− α

γ
· kαt , (21)

ct = α · kαt . (22)

Thus, from any initial condition, k0 > 0, these variables monotonically and deterministically

8All formal proofs can be found in the Appendix. Throughout, we ignore the non-generic parameter cases

where α
1−α = max

{
1 + φ · ε, 1

4 ·
1+φ
1−ε

}
or (1 + φ) · ε = α

1−α .
9The process for bt or mt is explosive if mt + bt ≥ 1 with positive probability in finite time.

10This discussion keeps ε < 1
2 fixed in the background. Since 1 − ε is the share of savings that need to be

intermediated, the effect of an increase in ε is similar to that of an increase in φ.
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Figure 1: Illustrates combinations of α and φ such that: there is no demand for unbacked assets
(top-unshaded region); there is potential demand for unbacked assets that is not extreme (shaded
region); and there is potential demand for unbacked assets that is extreme (bottom-unshaded region).

converge to:

k∞ =

(
1 + φ · ε

1 + φ
· 1− α

γ

) 1
1−α

, (23)

c∞ = α ·
(

1 + φ · ε
1 + φ

· 1− α
γ

) α
1−α

(24)

The economy exhibits standard growth dynamics without asset price shocks.

The non-bubbly world is very quiet and monetary policy makes no difference. We shall not

analyze it further. Instead, we focus on the bubbly world from now on. To streamline the

discussion, we also restrict our analysis to the shaded parameter region of Figure 1. That is, we

focus on the case in which the demand for unbacked assets is never extreme and the economy

always remains in the first regime described in Section 2.2. Though a full analysis of the bubbly

world that includes the parameter region with an extreme demand for unbacked assets is also

possible, it is cumbersome and adds few additional insights.

3.2 A model of market psychology

The bubbly world is characterized by multiple equilibria, each of which corresponds to a different

sequence {bt, nt,mt, µt} ∈ E . To select among them, we introduce now the concept of market

psychology. Formally, we define a market psychology P as a rule to produce a subset EP ⊆ E ,
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i.e., a selection rule that discards equilibria that are not in EP . We say that a market psychology

P is feasible if EP is non-empty.

Next, we define M to denote a monetary policy rule, i.e., a sequence {µt} such that µt ≥ 1

for all t and ht. Given a market psychology P , we let EM,P ⊆ EP be the subset of EP containing

all equilibria that are consistent with M. We say that M is feasible if EM,P is not empty. We

say that M is decisive if EM,P is a singleton. That is, given a market psychology, a decisive

monetary policy rule selects one equilibrium only. Instead, a monetary policy that is feasible

but not decisive selects two or more equilibria.

This procedure to select equilibria could be interpreted as a sequential game between nature

and the central bank. Nature ‘moves first’ and picks a market psychology P . The central bank

‘moves second’ and picks a monetary policy M that is feasible given this market psychology.

In this section, we propose a specific class of market psychologies and, in the next section, we

search for an optimal monetary policy rule conditional on this class of market psychologies.

Thus, we are essentially adopting the role of a central banker who is designing monetary policy

with a limited ability to influence market sentiment.

We focus on a class of market psychologies defined in terms of an initial condition b0 and two

types of shocks: (i) bubble return shocks: ut+1 ≡ bt+1

Etbt+1
≥ 0; and (ii) bubble-creation shocks:

nt ≥ 0. Let S = {(u1, n1) , (u2, n2) , ..., (uS, nS)} be a finite state space for these shocks and let

T be an S × S matrix of constant transition probabilities. To simplify some arguments that

follow, we assume that T has no zeros. We define the following class of market psychologies:

P (β,S, T ) ≡ {b0 = β and {ut, nt} is a Markov chain on S with transition matrix T } .

That is, we index market psychologies by β, S and T . This family turns out to be very

useful analytically. Moreover, it is quite intuitive from an economic point of view: bubble-

return shocks capture the notion that there are random movements in the value of old bubbles,

whereas bubble-creation shocks capture the notion that the value of new bubbles is also random.

Naturally, a market psychology has to be feasible. In the non-bubbly world, for instance, the

only feasible market psychology within this family is the trivial one with β = 0, S = {(0, 0)}.
We next characterize the set of feasible market psychologies in the bubbly world.

Proposition 2 The market psychology P (β,S, T ) is feasible if and only if:

1. For all {us, ns} ∈ S:

Γs ≡
[
1 + φ · (ε+ ns)−

α

1− α
· us
]2

− 4 · α

1− α
· us · ns ≥ 0. (25)
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2. bH ≡ mins∈S bH,s ≥ maxs∈S bL,s ≡ bL, where bH,s and bL,s are defined as follows:

bH,s ≡
1

2
·
[
1 + φ · (ε+ ns)−

α

1− α
· us +

√
Γs

]
, (26)

bL,s ≡
1

2
·
[
1 + φ · (ε+ ns)−

α

1− α
· us −

√
Γs

]
. (27)

3. β ≤ bH .

Our proof of this result proceeds as follows. First, we show that if P is feasible and EP

contains sequences with mt > 0 for some t and ht, then it must also contain sequences with

mt = 0 for all t and ht. Intuitively, money raises the interest rate and makes the set of feasible

bubbles smaller. Second, we compute the set of feasible market psychologies as the set of non-

explosive solutions to Equation (16) with mt = 0 for all t and ht. This places an upper bound

on the initial size of the bubble and it also limits the extent to which the bubble can vary across

states and, therefore, histories. The first part of the proposition provides the conditions under

which the bubble process is non-explosive conditional on remaining in any given state forever.

The second part guarantees that there is a bubble process that is non-explosive even if there

are transitions across states. Finally, the third part states that the initial bubble must be small

enough; otherwise, it will be on an explosive path with positive probability.

4 What should the central bank do?

We have shown how to construct market psychologies that are feasible. We next use this flexible

model of market psychology to study the conduct of monetary policy.

4.1 Passive and optimal policies

Given a feasible market psychology P , a feasible monetary policy is given by a rule M such

that the set EM,P is non-empty. Recall that this set consists of all non-explosive sequences

{bt, nt,mt, µt} satisfying the following equations:

bt + nt = [1−mt − bt + φ · (ε+ nt)] ·
1− α
α
· Etbt+1, (28)

mt = [1−mt − bt + φ · (ε+ nt)] ·
1− α
α
· Et

{
mt+1

µt+1

}
, (29)
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which are the same as Equations (16)-(18), since we have assumed that the economy is in the

first regime of Section 2.2 where the demand for unbacked assets is never extreme.

Through its choice of sequence {µt}, monetary policy affects the evolution of the supply of

unbacked assets {bt,mt}; recall that nt is driven by market psychology. Moreover, it is only

through its effect on the total supply of unbacked assets, which we denote by {xt} ≡ {bt +mt},
that monetary policy affects the capital stock and consumption:

kt+1 =
1− xt + φ · (ε+ nt)

1 + φ
· 1− α

γ
· kαt , (30)

ct = [α + xt · (1− α)] · kαt , (31)

which are the same as Equations (19)-(20) since we are in the first regime.

The following proposition shows that monetary policy can always take the economy outside

of the liquidity trap.

Proposition 3 Given any feasible market psychology P, there exists a feasible and decisive

monetary policy rule M such that in equilibrium mt = 0 for all t and ht.

Intuitively, it is always possible to set the money growth rate µt sufficiently high for all t and

ht, ensuring high enough inflation so that money never becomes attractive as a store of value.

When this is the case, we say that monetary policy is passive. A passive monetary policy may

not be optimal, though.

We adopt a generational perspective of optimality and focus on the implications of monetary

policy for the evolution of average consumption (or, equivalently, welfare) ct. In doing so, we

abstract from issues of intra-generational redistribution. Given a feasible market psychology

P , we say that a monetary policy rule M is optimal if (i) it is feasible and decisive, and (ii)

there does not exist another feasible monetary policy rule M′ that increases the consumption

of any one generation without decreasing the consumption of some other generation.

The following proposition states our main result.

Proposition 4 Given a market psychology P, there exists a feasible and decisive monetary

policy rule M such that the (stationary) equilibrium supply of unbacked assets is:

x∗P =


bL if maxs∈S Ω(ns) ≤ bL

maxs∈S Ω(ns) if bL < maxs∈S Ω(ns) ≤ bH

bH if bH < maxs∈S Ω(ns)

, (32)
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where Ω(ns) ≡ 1 +φ · (ε+ns) · (1−α)− α
1−α . Moreover, the monetary policy ruleM is optimal.

Proposition 4 identifies a specific optimal monetary policy rule, which completely stabilizes

the supply of unbacked assets even in the face of fluctuations in market psychology. We now

demonstrate the macroeconomic effects of this rule and provide an intuition for its optimality

and implementation by considering a series of examples.

4.2 Deterministic bubbles

Consider first the case of a “deterministic” market psychology that does not generate fluctu-

ations in the supply of unbacked assets. In particular, we assume that S is a singleton, and

ut = 1 and nt = η > 0 for all t and ht. In the discussion that follows, we ignore transitional

dynamics and focus on stationary equilibria, in which the bubble has already converged to its

stationary or steady state value.

Figure 2 depicts the law of motion of the bubble (as given by Equation (28)) under a passive

monetary policy. It is immediate that, for any initial bubble β < bH , the bubble converges

monotonically to its steady state value bL, where the values for bH and bL are defined in

Proposition 2.11 The paths starting from any initial bubble above bH are in turn explosive.

Thus, ignoring the non-generic case where the initial bubble is exactly equal to bH , it follows

that under a passive monetary policy the equilibrium supply of unbacked assets equals bL, and

the capital stock and consumption are respectively given by:

kpass =

(
1− bL + φ · (ε+ η)

1 + φ
· 1− α

γ

) 1
1−α

, (33)

cpass = [α + bL · (1− α)] · (kpass)α . (34)

As we had already anticipated, this policy may not be optimal. The intuition for this is

well-known in overlapping generations economies: absent unbacked assets, investment may be

inefficiently high. Optimality requires that the supply of unbacked assets be large enough to

eliminate dynamically inefficient investments. In our economy, the extent of dynamic ineffi-

ciency depends both on the financial friction, as captured by φ, and on the market psychology,

as captured by η. A more severe financial friction (higher φ) reduces the return to intermedi-

ated investment and raises the demand for unbacked assets. A larger wealth effect of bubbles

(higher η) raises the capital stock and reduces the return to investment, thereby also increasing

11It can be readily verified that this market psychology is feasible as long as η is not too large.
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Figure 2: Illustrates the law of motion of the bubble under deterministic market psychology and
passive monetary policy.

the demand for unbacked assets.

The target Ω(η) defined in Proposition 4 is the minimum supply of unbacked assets that is

required to eliminate inefficient investments. Whether this target is attainable or not depends

on market psychology, which determines both bL and bH , i.e., the lower- and upper-bound to

the supply of unbacked assets that are consistent with equilibrium. This supply can never fall

below bL, as the central bank can only add to – but not subtract from – the unbacked assets

supplied by the bubble. But the supply of unbacked assets cannot exceed bH either, because

doing so would put the bubble on an explosive path.

Figure 3 depicts the law of motion of the bubble under the passive monetary policy (dashed

curve) and the optimal policy rule (solid curve) of Proposition 4, in the case when bL < Ω(η) <

bH , so that x∗P = Ω(η). In this scenario, the private supply of unbacked assets is too small and

the optimal policy rule requires that the central bank complement it by providing additional

stores of value in the form of real balances. By doing so, the central bank raises the equilibrium

interest rate, which is captured in the figure by an upward shift in the law of motion of the

bubble. Moreover, by raising equilibrium interest rates, the optimal policy accelerates the

growth of the bubble and raises its stationary value to b̃L > bL.12

By altering the equilibrium supply of unbacked assets, the optimal monetary policy rule

12Though we ignore transitional dynamics, these are straightforward. For instance, if the bubble starts below
b̃L, then the central bank temporarily places the economy in a liquidity trap, sets mt = x∗P − bt, and gradually

reduces real money balances as the bubble converges to b̃L. If the bubble starts above b̃L, then the central bank
sets mt = 0 until the bubble reaches x∗P .
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Figure 3: Illustrates the law of motion of the bubble under deterministic market psychology and
passive monetary policy (dashed curve) vs. optimal monetary policy (solid curve).

affects the capital stock and consumption, which are now:

kopt =

[
1− x∗P + φ · (ε+ η)

1 + φ
· 1− α

γ

] 1
1−α

, (35)

copt = [α + x∗P · (1− α)] ·
(
kopt

)α
. (36)

As we had already anticipated, an increase in the supply of stores of value reduces the capital

stock because it eliminates some investment. To the extent that this displaced investment is

inefficient, consumption actually increases. In fact, given our definition of Ω(η), any increase

in the supply of stores of value up to Ω(η) is guaranteed to raise steady-state consumption.

Targeting an asset supply beyond this level is also optimal because it eliminates all inefficient

investments. But doing so may reduce steady-state consumption by eliminating some efficient

investment as well! Under a deterministic market psychology, therefore, the monetary policy

rule described in Proposition 4 has the additional attractive feature of maximizing steady-state

consumption, as depicted in Figure 4.

What changes when Ω(η) 6∈ (bL, bH)? In this case, the optimal policy is constrained by

the market psychology and it is unable to implement the supply of assets that maximizes

consumption. When Ω(η) ≤ bL, the market psychology implies that the equilibrium supply of

assets is necessarily higher than Ω(η): thus, the optimal policy does not alter the supply of assets

and has no effect on the capital stock or consumption. When bH ≤ Ω(η), the market psychology

implies that the equilibrium supply of assets can be no higher than bH , since otherwise the

bubble would be explosive. Thus, the optimal policy increases the equilibrium supply of assets
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Figure 4: Illustrates the effect of the supply of unbacked assets on the steady state values for the
capital stock and consumption.

as much as possible, i.e., to bH , but it is unable to attain the level that would maximize

consumption.

Finally, as for implementation, the central bank can guarantee that the equilibrium supply

of unbacked assets is x∗P by simply setting the money growth rate to:

µ∗ =
1− α
α
· [1 + φ · (ε+ η)− x∗P ] , (37)

which is shown to pin down the value of money balances uniquely; in this sense, the monetary

policy rule is decisive.13 Intuitively, in order to increase the supply of stores of value, the central

bank must decrease money growth and thus inflation, so as to make money more attractive.

4.3 Stochastic bubbles

We now turn to “stochastic” market psychologies that may generate bubbly business cycles.

We again ignore transitional dynamics and focus on stationary equilibria, in which the bubble

has already converged to its stationary or steady state distribution.

To fix ideas, we consider a simple market psychology that gives rise to ‘bubbly episodes’. In

13Our proof of decisiveness relies on showing that, if the central bank set the money growth rate to µ∗ but
the supply of unbacked assets exceeded x∗P in any period, then it would be explosive thereby contradicting the
notion of equilibrium. On the other hand, if the supply of unbacked assets fell short of x∗P in any period, then
the value of money would eventually collapse below the arbitrarily small but positive demand of money holders,
which cannot be part of competitive equilibrium either. In this sense, the role of money holders in our setting is
akin to that of fundamental backing of money in Obstfeld and Rogoff (1983), who show that (even if arbitrarily
small) such backing can rule out hyper-inflationary paths in which the value of fiat money goes to zero.
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particular, suppose that the state-space is S = {F,B} and the economy fluctuates between a

fundamental state s = F , in which nF = 0 and uF = 0, and a bubbly state s = B, in which

nB = η > 0 and uB > 1. Let τss′ denote the transition probability from state s to s′, then it

must be that uB · τBB = 1, so that the evolution of the bubble satisfies Equation (28).14 Thus,

whenever the economy is in the bubbly state, there is a probability τBF that it transitions to

the fundamental state, in which case ut+1 = 0 and the bubble bursts fully. Conversely, there is

a probability τBB that the economy continues in the bubbly state, in which case ut+1 > 1 and

the realized return to the bubble is higher than the market interest rate.

In this example, the law of motion of the bubble fluctuates with the state of the economy.

Consider first the passive monetary policy rule that sets mt = 0 for all t and ht. In the

fundamental state, the law of motion of the bubble is simply bt+1 = 0. In the bubbly state, the

law of motion is instead qualitatively similar to the one depicted in Figure 2.15 It is immediate

that, for any initial bubble β < bH , the bubble gradually converges to the interval [0, bL] and,

once there, it oscillates permanently within this interval. As long as the economy is in the

bubbly state, the bubble grows towards bL; when the economy transitions to the fundamental

state, however, the bubble collapses to zero and stays there until the next bubbly episode

begins. Therefore, ignoring the non-generic case where the initial bubble is exactly equal to bH ,

the supply of unbacked assets in this economy fluctuates in the interval [0, bL], and the capital

stock and consumption are given by Equations (30) and (31), respectively, with xt = bt.

Figure 5 illustrates the fluctuations in the capital stock and consumption under passive

monetary policy by simulating a particular realization of the market psychology. The economy

begins in the fundamental state with bt = 0 (top-left panel). After a few periods, it transitions

to the bubbly state, during which both bubble creation and high bubble returns fuel the growth

of the bubble. In this simulation, the wealth effect of bubble creation dominates the overhang

effect of bubble returns and therefore investment, output and consumption all expand for as

long as the economy remains in the bubbly state. Eventually, however, all these effects operate

in reverse when the economy transitions back to the fundamental state and the bubble bursts.

This example illustrates that, when monetary policy is passive, the supply of assets xt follows

the whims of market psychology. This need not be desirable. To see this, we now turn to the

optimal policy of Proposition 4.

Figure 6 depicts the evolution of the same variables as in Figure 5, under both the passive

14It can be readily verified that this market psychology is feasible provided that η and uB are not too large.
15The only difference is that, because ut+1 > 1, the law of motion of the bubble is shifted up and increases

faster than the deterministic one; as a result, now bL is larger and bH is smaller.
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Figure 5: Illustrates the equilibrium dynamics of the economy under stochastic market psychology
and passive monetary policy.

monetary policy (solid lines) and the optimal policy rule (dashed lines). The figure assumes

that bL < Ω(η) < bH , so that the optimal policy sets x∗P = Ω(η). In this case, the private supply

of unbacked assets is too small in both states, and the optimal policy rule requires the central

bank to always supply additional real balances. This supply now fluctuates with the bubble,

rising when the bubble collapses and falling when the bubble grows. The economy begins in the

fundamental state with bt = 0 and the central bank supplies real balances so that the stock of

unbacked assets equals x∗P . When the economy transitions to the bubbly state, the bubble grows

but real balances are reduced to keep the total stock of unbacked assets unchanged. Since the

total supply of unbacked assets is higher under the optimal policy than under the passive policy

at all times, the capital stock and output are lower as well. Consumption, however, is always

higher! The reason should be clear by now: by adjusting the supply of real balances, the optimal

policy eliminates inefficient investments and raises the resources available for consumption.

To conclude, we turn to implementation. In the proof of Proposition 4, we show that the

central bank can guarantee that the equilibrium supply of unbacked assets is constant and equal

to x∗P with an appropriate choice of sequence {µ∗t}. Moreover, in the stationary equilibrium,
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Figure 6: Illustrates the equilibrium dynamics of the economy under stochastic market psychology
and optimal monetary policy.

these money growth rates are given by:

µ∗t+1 =
1− α
α
· [1 + φ · (ε+ nt)− x∗P ] · Et {x

∗
P − bt+1}

x∗P − bt
. (38)

Intuitively, when the bubble grows during the bubbly episode, the central bank raises money

growth in order to reduce the supply of stores of value. When the bubble bursts and the

private stores of value disappear, the central bank instead reduces money growth in order to

make money attractive as a store of value. A crucial feature of the policy, which we discuss

further in Section 5, is that µ∗t ≥ 1 for all t and ht, so that the central bank never needs “fiscal

resources” to implement its target.

The above market psychology provides the simplest environment in which to analyze the

cyclical implications of optimal monetary policy rule. It should be clear, however, the insights

it provides extend to market psychologies with richer stochastic structure.

4.4 Discussion

We live in a bubbly world, characterized by low interest rates and large booms and busts in

asset prices. How should monetary policy be conducted in this world? How is the bursting of
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bubbles linked to the emergence of liquidity traps and to the growth of central bank balance

sheets? How is the central bank’s ability to supply assets affected by the presence of bubbles?

The theory developed here enables us to address these questions. By limiting the supply of

backed assets, financial frictions depress the interest rate and open the door for asset bubbles

to arise. Bubbles are useful because they provide additional – albeit unbacked – assets. But

bubbles are driven by market psychology, so that they may be potentially volatile and their size

can be sub-optimal. In such a world, we have shown that there is a novel and powerful role for

monetary policy: to complement unbacked assets supplied by the private sector. We have also

characterized an optimal policy that fully stabilizes the economy’s supply of unbacked assets.

In order to implement this policy, the central bank must expand its supply of assets – and thus

its balance sheet – when the bubble is small and contract it when the bubble is large. Such a

policy raises the welfare of all generations by eliminating inefficient investments.

It is useful to briefly relate our policy analysis to the more conventional interest rate policies,

as typically studied in the New Keynesian literature. In our setting, the central bank sets the

nominal interest rate by choosing the growth rate of money. If the money growth rate is high

enough, the nominal interest rate is positive (i.e., Rt+1 > Etπ
−1
t+1) so that real balances are

dominated by other assets. In this scenario, mt = 0 and the equilibrium capital stock and

consumption become independent of monetary policy (see Equations (19) and (20)), which is

therefore neutral.16 If the money growth rate is low enough, however, the nominal interest rate

is zero (i.e., Rt+1 = Etπ
−1
t+1) so that real balances become a perfect substitute of other assets.

In this scenario, mt > 0 and the equilibrium capital stock and consumption depend on the size

of money balances. Because different money growth rates correspond to different paths for real

balances, the nominal interest rate no longer suffices to pin down equilibrium allocations. Thus,

monetary policy in the bubbly world can no longer be summarized in the nominal interest rate:

it also requires knowledge of the money growth rates.

Furthermore, the role of the central bank as a supplier of assets is not present in the New

Keynesian literature. A natural question is whether this role should indeed be assigned to the

central bank or, alternatively, be taken up by the fiscal authority. At first glance, there appears

to be a fundamental difference between fiat money and public debt. Unlike money, debt has

a well-defined maturity and – at any given point in time – all bonds in circulation will be

redeemed at some future date.17 This implies that there cannot be a rational bubble on these

16That is, although alternative specifications for money growth rates correspond to different paths for inflation
and nominal rates, they imply the same path for the capital stock and consumption. This happens in our setting
because of the lack of nominal rigidities. Otherwise, we would be in the New Keynesian paradigm and different
paths of nominal interest rates would imply different paths for the capital stock and consumption.

17One exception is the case of consol bonds, which were issued by the UK between the late 18th and the
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bonds. To see this, consider a bond that matures at time T . It is evident that there cannot be

a bubble on the price of this bond at time T − 1, because whoever purchases it will not resell

it in the future. Backward induction then rules out the possibility of a bubble on the price of

this bond for t < T . Simply put, each bond is “backed” by its redemption at maturity.

The previous argument does not rule out the possibility of a bubble on the fiscal authority

itself, however. This happens when the fiscal authority issues debt in excess of the net present

value of the taxes that it will collect in the future, i.e., in excess of its fiscal backing. Such

“excessive” debt will nonetheless be purchased by rational savers if they expect the fiscal au-

thority to be able to issue excessive debt also in the future. In this case, the fiscal authority is

expected to roll over part of its debt indefinitely.

In light of this insight, we could reinterpret many of the results of the paper through the lens

of fiscal policy. Specifically, a fiscal authority – even without fiscal backing! – could potentially

replicate the class of policies analyzed here by providing stores of value in the form of public

debt. In response to the bursting of the private bubble, for instance, the fiscal authority could

expand its supply of assets by issuing more debt; in response to the growth of the private

bubble, it could contract the supply of assets by partially defaulting on its debt.

Although theoretically possible, there are at least two reasons that may prevent the fiscal

authority from supplying stores of value effectively in practice. The first is that, while the central

banks in most countries are autonomous and can respond quickly to changes in the economic

environment (e.g., fluctuations in the private bubbles), the fiscal authority is constrained by a

political process, and typically reacts slowly and with a lag. Indeed, this is one interpretation

of the balance sheet expansions carried out by major central banks in the wake of the global

financial crisis: namely, central banks were forced to intervene in the face of an insufficient

response of fiscal policy. Ultimately, central banks attempted to expand the supply of stores of

value given the scarcity of assets supplied by both, the private sector and the fiscal authority.

The second reason is that it may be easier for the central bank to supply bubbles in the

form of real balances than it is for the fiscal authority to supply them in the form of public

debt. This is true whenever money is special, e.g., it provides transaction services in a way

that public debt does not.18 As we have shown, such “specialness” of money allows the central

bank to control the value of real balances; a pure bubble on public debt, however, is likely to

be governed by market psychology in much the same way as private bubbles, thus limiting its

early 20th century.
18This is captured in our model through the presence of money holders, whose positive demand enables the

central bank to anchor the value of real balances.
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appeal as a store of value.19

5 Monetary policy and its limits

Thus far, we have stacked the cards against monetary policy, making restrictive assumptions

about the functioning of the central bank. In particular, we assumed that (i) the central bank

lacks fiscal backing, i.e., its seigniorage must be non-negative; (ii) the central bank distributes

seigniorage to the old, i.e., it is unable to transfer or lend these resources to financially con-

strained entrepreneurs, and; (iii) the central bank cannot influence market psychology. We now

discuss the consequences of relaxing these assumptions.

5.1 Fiscal backing

If the central bank lacks fiscal backing, the monetary policies it can implement are limited to

those having non-negative seigniorage, i.e., satisfying µt ≥ 1 for all t and ht. Despite this, we

have shown that the central bank can fully stabilize the supply of unbacked assets.

This result may strike the reader as surprising. How is it possible for the central bank to

control the value of real balances, and thus of unbacked assets, without having access to real

resources? Part of the answer lies in the presence of money holders, who provide an arbitrarily

small but stable demand for money. Embedded in a bubbly world, in which there is potential

demand for stores of value, the presence of money holders rules out equilibria with hyper-

inflationary paths in which the real value of money collapses to zero. But, more importantly,

even if money is guaranteed to have positive value, how can the central bank manage it at will,

i.e., increase the value of money when the bubble is small and decrease it when the bubble is

large? The answer is inflation.

Figure 7 reproduces the evolution of the economy in Figure 6, but now showing the equilib-

rium dynamics of unbacked assets, money growth and the inflation rate. Recall that the policy

perfectly stabilizes the supply of unbacked assets; as a result, real balances fall when the bubble

grows and rise when the bubble bursts. The figure illustrates that part of this adjustment is

attained through fluctuations in inflation, i.e., part of the fall (rise) of real balances is attained

through an increase (decrease) of the inflation rate. In our model, this is irrelevant as there are

no costs associated to inflation volatility. But in the presence of such costs – due, for instance,

19In some countries, such as the US, it is argued that public debt has money-like features (Krishnamurthy
and Vissing-Jorgensen, 2012), effectively blurring the distinction between the two.
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Figure 7: Illustrates the equilibrium dynamics of unbacked assets, money growth and the inflation
rate under stochastic market psychology and optimal monetary policy.

to nominal rigidities – such a policy could be costly.

If the central bank has also inflation objectives, then stabilizing the asset supply may require

fiscal backing. To see this, consider that the bubble grows today and our policy mandates a

reduction in real balances. According to our current policy rule, the central bank can attain

this reduction by promising a higher rate of money growth – and thus a higher expected rate of

inflation – which reduces the demand for money balances today. If there is a limit to how much

inflation can rise, however, it may well be that the only way for the central bank to reduce real

balances today is by actually contracting the nominal money supply. But orchestrating such

“buybacks” of money clearly requires access to fiscal resources.

5.2 Distribution of Seigniorage

We have assumed that the central bank distributes all seigniorage revenue lump-sum to the

old.20 As a result, while the wealth effect of bubble creation expanded investment by redis-

tributing resources to young entrepreneurs, the wealth effect of money creation did not. This

was a useful benchmark assumption, which restricted as much as possible the powers of the

central bank. We now relax it in two different ways. We first allow the central bank to directly

distribute seigniorage revenues to entrepreneurs, thereby directly expanding investment. We

then allow the central bank to lend directly to entrepreneurs, which can be interpreted as an

“asset purchase scheme” in which seigniorage is used to purchase credit contracts.

20One interpretation is that the central bank rebates these revenues to the treasury, which then distributes
them through tax rebates to the old.
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5.2.1 Transfer of seigniorage to entrepreneurs

Consider the extreme case where the central bank is able to distribute seigniorage directly to

young entrepreneurs. Formally, the law of motion of the capital stock in Equation (30) becomes:

kt+1 =
1− mt

µt
− bt + φ ·

(
ε+ nt + µt−1

µt
·mt

)
1 + φ

· 1− α
γ
· kαt , (39)

where µt−1
µt
·mt is the real value of seignorage and captures the expansionary effect of transfer-

ring seigniorage revenues directly to entrepreneurs. The effects of money now mirror those of

bubbles: old bubbles bt and old money mt
µt

have an overhang effect and crowd out investment,

whereas new bubbles nt and new money µt−1
µt
·mt have a wealth effect and crowd in investment.

The first observation from Equation (40) is that monetary policy becomes more powerful if

the central bank can distribute seigniorage directly to entrepreneurs. Through these transfers,

monetary policy can expand the capital stock and mimic the effects of bubble creation. As we

argue next, however, this may create equilibrium indeterminacy in the value of money.

To see this, consider the law of motion of real balances in the absence of bubbles (i.e.,

bt = nt = 0 for all t and ht), and for a given constant rate of money growth µ:

mt = max

{
υ,

[
1−mt + φ · ε+ I · (1 + φ) · µ− 1

µ
·mt

]
· 1− α

α
· Etmt+1

µ

}
, (40)

where υ is the small demand by money holders and I is the indicator function that takes value

of one if seigniorage is distributed to entrepreneurs and zero otherwise.

When I = 0, we are back to our baseline specification, since Equation (40) collapses to

Equation (29) as υ becomes small. In this case, the second term in the brackets defines Etmt+1

as a convex function of mt, as illustrated in the left panel of Figure 8. This in turn is sufficient

to ensure that there is a unique value of money balances, denoted by m∗, which is consistent

with competitive equilibrium. If money balances were either above or below m∗ in any period,

then they would eventually either be on an explosive path or decline below υ in finite time,

both of which are inconsistent with competitive equilibrium.

Things change dramatically, however, when I = 1. In this case, the second term in the

brackets in Equation (40) may define Etmt+1 as a concave function of mt, as illustrated in the

right panel of Figure 8.21 Thus, the equilibrium value of money may then be indeterminate. As

21The necessary and sufficient condition for this map to be concave and for m∗ to be greater than υ is
α

1−α · µ− 1− φ · ε > υ ·
(
φ·(µ−1)

µ − 1
)

and φ·(µ−1)
µ > 1.
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Figure 8: Illustrates the law of motion for money balances in the absence of bubbles, in two different
scenarios. The left panel depicts our benchmark case where the central bank rebates its seignorage
revenue to the old, whereas the right panel depicts the case where the central bank rebates the
seignorage revenue to the young entrepreneurs.

the figure shows, there is always a stationary equilibrium in which money is not held as a store

of value, i.e., mt = υ for all t and ht, since then the discounted value of money is less than υ.

But, there also exists a stationary equilibrium in which money is held as a store of value and

its value is m∗ > υ.22 That is, the monetary policy rule above is no longer decisive.

The intuition for this result is simple. In the first equilibrium, the capital stock is low, and the

interest rate is therefore high (relative to the return on money). Thus, agents do not demand

real balances as a store of value and seigniorage revenues and thus central bank transfers to

entrepreneurs are low, which indeed confirms the low investment and capital stock. In the

second equilibrium, instead, the capital stock is high, and the interest rate is therefore low.

This boosts the demand for real balances and thus seigniorage revenues, which – given their

distribution to entrepreneurs – confirms the high investment and capital stock.

What is going on? When the central bank distributes seigniorage to entrepreneurs, an ex-

pansion in real balances may boost economic activity. But, since higher economic activity also

increases the demand for real balances, this may lead to indeterminacy in the value of money.

Of course, the central bank can potentially choose a more sophisticated distribution scheme

for its seigniorage revenues so as to avoid such problems. The bottom line, however, is that

although the ability to transfer seigniorage to entrepreneurs makes monetary policy more pow-

22There is also a continuum of non-stationary equilibria in which mt converges gradually to m∗ from below.
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erful, it also introduces the danger of indeterminacy that must be taken into account when

thinking about the design of monetary policy.

5.2.2 Asset purchases

We have stressed throughout that monetary policy in our setting is powerful because it can affect

the supply of assets available to the private sector. This is different from a standard balance

sheet expansion, in which the central bank issues some assets and purchases others, leaving the

total supply available to the private sector unchanged. The distinction is key, as it turns out.

Although monetary policy interventions that change the supply of stores of value affect capital

accumulation, output, and aggregate consumption, policy interventions that merely exchange

some stores of value for others do not.

To see this, consider an equilibrium sequence {bt, nt,mt, µt} – where {µt} is the optimal

monetary policy of Proposition 4 – and suppose that the monetary policy is modified through

a balance sheet expansion. In particular, the central bank expands the supply of real balances

at time t by an amount ωt · kαt , and uses all the proceeds to purchase backed debts from

entrepreneurs.23 At time t + 1, in turn, the central bank uses the income generated by these

debts to purchase back an amount ωt+1 · kαt+1 of real balances. In this manner, the central bank

expands its balance sheet at time t and contracts it at time t+ 1. We want to show that, given

the market psychology and the monetary policy rule {µt+1}, the original equilibrium sequence

{bt, nt,mt, µt} is still an equilibrium after the intervention.

Under the proposed intervention, the equilibrium conditions at time t become:

bt + nt = [1−mt − bt + φ · (ε+ nt)] ·
1− α
α
· Etbt+1, (41)

mt + ωt = [1−mt − bt + φ · (ε+ nt)] ·
1− α
α
·
[
Et

{
mt+1

µt+1

+ π̂−1
t+1 · ωt ·

kαt
kαt+1

}]
, (42)

where π̂t+1 indicates the value of inflation after the intervention. The first observation is

that the law of motion of the bubble is unchanged relative to Equation (28). The reason

is that, as long as mt and bt do not change, the policy intervention leaves total investment and

thus the interest rate unchanged. Hence, the equilibrium growth of the bubble is unaffected.

The intervention does not affect investment because, when the central bank purchases credit

contracts for an amount ωt, savers reduce their lending to entrepreneurs by an equal amount

and use these resources instead to hold the real balances injected by the central bank. In a

sense, the only thing that changes in period t is that the central bank intermediates between

23Nothing of substance would change if the central bank would also purchase bubbles.
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savers and entrepreneurs.

The second observation is that, from Equations (29) and (42), it must hold that:

Et
{
π̂−1
t+1

}
= Et

{
π−1
t+1

}
. (43)

In other words, if the equilibrium interest rate does not change, neither does the expected

return on money balances if agents are to continue to hold real balances as a store of value.

To confirm that {bt, nt,mt, µt} is indeed an equilibrium of the economy after the intervention,

it only remains to show that the path of realized inflation π̂t+1 satisfies Equation (43). To see

this, note that real balances in period t+ 1 are given by:

mt+1 =
µt+1 ·mt + ωt

π̂t+1

· k
α
t

kαt+1

− ωt+1, (44)

i.e., real balances at t+ 1 equal the real value of “old money”plus the new money issued by the

central bank, where the latter includes the “buybacks” ωt+1 entailed by the intervention. From

the budget constraint of the central bank, these “buy backs” are given by:

ωt+1 =
RK
t+1

1 + φ
· ωt ·

kαt
kαt+1

, (45)

i.e., buy backs are equal to the revenues that the central bank earns on the debts that it

purchased at t. Combining Equations (44) and (45), we have that:

π̂−1
t+1 =

π−1
t+1 · µt+1 ·mt + Et{π̂−1

t+1} · ωt
µt+1 ·mt + ωt

. (46)

Finally, taking expectations and using the fact that µt+1 is known at time t (see Equation (65)),

we confirm that Equation (43) is satisfied.

This shows that a balance sheet expansion does not affect the evolution of the bubble, real

balances, interest rates or investment. But it does affect realized inflation in period t + 1, as

Equation (46) shows. The reason is that, even though the central bank’s revenues in period

t + 1 suffice in expectation to buy back the real balances that it injected in period t, this is

not true in all states. In particular, the central bank is unable to buy back ωt in states in

which π−1
t+1 > Et{π−1

t+1} in the original equilibrium. Ex post, the return to money holdings is

so high in these states that the income from the debts held by the central bank is insufficient

to buy back the additional money balances that it injected at time t. The only way for real

balances to remain unchanged relative to the original equilibrium is through higher inflation,
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i.e., π̂−1
t+1 < π−1

t+1. The opposite happens in states in which π−1
t+1 < Et{π−1

t+1}, in which case the

intervention implies that π̂−1
t+1 > π−1

t+1.

We have thus shown that that the intervention (ωt, ωt+1) does not affect the equilibrium

{bt, nt,mt, µt}. By affecting realized inflation, however, the intervention does have redistributive

effects between old savers and old entrepreneurs. But in our framework this redistribution is

irrelevant for the evolution of capital, output, and aggregate consumption.

5.3 Market psychology

We have assumed that the central bank cannot affect market psychology. Formally, this implies

that the central bank takes the market psychology as given and is constrained to design policies

that are consistent with it, and it cannot – for instance – use monetary policy to “prick” bubbles.

This assumption has been largely motivated by our general theme of constraining monetary

policy as much as possible. But what if we assume instead that the central bank could “shape”

the market psychology?

Consider, for instance, that we alter the “timing” of the model so that the central bank

sets its policy before market psychology is determined. While in our baseline framework it

is market psychology that restricts the set of feasible monetary policies, we can now think of

monetary policy as restricting the set of feasible market psychologies. Indeed, through the

appropriate design of policy, the central bank can therefore rule out certain bubbles. To see

this, suppose for instance that the central bank sets µt = 1 for all t and ht, independently of

the market psychology. It is then easy to show that this policy rules out all stationary bubbles

in equilibrium. The reason is that, under this policy, the return on money is so high that the

value of unbacked assets xt would necessarily follow an explosive path should bubbles arise.

This policy captures the popular narrative that, by raising interest rates for long enough, the

central bank can prick bubbles.

Of course, this raises a number of additional questions. How credible is the central bank’s

choice of policy? Does it actually need to raise interest rates in equilibrium, or would off-

equilibrium threats suffice? A thorough treatment of these issues would exceed the scope of

this paper. But our brief discussion does highlight how, in the bubbly world, the effects of

policy crucially depend on whether and how they affect market psychology.
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Figure 9: Illustrates the ratio of Wealth-to-GDP (blue-solid line) and Capital-to-GDP (red-dashed
line) in the US for the 1925-2018 period. Data source: Piketty, Saez, and Zucman (2018).

6 Bubbles? What bubbles?

To conclude, we provide answers to some frequently asked questions about the scope and

relevance of our analysis. We first explain how the theoretical concept of bubbles relates to the

sort of assets that are traded every day in financial markets around the world. We then provide

some back-of-the-envelope calculations intended as a suggestive quantitative exploration of the

size of the mechanisms described in this paper.

6.1 Bubbles and national wealth

Let us now be a bit more explicit about asset structure and how the model fits the data. Figure

9 shows data on the aggregate wealth-income and capital-income ratios for the United States

for the 1925-2018 period. These are the variables our theory focuses on. Let Vt and V K
t denote

wealth and the market value of capital, respectively. In our model, these are given by:

Vt = V K
t +Nt +Bt +Mt,

V K
t = KI

t+1 + (1 + φ)KE
t+1,

where KI
t+1 is the part of the aggregate capital stock that is not monitored (that is, not useful

as collateral), while KE
t+1 is the part of the aggregate capital stock that is monitored (or useful
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as collateral). Naturally, we have that the total capital stock is given by Kt+1 = KI
t+1 + KE

t+1.

The remaining variables are the aggregate bubble, Nt +Bt, and aggregate money, Mt.

Figure 9 shows that wealth-income and the capital-income ratios have fluctuated quite a bit

over the last century. One can interpret the gap between these ratios as a rough estimate of

the value of unbacked assets, i.e., money and bubbles.24 Before the great depression of the

1930s, the gap between these ratios was large, consistent with many accounts of this episode as

combination of stock market and credit bubbles. The great depression of the 1930s produced a

massive drop in both ratios, and also reduced the gap between them. This gap slowly fell until

it had basically disappeared in the late 1970s. This is a period in which unbacked assets seem

to have played a minor role. Since the 1980s the gap has grown again, especially in the second

half of the 1990s and the 2000s. The dotcom bubble of the late 1990s and the stock market and

real state bubbles of the mid 2000s further increased the gap, even though the end of each of

these episodes ended with a collapse in wealth that temporarily reduced the gap. In the 2010s,

the gap has continued to grow and is now larger than ever before.

Our theory views these aggregate variables as portfolios of three simple or basic assets:

capital, money and bubbles. Real-world financial structures are more complex, of course. But

it is useful to think about them in this way. Perhaps the easiest way to show this is to think of

these complex financial structures as “firms” with different dividend and investment policies.

We offer next a couple of examples that help clarify the connection between our concept of

bubbles and real-world assets. As we go through these examples, one should keep in mind that

a bubble is a pyramid scheme in which participants make a voluntary contribution that gives

them right to the next voluntary contribution.

The first example is a stock market bubble. We consider a firm, say firm 1, whose stock market

value exceeds the cost of replacing the capital it owns. Many would qualify this discrepancy as

an overvaluation, even though this stock price is perfectly rational if market participants expect

the overvaluation to grow at the required rate of return. Buying today’s overvaluation gives

stock owners the right to sell tomorrow’s overvaluation. Thus, the overvaluation is a bubble.

Formally, assume firm 1 is created in period t = 0 by an entrepreneur who makes an initial

investment equal to I1,0 = (1 + φ) · KE
1,1, and sells the entire firm in the stock market. Each

period firm 1 distributes dividends D1,t and makes investments I1,t. Firm 1 does not borrow

from banks and it does not issue additional equity. Thus, it must finance these expenses with

24See Carvalho, Martin, and Ventura (2012) for an attempt to measure the aggregate bubble in the United
States for the post-WWII period. Their results are broadly consistent with the gap shown in Figure 9.
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profits, that is, sales net of labor costs. The initial stock market value of firm 1 is:

V1,0 = V K
1,0 +B1,0,

V K
1,0 = (1 + φ) ·KE

1,1.

The entrepreneur makes a pure profit equal to B1,0 = N1 when she sells the firm. The replace-

ment value of the initial capital is V K
1,0, and yet the firm is traded for a value equal to V1,0 > V K

1,0.

Since firm 1 uses only external finance, its equity must yield an expected return equal to Rt+1:

Et

{
V1,t+1 +D1,t+1

V1,t

}
= Et

{
(1 + φ) ·KE

1,t+2 +B1,t+1 +D1,t+1

(1 + φ) ·KE
1,t+1 +B1,t

}

= Et

{
RK
t+1 ·KE

1,t+1 +B1,t+1

(1 + φ) ·KE
1,t+1 +B1,t

}

=
V K

1,t

V K
1,t +B1,t

·
RK
t+1

1 + φ
+

B1,t

V K
1,t +B1,t

· EtB1,t+1

B1,t

= Rt+1.

The first equality simply shows the expected return to equity. The second equality just uses

the fact that investment, i.e., I1,t = (1 + φ) ·KE
1t+2; and dividends, i.e., D1,t+1, are financed with

profits, i.e., RK
t+1 · KE

1,t+1. The third equality just re-arranges the second line in a convenient

way to show that the expected return to the equity of firm 1 is a weighted average of the return

to its capital and the growth of its overvaluation. Since both of these returns must equal to

Rt+1 in our model economy, the fourth equality follows.

The second example is a credit bubble. We consider now a firm, say firm 2, that borrows in

excess of the net present value of its future cashflows. This credit is often described as unsound.

But unsound credit is perfectly rational if creditors expect the firm to raise enough unsound

credit in the future to repay them. Providing unsound credit today gives creditors the right to

receive the unsound credit that others provide tomorrow. Thus, unsound credit is also a bubble.

Formally, firm 2 is also created in period t = 0 by an entrepreneur who makes an investment

equal to I2,0 = KI
2,1 and borrows from banks B2,0 = N2. Unlike the entrepreneur that created

firm 1, the entrepreneur that creates firm 2 keeps the firm. Each period, firm 2 pays back its

bank loans, distributes dividends D2,t and makes investments I2,t. These expenses are financed
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by profits and additional bank loans. The initial value of firm 2 is given by:

V2,0 = V K
2,0 +B2,0,

V K
2,0 = KI

2,0.

Thus, the entrepreneur makes a pure profit when the firm is created equal to B2,0 = N2. Future

profits are not pledgeable, and yet banks are willing to lend to firm 2. Since the firm is financed

by a combination of internal and external finance, we need to examine the return to each asset

separately. Entrepreneurial wealth must deliver a return equal to RK
t+1, while bank loans must

pay an interest rate equal to Rt+1:

Et

{
V2,t+1 +D2,t+1

V2,t

}
= Et

{
KI

2,t+2 +B2,t+1 +D2,t+1

KI
2,t+1 +B2,t

}

= Et

{
RK
t+1 ·KI

2,t+1 +B2,t+1

KI
2,t+1 +B2,t

}

=
V K

2,t

V K
2,t +B2,t

·RK
t+1 +

B2,t

V K
2,t +B2,t

· EtB2,t+1

B2,t

=
V K

2,t

V K
2,t +B2,t

·RK
t+1 +

B2,t

V K
2,t +B2,t

·Rt+1.

The first equality simply shows the expected total return to the firm. The second equality just

uses the fact that investment, i.e., I2,t = KI
2,t+2; and dividends, i.e., D2,t+1, are financed from

profits, i.e., RK
t+1K

I
2,t+1. The third equality just re-arranges the second line in a convenient way

to show how the total expected return to firm 2 is distributed across assets. Entrepreneurial

wealth delivers a return equal to RK
t+1, while the credit bubble delivers a return equal to its

growth rate. The latter must equal to Rt+1 in our model economy, and this is recognized in the

fourth equality.

These examples show that our theory is not only consistent with real-world asset structures,

but also that it allows us to interpret them in a novel way. Nothing would change in our model if

entrepreneurs created firms of type 1 and 2 (or even more complex financial structures) instead

of our simple assets. We adopt the simple asset structure of capital, money and bubbles because

it makes the theory more transparent. We recognize, though, that it will be necessary to map

these basic assets to real-world financial assets in specific applications.
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Figure 10: Illustrates how the stead-state values of private bubbles, money and consumption vary
with bubble-creation, under optimal monetary policy, in our calibrated economy.

6.2 A back-of-the-envelope calculation

In this section, we explore further the properties of the model by performing a simple numerical

exercise. To be clear, the objective of this exercise is not to provide a careful quantitative

evaluation of the framework or to replicate any particular historical event. In fact, both of

these tasks would require a much richer model. Rather, our aim is to show that the magnitudes

implied by the model are quantitatively relevant and reasonable.

We choose parameter values so that the model, under passive monetary policy, reproduces

some salient facts characterizing the U.S. economy in the aftermath of the 2008 financial crisis.

Since our model captures medium-run - rather than high-frequency - dynamics, we set the

length of a period to 10 years. We set the capital share of output to α = 0.4 (Karabarbounis

and Neiman, 2014). We target a growth rate of output in steady state equal to 3 percent per

year, consistent with the average growth rate of U.S. real GDP. This implies γ = 1.0310. We

set φ so that the spread between the return to capital and the interest rate is equal to 7% per

year, close to its empirical counterpart, as reported by Farhi and Gourio (2018). Finally, the

share of entrepreneurs in the population (ε) and bubble creation (η) are set so that the interest

rate is -1% per year (Farhi and Gourio, 2018), and the steady state bubble is 100% of yearly

GDP, in line with the difference between wealth and capital observed in the United States over

the last decade (see Figure 9). This procedure gives ε = 0.082 and η = 0.081.

Given this parametrization, we compute the optimal monetary policy in steady state as a
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function of private bubble creation (η). The left panel of Figure 10 shows how the optimal

money supply and the private bubble vary as a function of η. There are two results to notice.

First, the size of the monetary interventions under the optimal policy can be substantial. For

instance, if the private sector is not producing bubbles at all (η = 0), the optimal money

supply is over 200% of yearly output. Second, though the optimal money supply falls as private

bubble creation increases, monetary interventions remain significant even in presence of sizable

bubbles. As an example, under our baseline calibration, the bubble is equal to 100% of yearly

GDP. Given this value of the bubble, the optimal money supply is around 90% of yearly output.

The overall message is thus that central banks can play an important role in complementing

the private supply of assets.

Another interesting question is how the optimal monetary policy affects agents’ consumption.

The right panel of Figure 10 shows the percent increase in steady state consumption under the

optimal policy, compared to its value under the passive monetary policy, again as a function of

η. The key result here is that monetary policy can increase substantially agents’ consumption.

For instance, under our baseline calibration the optimal monetary policy increases consumption

by about 5%. So, optimal monetary policy interventions are not only sizable, but they also

lead to significant increases in consumption.

Of course, given the simplicity of our framework, these results are only illustrative. But they

suggest that an interesting area for future research is to explore the quantitative relevance of

optimal monetary interventions in a bubbly world, using richer and more realistic models.

More broadly, our analysis should be understood as a first step towards understanding the

optimal conduct of monetary policy in a bubbly world. It identifies a new role for the central

bank as a provider of assets. Yet, there is much to be done. The policy studied here, for

instance, may lead to high inflation volatility. This is not a problem for the analysis performed

here because we have abstracted from nominal rigidities, which are prevalent in New Keynesian

models. What would change if we introduced nominal rigidities? Do they generate a trade-off

between the optimal provision of assets by the central bank and the traditional price-stability

objective of monetary policy? If so, under which conditions is one objective likely to dominate

over the other? We believe that our framework is a useful starting point for future research

aiming at answering these crucial questions.
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A Appendix

Proof of Proposition 1. The set E contains all non-negative sequences {bt, nt,mt, µt} that

satisfy Equations (16)-(17)-(18) and the constraints µt ≥ 1 and mt + bt < 1 for all t and ht. We

want to characterize the set E as a function of the three relevant model parameters: α, φ and ε.

Our strategy is to first characterize a subset E0 ⊆ E of sequences that satisfy three convenient

assumptions. We then show that the results for E0 extend to E .

We make three assumptions that minimize, for each t and ht, the largest possible value for

bt+1:

1. If there is a history ht+1 in which the bubble is smaller than expected, i.e. bt+1 < Etbt+1;

there must be another history ht+1 in which it is larger, i.e., bt+1 > Etbt+1. Thus, we

assume that bt+1 = Etbt+1.

2. New bubbles nt have opposing effects on bt+1. Define:

nt(χ) = arg minEtbt+1 =


0 if bt ≤ 1+φ·ε−mt

1+φ

1− ε−mt − bt − χ if 1+φ·ε−mt
1+φ

< bt < 1− ε−mt

0 if bt ≥ 1− ε−mt

, (47)

for some small χ > 0, which implies some value bt+1(χ) for the bubble. Then, to minimize

the bubble, simply take the limiting bubble bt+1 ≡ limχ→0 bt+1(χ).

3. Larger values for mt imply larger values for bt+1. Thus, we assume that {µt} is such that

mt = 0 in each t and ht; see Proposition 3 for a proof that such a sequence {µt} always

exists. Recall that we are looking at equilibria as the share of money holders goes to zero,

υ → 0.

Under Assumptions 1-3, we obtain the following law of motion for bt:

bt+1



= α
1−α ·

bt
1+φ·ε−bt if bt ≤ 1+φ·ε

1+φ

= α
1−α ·

1−ε
(1+φ)·(1−bt) if 1+φ·ε

1+φ
< bt < 1− ε

∈
[

α
1−α ·

bt
(1+φ)·ε ,

α
1−α ·

bt
ε

]
if bt = 1− ε

= α
1−α ·

bt
1−bt if bt > 1− ε

. (48)

Let E0= {{bt, nt,mt, µt} ∈ E : bt+1 = Etbt+1, nt = arg minEtbt+1 and mt = 0}. This set contains

all sequences that satisfy the law of motion in Equation (48) and the constraint bt < 1 for all
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Figure 11

t and ht. Figure 11 depicts the map bt 7→ bt+1 implied by the law of motion in Equation (48),

under the three different parameter conditions stated in Proposition 1.

• The left panel shows the case in which:

α

1− α
> max

{
1 + φ · ε, 1

4
· 1 + φ

1− ε

}
. (49)

This parametric condition ensures that the map bt 7→ bt+1 lies entirely above the 45

degree line. Thus, any initial value b0 > 0 would generate an explosive path for the

bubble. Hence, all sequences in E0 are such that bt = 0 for all t and ht.

• The middle panel shows the case in which:

(1 + φ) · ε < α

1− α
< max

{
1 + φ · ε, 1

4
· 1 + φ

1− ε

}
(50)

This parametric condition ensures that the map bt 7→ bt+1 lies above the 45 degree when-

ever bt ≥ 1− ε. Thus, any initial value b0 ∈ [0, bmax], where bmax is the largest fixed point

of the map, generates a non-explosive path for the bubble. As a result, sequences such

that bt > 0 for some t and ht are also in E0. Since bmax < 1− ε, it must be the case that

bt+nt ≤ 1−ε for all t and ht. Hence, the economy must always remain in the first regime

described in Section 2.2, where Rt+1 =
RKt+1

1+φ
.

• The right panel shows the case in which:

α

1− α
< (1 + φ) · ε. (51)
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This parametric condition ensures that the map bt 7→ bt+1 lies entirely below the 45 degree

line whenever bt < 1− ε. Thus, any initial value b0 ∈ [0, 1− ε] generates a non-explosive

path for the bubble. As a result, sequences such that bt ≥ 1 − ε for some t and ht are

also in E0. Hence, the economy can be outside of the first regime described in Section 2.2,

where Rt+1 >
RKt+1

1+φ
.

The next observation is that violations of Assumptions 1-3 shift the map bt 7→ bt+1 upwards.

Thus, if a bubbly equilibrium does not exist when Assumptions 1-3 hold, it cannot exist when

these assumptions are violated. Similarly, if a bubbly equilibrium does not exist outside of the

first regime described in Section 2.2 when Assumptions 1-3 hold, it cannot exist outside of the

first regime when these assumptions are violated. Thus, we can extend our results from the set

E0 to the set E .

Finally, when a bubbly equilibrium does not exist, it must also be that mt = 0 for all t

and ht. By arguments similar to above, the most favorable conditions for an equilibrium with

mt > 0 for some t and ht to exist is that µt+1 = 1 and mt+1 = Etmt+1 for all t and ht. If
α

1−α > max
{

1 + φ · ε, 1
4
· 1+φ

1−ε

}
, then bt = nt = 0 as we have shown above. But then, by

inspection of Equations (17)-(18), the law of motion mt 7→ mt+1 implies an explosive path for

mt, starting from any m0 > 0, as it is the same law of motion as for bt but with nt set to zero.

If α
1−α > (1 +φ) · ε and the economy is outside of the first regime described in Section 2.2, then

bt = nt = 0 as we have shown above. But then, by inspection of Equations (17)-(18), the law

of motion mt 7→ mt+1 is explosive starting from any m0 ≥ 1− ε, a contradiction.

Proof of Proposition 2. Using the arguments in the proof of Proposition 1, it is clear that

the market psychology P is feasible whenever EM,P ⊂ EP contains sequences {bt, nt,mt, µt}
with mt = 0 for all t and ht. In what follows, therefore, without loss of generality we set mt = 0

for all t and ht.

Suppose that P is feasible but that Γs < 0 for some s. The law of motion for the bubble,

given in Equation (16), along the sample path in which ut = us and nt = ns for all t is:

bt+1 = us ·
α

1− α
· bt + ns

1 + φ · (ε+ ns)− bt
, (52)

where we have used the fact that the economy is always in the first regime described in Section

2.2. Since Γs < 0, it is easy to check that the map bt 7→ bt+1 induced by Equation (52) lies

everywhere above the 45 degree line. Hence, along this sample path the bubble is explosive, a

contradiction.
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Suppose that P is feasible but that bL > bH . Consider the following sample path for the

bubble. For t ∈ {0, ..., T}, set ut = us and nt = ns corresponding to state s such that bL,s = bL.

For t > T , set ut = us′ and nt = ns′ corresponding to state s′ such that bH,s′ = bH . Observe

that, for T large enough, it must be that bT ≈ bL > bH . But then, the map bt 7→ bt+1 for law

of motion of the bubble must lie above the 45 degree line for bt > bH and t > T . Hence, along

this sample path the bubble is explosive, a contradiction.

Suppose that P is feasible but that β > bH . But then the map bt 7→ bt+1 for the law of

motion of the bubble along the sample path in which ut = us and nt = ns for all t > 0 and

corresponding to state s such that bH,s = bH lies above the 45 degree line for bt > bH . Hence,

along this sample path the bubble is explosive, a contradiction.

Finally, suppose that Γs ≥ 0 for all s, b0 ≤ bH and bH ≥ bL. But then, it is straighforward

to show that Equation (52) implies bt < 1 for all t and ht, i.e., P is feasible.

Proof of Proposition 3. Fix a feasible market psychology P (β,S, T ), and let b∗0 = β and

{us, ns} denote the initial condition for the bubble and the bubble return- and creation-shocks

associated with this market psychology, respectively. Consider now a candidate competitive

equilibrium in which mt = 0 for all t and ht, and let {b∗t , nt} denote the associated equilibrium

sequence for the bubble, computed using Equation (16), for a given history of bubble-shocks.

Consider a sequence {µ∗t} that satisfies µ∗t ≥ 1 and:

µ∗t+1 >
1− α
α
· (1 + φ · (ε+ nt)− b∗t ) (53)

for all t and ht. Thus, {µ∗t} is a stochastic sequence whose sample path depends solely on

b∗0 = β and the realized history of the bubble-shocks, {ut, nt}. By inspection of Equations

(28)-(29), we see that the candidate values for the bubble and money balances are indeed part

of a competitive equilibrium. We next show that this equilibrium is unique, and we proceed to

do so by contradiction.

Suppose to the contrary that, given the sequence {µ∗t} satisfying condition (53), there exists

another competitive equilibrium in which, in some period t0, we have mt0 > 0 for the first time.

Let {bt, nt} denote the associated equilibrium sequence for the bubble, again computed using

Equation (28). Notice that by assumption we have that mt = 0 and bt = b∗t for all t ≤ t0. From
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Equations (28)-(29), it must be that:

Et0mt0+1 =
α

1− α
·

µ∗t0+1 ·mt0

1 + φ · (ε+ nt0)− (bt0 +mt0)

>
1 + φ · (ε+ nt0)− b∗t0

1 + φ · (ε+ nt0)− (bt0 +mt0)
·mt0

≡ (1 + γt0+1) ·mt0 , (54)

where, because bt0 ≥ b∗t0 and mt0 > 0, we have that:

γt0+1 =
(bt0 +mt0)− b∗t0

1 + φ · (ε+ nt0)− (bt0 +mt0)
> 0. (55)

Thus, there exists a (continuation) state at t0 + 1 that must occur with positive probability

such that bt0+1 ≥ b∗t0+1 (see Equation (28)) and such that:

mt0+1 > (1 + γt0+1) ·mt0 . (56)

Proceeding inductively, we can construct a sample path in which, for t > t0, we have bt ≥ b∗t

and:

mt+1 ≥ (1 + γt+1) ·mt, (57)

and where:

γt+1 =
(bt +mt)− b∗t

1 + φ · (ε+ nt)− (bt +mt)
> 0. (58)

Since along this path mt > mt0 and bt ≥ b∗t , it follows that:

inf
t≥t0

γt+1 ≥
mt0

1 + φ · (ε+ maxs∈S ns)
> 0. (59)

Thus, it must be that limt→∞mt =∞, a contradiction.

Proof of Proposition 4. Fix a market psychology P and consider the candidate asset

supply x∗P , given by Proposition 4. We first show that there does not exist another feasible

sequence {xt} for the total supply of unbacked assets that Pareto-improves on x∗P , i.e., such

that it strictly increases the consumption of some generation without reducing it for another.

Case 1. Suppose that maxs Ω(ns) < bH , so that x∗P = max {bL,maxs Ω(ns)}. Consider a

sequence of policy changes {δt} to the asset supply such that δ0 > 0.25 To ensure that these

25A non-trivial sequence of policy changes must have a non-zero term at some point. What is required is that
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policy changes produce a Pareto-improvement, the consumption of all subsequent generations

cannot be smaller after the policy changes:

[α + (x∗P + δt) · (1− α)] ·
t−1∏
τ=0

[1 + φ · (ε+ nτ )− (x∗P + δτ )]
α(t−τ)

≥

≥ [α + x∗P · (1− α)] ·
t−1∏
τ=0

[1 + φ · (ε+ nτ )− x∗P ]α
(t−τ)

(60)

for all t and ht (see Equations (30)-(31)). Since it is without loss of generality to consider

sequences {δt} such that the above inequality holds with strict equality, a sequence of policy

changes {δt} produces a Pareto-improvement if and only if:26

δt+1 =

[(
1 + φ · (ε+ nt)− x∗P

1 + φ · (ε+ nt)− (x∗P + δt)
· α + (x∗P + δt) · (1− α)

α + x∗P · (1− α)

)α
− 1

]
·
(

α

1− α
+ x∗P

)
(61)

for all t and ht.

We now ask whether such a perturbation is feasible, i.e., whether it does not imply an

explosive path for the new sequence {x∗P + δt}. Define the following function:

∆ (δt;x
∗
P , nt) =

[(
1 + φ · (ε+ nt)− x∗P

1 + φ · (ε+ nt)− (x∗P + δt)
· α + (x∗P + δt) · (1− α)

α + x∗P · (1− α)

)α
− 1

]
·
(

α

1− α
+ x∗P

)
(62)

which is the RHS of Condition (61) and note that ∆ (·;x∗P , nt) is increasing and continuously

differentiable. Therefore, if lim
t→∞

δt+1 is infinite for all δ0 > 0, then there does not exist a feasible

sequence {δt} that satisfies Condition (61). If x∗P is such that for t sufficiently large ∂∆
∂δt
|δt=0 ≥ 1

for all ht, then lim
t→∞

δt+1 is infinite for any δ0 > 0; hence, this implies that x∗P is Pareto efficient.

But, since ∂∆
∂δt
|δt=0 = α

1−α ·
1+φ·(ε+nt)·(1−α)
1+φ·(ε+nt)−x∗P

, this is equivalent to saying that for t sufficiently large

x∗P ≥ Ω(nt) for all ht, which holds by assumption.

Case 2. Suppose that maxs∈S Ω(ns) > bH , so that x∗P = bH . Consider an alternative sequence

{x̂t} for the total supply of unbacked assets and let t0 be the first period in which x̂t0 > bH

along some history ht0 .27 Suppose that there were a continuation sample path along which

the first non-zero term of the sequence be strictly positive. Otherwise, the policy changes cannot a produce a
Pareto improvement since the first generation affected is worse off. If the first non-zero term happens in period
t 6= 0, all the arguments that follow go through after a simple re-labelling of the time index.

26To do this, for each history ht, divide the condition for period t+ 1 by its counterpart for period t raised
to the exponent α. Then re-arrange to solve for δt+1.

27Pareto-improvement over the asset supply x∗P requires that x̂t0 > x∗P (with positive probability); otherwise,
the old agents in the period where the change in the asset supply occurs would be worse off.

49



x̂t > bH for t ≥ t0. Then the law of motion of the bubble along this sample path would be:

bt+1 = ut+1 ·
α

1− α
· bt + nt

1 + φ · (ε+ nt)− x̂t
(63)

> ut+1 ·
α

1− α
· bt + nt

1 + φ · (ε+ nt)− bH
, (64)

which must be explosive (see Proposition 2), a contradiction. Thus, the asset supply cannot

exceed bH indefinitely.

Suppose instead that there were continuation sample paths such that x̂t0+q > bH for all

0 ≤ q < τ but that x̂t0+τ ≤ bH , for some τ > 0. Take the sample path with largest such τ ,

which must be finite by our previous argument. Consider the expected consumption of the

generation born at time τ − 1 along this sample path. These agents expect the asset supply to

be less than bH with probability one in period τ . Moreover, since along this sample path the

asset supply has been greater than bH until period τ , it must be that the capital stock and thus

wages have been lower as well than with asset supply bH (see Equation (30)). From Equation

(31), it follows that the expected consumption of these agents must be strictly lower than with

asset supply bH . Therefore, {x̂t} does not generate a Pareto-improvement over bH .

Next, we construct a monetary policy rule that is decisive in implementing the desired supply

for unbacked assets. Fix the market psychology P and consider the candidate equilibrium in

which the value of unbacked assets is x∗P for all t and ht. Let b∗t and m∗t denote the associated

candidate equilibrium values of the bubble and money balances respectively, so that b∗t +m∗t =

x∗P . Define a sequence {µ∗t} as follows:

µ∗t+1 =
1− α
α
· (1 + φ · (ε+ nt)− x∗P) ·

Et
{
x∗P − b∗t+1

}
x∗P − b∗t

(65)

for all t and ht. Note that, given the market psychology, {µ∗t} is a sequence of numbers that

depends only on the history of the shocks {ut, nt}. From Equations (28)-(29), given the sequence

{µ∗t}, we see that the candidate values for the bubble and money balances are indeed part of

competitive equilibrium. We next show that the competitive equilibrium is unique, which boils

down to showing that, given the market psychology P and the sequence {µ∗t}, the equilibrium

value of money balances is pinned down uniquely. We proceed by contradiction.

Suppose to the contrary that, given the market psychology and the monetary policy rule,

there is another competitive equilibrium in which in some period t0 we have that mt0 > m∗t0 for
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the first time. Note that mt = m∗t and bt = b∗t for t ≤ t0. From Equation (29), it must be that:

Et0mt0+1 =
α

1− α
·

µ∗t0+1 ·mt0

1 + φ · (ε+ nt0)− (bt0 +mt0)

≥
1 + φ · (ε+ nt0)−

(
b∗t0 +m∗t0

)
1 + φ · (ε+ nt0)− (bt0 +mt0)

·mt0 ·
Et0m

∗
t0+1

m∗t0

=
(
1 + γ+

t0+1

)
·mt0 ·

Et0m
∗
t0+1

m∗t0
, (66)

where, because bt0 ≥ b∗t0 and mt0 > m∗t0 , we have that:

γ+
t0+1 =

(bt0 +mt0)−
(
b∗t0 +m∗t0

)
1 + φ · (ε+ nt0)− (bt0 +mt0)

> 0. (67)

Thus, there exists a (continuation) state at t0 + 1 that occurs with positive probability such

that bt0+1 ≥ b∗t0+1 (see Equation (28)) and such that:

mt0+1

m∗t0+1

≥
(
1 + γ+

t0+1

)
· mt0

m∗t0
, (68)

which also implies that mt0+1 > m∗t0+1. Proceeding inductively, we can construct a sample path

in which, for t > t0, we have that bt ≥ b∗t :

mt+1

m∗t+1

≥
(
1 + γ+

t+1

)
· mt

m∗t
, (69)

which implies mt+1 > m∗t+1 and where:

γ+
t+1 =

(bt +mt)− (b∗t +m∗t )

1 + φ · (ε+ nt)− (bt +mt)
> 0. (70)

Since along this path mt = mt
m∗t
·m∗t =

(
Πt−t0−1
j=0

(
1 + γ+

t0+j

)
· mt0
m∗t0

)
·m∗t >

(
1 + γ+

t0+1

)
· mt0
m∗t0
·m∗t ,

it follows that:

inf
t≥t0

γ+
t+1 ≥

(
1 + γ+

t0+1

)
· mt0
m∗t0
− 1

1 + φ · (ε+ maxs∈S ns)
· υ > 0. (71)

Thus, limt→∞Πt−t0−1
j=0

(
1 + γ+

t0+j

)
= ∞ and therefore limt→∞

mt
m∗t

= ∞, which implies that

limt→∞mt =∞. Thus, this sample path for money balances is explosive, a contradiction.

Second, suppose to the contrary that, given the market psychology and the monetary rule,

there is another competitive equilibrium, in which in some period t0 we have that mt0 < m∗t0
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for the first time. Note that mt = m∗t and bt = b∗t for t < t0. Hence, it must be the case that:

Et0mt0+1 ≤
α

1− α
·

µ∗t0+1 ·mt0

1 + φ · (ε+ nt0)− (bt0 +mt0)

≤
1 + φ · (ε+ nt0)−

(
b∗t0 +m∗t0

)
1 + φ · (ε+ nt0)− (bt0 +mt0)

·mt0 ·
Et0m

∗
t0+1

m∗t0

=
(
1− γ−t0+1

)
·mt0 ·

Et0m
∗
t0+1

m∗t0
, (72)

where the first inequality is an equality if mt0 > υ ≈ 0, and where, because bt0 ≤ b∗t0 and

mt0 < m∗t0 , we have that:

γ−t0+1 =

(
b∗t0 +m∗t0

)
− (bt0 +mt0)

1 + φ · (ε+ nt0)− (bt0 +mt0)
> 0. (73)

Thus, there must exist a (continuation) state at t0 + 1 that occurs with positive probability

such that bt0+1 ≤ b∗t0+1 (again, see Equation (28)) and such that:

mt0+1

m∗t0+1

≤
(
1− γ−t0+1

)
· mt0

m∗t0
, (74)

which also implies that mt0+1 < m∗t0+1. Proceeding inductively, we can construct a sample path

in which, for t > t0, we have that bt ≤ b∗t :

mt+1

m∗t+1

≤
(
1− γ−t+1

)
· mt

m∗t
, (75)

which implies mt+1 < m∗t+1 and where:

γ−t+1 =
(b∗t +m∗t )− (bt +mt)

1 + φ · (ε+ nt)− (bt +mt)
> 0. (76)

Since along this path mt = mt
m∗t
·m∗t =

(
Πt−t0−1
j=0

(
1− γ−t0+j

)
· mt0
m∗t0

)
·m∗t <

(
1− γ−t0+1

)
· mt0
m∗t0
·m∗t ,

it follows that:

inf
t≥t0

γ−t+1 ≥
1−

(
1− γ−t0+1

)
· mt0
m∗t0

1 + φ · (ε+ maxs∈S ns)
· υ > 0. (77)

Thus, limt→∞Πt−t0−1
j=0

(
1− γ−t0+j

)
= 0 and therefore limt→∞

mt
m∗t

= 0, which implies that limt→∞mt =

0 < υ. Thus, money balances are eventually below the money holders’ demand, a contradiction.

Finally, we are left to verify that the sequence {µ∗t} is such that seignorage is non-negative

at all times, i.e. µ∗t ≥ 1 for all t and ht. Using the law of motion for the bubble in Equation
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(28) and combining it with the monetary policy rule in Equation (65), we have that:

µ∗t+1 =
x∗P · [1 + φ · (ε+ nt)− x∗P ] · 1−α

α
− (b∗t + nt)

x∗P − b∗t
, (78)

where

b∗t+1 = ut+1 ·
α

1− α
· b∗t + nt

1 + φ · (ε+ nt)− x∗P
. (79)

Let b̃L,s denote the smallest solution to:

b̃L,s = us ·
α

1− α
· b̃L,s + ns

1 + φ · (ε+ ns)− x∗P
, (80)

and let b̃L ≡ maxs∈S b̃L,s. Note that by construction b̃L ≤ x∗P . Now, note that in any state s,

we have:

1 + φ · (ε+ ns)− x∗P =
α

1− α
· us ·

b̃L,s + ns

b̃L,s
. (81)

Plugging this into the monetary rule, we have:

µ∗t+1 =
x∗P · us ·

b̃L,s+ns

b̃L,s
− (b∗t + nt)

x∗P − b∗t

=
x∗P − b∗t + x∗P ·

[
us · b̃L,s+nsb̃L,s

− 1
]
− nt

x∗P − bt
. (82)

Let Sη = {s : ns = η} denote the set of all states in the state space in which bubble creation is

equal to some η. From Equation (80), for all s, s′ ∈ Sη ⊂ S, we have:

us ·
b̃L,s + η

b̃L,s
= us′ ·

b̃L,s′ + η

b̃L,s′
. (83)

Moverover, since Etut+1 = 1, if there is a negative bubble return shock in some state, i.e.

us < 1, there must also be a positive one in another state, i.e. us′ > 1. This implies that, for
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any nt = η and any s ∈ Sη ⊂ S, we have:

x∗P ·

[
us ·

b̃L,s + η

b̃L,s
− 1

]
− η = x∗P ·

[
us′ ·

b̃L,s′ + η

b̃L,s′
− 1

]
− η (84)

≥ x∗P ·
η

b̃L,s′
− η (85)

≥

(
b̃L

b̃L,s′
− 1

)
· η > 0, (86)

where to obtain the last inequality, we used the fact that b̃L ≤ x∗P . But then, by inspection of

Equation (82), we see that µ∗t ≥ 1 for all t and ht.
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