Firm Dynamics, Job Turnover, and Wage Distributions in an Open Economy

A. Kerem Cosar
Nezih Guner
James Tybout

November 2013

Barcelona GSE Working Paper Series
Working Paper nº 732
Firm Dynamics, Job Turnover, and Wage Distributions in an Open Economy*

A. Kerem Coşar Nezih Guner James Tybout
University of Chicago ICREA-MOVE, U. Autònoma de Barcelona and Barcelona GSE
Booth School of Business Pennsylvania State University and NBER

November 3, 2013

Abstract

This paper explores the combined effects of reductions in trade frictions, tariffs, and firing costs on firm dynamics, job turnover, and wage distributions. It uses establishment-level data from Colombia to estimate an open economy dynamic model that links trade to job flows in a new way. The fitted model captures key features of Colombian firm dynamics and labor market outcomes, as well changes in these features during the past 25 years. Counterfactual experiments imply that integration with global product markets has increased both average income and job turnover in Colombia. In contrast, the experiments find little role for this country’s labor market reforms in driving these variables. The results speak more generally to the effects of globalization on labor markets in Latin America and elsewhere.

Keywords: International trade, firm dynamics, size distribution, labor market frictions, inequality

JEL Codes: F12, F16, E24, J64, L11

*We wish to thank Matteo Cacciatore, Carl Davidson, Donald Davis, Steven Davis, Jonathan Eaton, Gabriel Felbermayr, Penny Goldberg, John Haltiwanger, Oleg Itskhoki, John McClaren, Philipp Kircher, Steve Matusz, Marc Muendler, Nina Pavcnik, Andres Rodriguez-Clare, Ina Simonovska, Etienne Wasmer, and participants in many conferences and seminars for helpful discussions. This research was supported by the National Science Foundation (Grant No. SES-0617888), the Excellence Project of the Bank of Spain and the European Research Council (Grant No. 263600). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation, the Bank of Spain or the European Research Council. Coşar thanks Chicago Booth for summer financial support.
1 Introduction

In Latin America, between 1990 and 2003, merchandise trade tripled while job turnover, unemployment, informal self-employment, and wage inequality all rose significantly. Also, around the beginning of this period, many countries in the region dismantled their trade barriers and implemented labor market reforms.\(^1\) These developments motivate the two basic questions we address in this paper. First, through what mechanisms and to what extent might the global integration of product markets have increased job insecurity and wage inequality in Latin America? Second, how might commercial policy reforms and changes in worker firing costs have conditioned the relationship between globalization and these labor market outcomes?

To answer these questions, we develop a dynamic general equilibrium model that links globalization and labor regulations to job flows, unemployment, and wage distributions. Then we fit our model to plant-level panel data from Colombia—a country that cut tariffs, reduced firing costs, and exhibited rapid growth in merchandise trade. Finally, we perform counterfactual experiments that quantify the labor market consequences of global reductions in trade frictions (hereafter, "globalization") and Colombia’s policy reforms. Decomposing the net effects, we find that the policy reforms modestly increased job turnover and unemployment, while modestly improving average income. But globalization was much more important, accounting by itself for a substantial fraction of the increase in job turnover, unemployment, and income that Colombia experienced. Hence, while increasing incomes through the well-known channels, the rapid expansion of global trade may also be contributing to reduced job security in Latin America and elsewhere.\(^2\)

Our model is related to several literatures. First, it shares some basic features with large firm models in the labor-search literature. In particular, it can be viewed as an extension of Bertola and Cabellero (1994), Bertola and Garibaldi (2001), and Koeniger and Prat (2007) to include fully articulated product markets, international trade, serially correlated productivity shocks, intermediate inputs, and endogenous firm entry and exit.\(^3\)

It also shares some characteristics with recent trade models that describe the effects of openness on labor markets and firms, including Melitz (2003), Davidson et al. (1999,

1\(^{\text{Trade flow data are taken from World Trade Organization (2013). The Inter-American Development Bank (2004) summarizes the deterioration in Latin American labor market conditions. Heckman and Pages (2004) survey labor market regulations and reforms in Latin America and note that openness to international trade increased the demand for labor market flexibility. Haltiwanger et al. (2004) document the association between job turnover and openness in Latin America. Goldberg and Pavcnik (2007) survey the evidence linking openness to wage inequality and informality in Latin America and other developing countries.}}\)

2\(^{\text{Rodrik (1996) makes a related argument, though he points to different mechanisms.}}\)

3\(^{\text{Other recent papers that study firm dynamics and labor market frictions in a closed economy context include Cooper et al. (2007), Lentz and Mortensen (2010), and Hobijn and Sahin (2013). Utar (2008) studies firm dynamics and labor market frictions in an import-competing industry that takes the wage rate as given.}}\)
2008), Kambourov (2009), Egger and Kreickemeier (2009), Artuc et al. (2010), Helpman and Itskhoki (2010), Helpman et al. (2010), Davis and Harrigan (2011), Felbermayr et al. (2011), Amiti and Davis (2012), Helpman et al. (2012), Coşar (2013), Dix-Carneiro (2013), and Fajgelbaum (2013). Among these studies, our model most closely resembles Helpman and Itskhoiki (2010), which also has two sectors—one perfectly competitive, and one characterized by monopolistic competition with search frictions and wage bargaining. However, we differ from this literature in our focus on firm dynamics and job turnover. Also, excepting Artuc et al. (2010), Helpman et al. (2012), and Dix-Carneiro (2013), we depart from these studies by econometrically estimating our model’s structural parameters.

Finally, our formulation draws on Hopenhayn’s (1992) characterization of firm dynamics, and in that sense it is related to many previous models that generate size-dependent volatility, including Jovanovic (1982), Ericson and Pakes (1995), Klette and Kortum (2004), Luttmer (2007), and Rossi-Hansberg and Wright (2007).

While many of the building blocks in our model are familiar, it delivers a new perspective on the relationship between openness and labor market outcomes. Several key mechanisms are at work. First, by increasing the sensitivity of firms’ revenues to their productivity and employment levels, openness makes firms more willing to incur the hiring and firing costs associated with adjusting their workforce. By itself, this sensitivity effect makes job turnover and unemployment higher when trade frictions are low. It also tends to create larger rents for the more successful firms and to thereby spread the cross-firm wage distribution. Second, however, openness concentrates workers at larger firms, which are more stable than small firms and less likely to exit. This distribution effect works against the sensitivity effect, tending to reduce turnover and wage inequality as trade frictions fall. Finally, both the sensitivity effect and the distribution effect are compounded by general equilibrium adjustments in intermediate input prices, exchange rates, and labor market tightness.

Our estimated model closely replicates basic features of Colombian micro data in the decade preceding reforms, including the size distribution of firms, the rates of employment growth among firms of different sizes, producer entry and exit rates, exporting patterns, and the degree of persistence in firm-level employment levels. Also, although it is fit to pre-reform data, it nicely replicates many post-2000 features of the Colombian economy when it is evaluated at post-2000 tariff rates, firing costs, and global trade frictions. In particular, the quantified model successfully predicts the post-1990s plant size distribution.

While we do not pretend to capture all of the channels through which openness and firing costs can affect labor market outcomes, our focus on firm-level entry, exit and idiosyncratic productivity shocks is supported by existing empirical evidence on the sources of job turnover.

4 This feature of our model captures a well-known empirical regularity. Haltiwanger et al. (2013) provide recent evidence from the U.S.
and wage heterogeneity. Studies of job creation and job destruction invariably find that most reallocation is due to idiosyncratic (rather than industry-wide) adjustments (Davis et al. 1998; Roberts 1996), even in Latin America’s highly volatile macro environment (Chapter 2 of Inter-American Development Bank 2004). Further, as Goldberg and Pavcnik (2007) note, there is little evidence in support of trade-induced labor reallocation across sectors, so if openness has had a significant effect on job flows, it should have been through intra-sectoral effects. Finally, while observable worker characteristics do matter for wage differentials, much is attributable to labor market frictions and firm heterogeneity (Abowd et al. 1999; Mortensen 2003; Helpman et al. 2012).

2 The Model

2.1 Preferences

We consider a small open economy populated by a unit measure of homogeneous, infinitely-lived worker-consumers. Each period \(t \), agents derive utility from the consumption of homogeneous, non-tradable services, \(s_t \), and a composite industrial good, \(c_t \), where

\[
c_t = \left(\int_0^{N_t} c_t(n)^{\frac{\sigma - 1}{\sigma}} \, dn \right)^{\frac{\sigma}{\sigma - 1}},
\]

aggregates consumption of the differentiated goods varieties, \(c_t(n), n \in [0, N_t] \), with a constant elasticity of substitution \(\sigma > 1 \). Worker-consumers maximize the expected present value of their utility stream

\[
U = \sum_{t=1}^{\infty} \frac{s_t^{1-\gamma} c_t^{\gamma}}{(1 + r)^t},
\]

where \(r \) is the discount rate and \(\gamma \in (0, 1) \) is the expenditure share of the industrial good. Being risk neutral, they do not save. In what follows, we suppress time subscripts \(t \) for ease of notation.

2.2 Production technologies

Services are supplied by service sector firms and, less efficiently, by unemployed workers engaged in home production. Regardless of their source, services are produced with labor alone, homogeneous across suppliers, and sold in competitive product markets. Firms that supply services generate one unit of output per worker and face no hiring or firing costs. Unemployed workers who home-produce service goods each generate \(b < 1 \) units of output.
The economy-wide supply of services is thus

\[S = L_s + bL_u, \]

(2)

where \(L_s \) is labor employed in the service sector and \(L_u \) is unemployed labor.

Differentiated goods are supplied by industrial sector firms, each of which produces a unique product. These firms are created through sunk capital investments; thereafter their output levels are determined by their productivity levels, \(z \), employment levels, \(l \), and intermediate input usage, \(m \), according to:

\[q = zl^\alpha m^{1-\alpha}. \]

(3)

Here \(0 < \alpha < 1 \) and \(m = \left(\int_0^N m(n)^{\frac{\alpha-1}{\alpha}} \, dn \right)^{\frac{\alpha}{\alpha-1}} \) aggregates differentiated goods used as intermediates in the same way the subutility function (1) aggregates differentiated goods used for final consumption. Note that, as in Eaton and Kortum (2002), the inclusion of intermediate goods in our production function links the domestic prices of imports directly to the performance of all industrial firms, including non-exporters. As in Melitz (2003), productivity variation can equally well be thought of as variation in product quality.

2.3 Price indices

Differentiated goods can be traded internationally. Measure \(N_F \) of the measure \(N \) differentiated goods are imported, and an endogenous set of domestically produced goods are exported. Both exports and imports are subject to iceberg trade costs: for each \(\tau_c > 1 \) units shipped, a single unit arrives at its destination. Moreover, imports are subject to an ad valorem tariff rate of \(\tau_m - 1 > 0 \).

Let asterisks indicate that a variable is expressed in foreign currency, and define \(p^*(n) \) to be the FOB price of imported variety \(n \in [0, N_F] \). The exact home-currency price index for imported goods is then \(P_E = \tau_m \tau_c k \left(\int_0^{N_F} p^*(n)^{1-\sigma} \, dn \right)^{1/(1-\sigma)} \), where \(k \) is the exchange rate. Similarly, letting \(p(n) \) be the price of domestic variety \(n \in (N_F, N) \) in the home market, the exact home price index for domestic goods is \(P_H = \left(\int_{N_F}^N p(n)^{1-\sigma} \, dn \right)^{1/(1-\sigma)} \). Finally, defining \(p_X^*(n) \) to be the price of domestic variety \(n \) in the foreign market, and letting \(\mathcal{I}^x(n) \in \{0, 1\} \) take a value of 1 if good \(n \) is exported, \(P_X^* = \left(\int_{N_F}^N \mathcal{I}^x(n)p_X^*(n)^{1-\sigma} \, dn \right)^{1/(1-\sigma)} \) is the exact foreign market price index for exported goods.

Several normalizations simplify notation. First, since the measure of available foreign varieties and their FOB foreign-currency prices are exogenous to our model, we normalize \(\left(\int_0^{N_F} p^*(n)^{1-\sigma} \, dn \right)^{1/(1-\sigma)} \) to unity by choice of foreign currency units. This allows us to write
the exact domestic price index for the composite industrial good as

\[P = \left[P_H^{1-\sigma} + (\tau_m \tau_c k)^{1-\sigma} \right]^{\frac{1}{1-\sigma}}. \] (4)

Second, without loss of generality, we choose the price of services to be our numeraire. The real exchange rate \(k \) endogenously adjusts so that in equilibrium, the two normalizations in domestic and foreign currency units are consistent.

2.4 Differentiated goods markets

Differentiated goods are sold in monopolistically competitive markets, where they are purchased by consumers as final goods and by producers as intermediate inputs. Utility maximization implies that worker \(i \) with income \(Y_i \) demands \(\frac{Y_i}{P} \left(\frac{p(n)}{P} \right)^{-\sigma} \) units of domestic variety \(n \) and \(\frac{Y_i}{P} \left(\frac{m \tau_c k p(n)}{P} \right)^{-\sigma} \) units of imported variety \(n' \). Similarly, firm \(j \) with gross revenue \(G_j \) optimally purchases \((1 - \alpha) \frac{G_j}{P} \left(\frac{p(n)}{P} \right)^{-\sigma} \) units of domestic variety \(n \), and \((1 - \alpha) \frac{G_j}{P} \left(\frac{m \tau_c k p(n)}{P} \right)^{-\sigma} \) units of imported variety \(n' \).

Aggregating across domestic consumers and domestic producers yields total domestic demand for any domestic variety \(n \):

\[Q_H(n) = D_H p(n)^{-\sigma} \quad \text{for} \quad n \in (N_F, N], \] (5)

where

\[D_H = P^{\sigma-1} \left[\gamma \int_0^1 Y_i di + (1 - \alpha) \frac{1}{\sigma} \int_{N_F}^N G_j dj \right]. \]

Note that the population of domestic worker-consumers is normalized to one, and domestic producers are indexed by \(n \in (N_F, N] \). Likewise, total domestic demand for any imported variety \(n \) is

\[Q_H(n) = D_H \left[m \tau_c k p^*(n) \right]^{-\sigma} \quad \text{for} \quad n \in [0, N_F]. \] (6)

Finally, assuming markets are internationally segmented, foreign demand for domestically produced good \(n \) is given by

\[Q_F(n) = D_F^{*} \left[p^*_X(n) \right]^{-\sigma}, \quad n \in (N_F, N], \] (7)

where \(D_F^{*} \) measures aggregate expenditures abroad denominated in foreign currency, and is net of any effects of foreign commercial policy. Given our small country assumption, we take \(D_F^{*} \) to be unaffected by the actions of domestic agents.

These expressions imply that, expressed in domestic currency, total domestic expendi-
tures on domestic varieties amount to $D_H P^{1-\sigma}_H$, total domestic expenditures on imported varieties amount to $D_H (\tau_m \tau_c k)^{1-\sigma}$, and domestic firms’ total export revenues amount to $k D^*_F P^{1-\sigma}_X / \tau_c$.

In what follows, we refer to the sector producing tradable differentiated goods as the industrial sector and to the producers in there as industrial firms.

2.5 Producer dynamics

Industrial firms are subject to idiosyncratic productivity shocks. These are serially correlated and are generated by the $AR(1)$ process

$$\ln z' = \rho \ln z + \sigma_z \epsilon, \quad (8)$$

where $\rho \in (0, 1)$ and $\sigma_z > 0$ are parameters, primes indicate one-period leads, and $\epsilon \sim N(0, 1)$ is a standard normal random variable independently and identically distributed across time and firms. Together with firms’ employment policies and entry and exit decisions, (8) determines the steady state distribution of firms over the state space (z, l). Note that $\rho < 1$ implies large firms are less likely to grow, and thus will create jobs at a slower rate.

Producer dynamics in the industrial sector resemble those in Hopenhayn (1992) and Hopenhayn and Rogerson (1993) in that firms react to their productivity shocks by optimally hiring, firing, or exiting. Also, new firms enter whenever their expected future profit stream exceeds the entry costs they face. However, unlike these papers, we assume that hiring in the industrial sector is subject to search frictions captured by a standard matching function. We now describe the functioning of labor markets.

2.6 Labor markets and the matching technology

The service sector labor market is frictionless, so workers can obtain jobs there with certainty if they choose to do so. Since each service sector worker produces one unit of output, and the price of services is our numeraire, these jobs pay a wage of $w_s = 1$.

The industrial sector labor market, in contrast, is subject to search frictions. These expose industrial job seekers to unemployment risk and create match-specific rents that workers and firms bargain over. The number of new matches between job seekers and vacancy posting firms each period is given by

$$M(V, U) = \frac{VU}{(V^\theta + U^\theta)^{1/\theta}},$$

where $\theta > 0$. Here, U is the measure of workers searching for industrial sector jobs, and
V is the measure of industrial sector vacancies. The parameter θ governs the severity of matching frictions, since a higher value for θ results in a larger number of matches for given values of U and V.

This matching function implies that industrial firms fill each vacancy with probability

$$\phi(V, U) = \frac{M(V, U)}{V} = \frac{U}{(V^\theta + U^\theta)^{1/\theta}},$$

while workers searching for industrial jobs find matches with probability

$$\tilde{\phi}(V, U) = \frac{M(V, U)}{U} = \frac{V}{(V^\theta + U^\theta)^{1/\theta}}.$$

At the beginning of each period, workers who are not already employed in the industrial sector decide whether to accept a service sector job that pays wage $w_s = 1$ with certainty, or to search for an industrial sector job. If they fail to match with an industrial sector producer, they subsist until the next period by home-producing services at the wage of $b < 1$.

At the start of the matching process, among the unit measure of the worker population, U are searching for an industrial job. At the end of the matching process, $L_u = (1 - \tilde{\phi})U$ workers fail to find a job and stay unemployed while L_q work in the industrial sector. As a result, a fraction $L_u/(L_u + L_q)$ of workers associated with the frictional labor market are unemployed.

Workers who begin a period employed in the industrial sector can continue with their current job unless their employer lays them off or shuts down entirely. In equilibrium, industrial sector workers are paid at least their reservation wage, so those who do not lose their jobs will never leave them voluntarily. Workers’ job-seeking decisions and the bargaining game that determines industrial firms’ wages will be described below in Sections 2.9 and 2.10, respectively. But before discussing either, we must characterize the firm’s problem.

2.7 The firm’s problem

At the beginning of each period, incumbent firms decide whether to continue operating and potential entrants decide whether to create new firms. Thereafter, active firms go on to choose their employment levels, intermediate input usage, and exporting policies. Entry, exit, and employment decisions involve adjustment costs, so they are solutions to forward-looking problems. In contrast, intermediate input purchases and exporting decisions involve frictionless optimization after employment levels have been determined. We now characterize

5 The functional form of the matching function follows den Haan et al. (2000). It is subject to constant returns to scale, and increasing in both arguments. In contrast to the standard Cobb-Douglas form, it has no scale parameter and the implied matching rates are bounded between zero and one. Note that for $V = U$, as θ approaches infinity, job finding and filling probabilities approach to 1.

6 The notion that workers trade job security in a low wage sector for the opportunity to search in a higher wage sector traces back at least to the Harris and Todaro (1970) model.
2.7.1 Export policy

Given the domestic demand function (5), any firm that sells some fraction $1 - \eta$ of its output domestically will generate gross home sales amounting to $D_H^{\frac{1}{\sigma}} [(1 - \eta) q]^{\frac{\sigma - 1}{\sigma}}$. Similarly, given the foreign demand function (7), such a firm will generate gross foreign sales of $k (D_F^*)^{\frac{1}{\sigma}} \left[\frac{\eta}{\tau_c} q \right]^{\frac{\sigma - 1}{\sigma}}$. Total gross revenue can thus be written as

$$G(q, \eta) = \exp \left[d_H + d_F(\eta) \right] q^{\frac{\sigma - 1}{\sigma}}, \quad (9)$$

where $d_H = \ln(D_H^{\frac{1}{\sigma}})$, and $d_F(\eta) = \ln \left[(1 - \eta)^{\frac{\sigma - 1}{\sigma}} + k \left(\frac{D_F^*}{D_H} \right)^{\frac{1}{\sigma}} \frac{\eta}{\tau_c} \left(\frac{\sigma - 1}{\sigma} \right) \right]$. While the term d_H measures domestic demand, and is common to all firms, the term $d_F(\eta)$ captures the extra revenue generated by exporting, conditional on output.

Given output levels, firms choose their exporting levels each period to maximize their current sales revenues net of fixed exporting costs, c_x. Not all firms find it profitable to participate in foreign markets, but those that do share the same optimal level of η:

$$\eta^o = \arg \max_{0 \leq \eta \leq 1} d_F(\eta) = \left(1 + \frac{\tau_c^{\sigma - 1} D_H}{k \sigma D_F^*} \right)^{-1}. \quad (10)$$

The associated export market participation policy is thus

$$\mathcal{I}^x(q) = \begin{cases} 1 & \text{if } \left[\exp \left[d_H + d_F(\eta^o) \right] \right] - \exp(d_H)] q^{\frac{\sigma - 1}{\sigma}} > c_x, \\ 0, & \text{otherwise}, \end{cases} \quad (11)$$

and there is a threshold output level that separates exporters from others. Given d_H and $d_F(\eta^o)$, this allows us to write revenues net of exporting costs as a function of output alone:

$$G(q) = \exp \left[d_H + \mathcal{I}^x(q) d_F(\eta^o) \right] q^{\frac{\sigma - 1}{\sigma}} - c_x \mathcal{I}^x(q). \quad (12)$$

2.7.2 Intermediates and the value-added function

Firms determine their output levels by choosing their intermediate input usage, m, given their current period z and l values. Optimizing over m and suppressing market-wide variables, we can thus use (3) and (12) to write value added net of exporting costs as a function of z and l alone:

$$R(z, l) = \max_m \left\{ G(z \alpha m^{1-\alpha}) - Pm \right\}. \quad (13)$$
The solution to this optimization problem is:

\[R(z, l) = \Delta(z, l) (zl^\alpha)^\Lambda - c_x \mathcal{I}^x(z, l), \]

(14)

where we have used the optimized \(m \) value and (3) to restate \(\mathcal{I}^x(q) \) as \(\mathcal{I}^x(z, l) \). Also,

\[\Delta(z, l) = \Theta P^{-(1-\alpha)\Lambda} \left(\exp \left[d_H + \mathcal{I}^x(z, l) d_F(\eta^o) \right] \right)^{\frac{\sigma}{\sigma-1}\Lambda}, \]

(15)

where \(\Lambda = \frac{\sigma-1}{\sigma-(1-\alpha)(\sigma-1)} \) and \(\Theta = \left(\frac{1}{(1-\alpha)\Lambda} \right) \left(\frac{1-\alpha}{\sigma} \right)^{\frac{\sigma}{\sigma-1}\Lambda} \) are positive constants.

The term \(\Delta(z, l) \) is a firm-level market size index. It responds to anything that affects aggregate domestic demand (\(D_H \)), trade costs (\(\tau_c \)), or the exchange rate (\(k \)). But given these market-wide variables, the only source of cross-firm variation in \(\Delta(z, l) \) is exporting status (\(\mathcal{I}^x \)). Accordingly, below we suppress the arguments of \(\Delta \) except where we wish to emphasize its dependence on these variables. Appendix 1 provides derivations of (14) and (15), and shows that the net revenue function exhibits diminishing marginal returns to labor (\(\alpha\Lambda < 1 \)).

2.7.3 Employment policy

We now turn to decisions that involve forward-looking behavior. When choosing employment levels, firms weigh the revenue stream implied by (14) against wage costs, the effects of \(l \) on their continuation value, and current firing or hiring costs. To characterize the latter, let the cost of posting \(v \) vacancies for a firm of size \(l \) be

\[C_h(l, v) = \left(\frac{c_h}{\lambda_1} \right) \left(\frac{v}{l^2} \right)^\lambda_1, \]

where \(c_h \) and \(\lambda_1 > 1 \) are positive parameters.\(^7\) The parameter \(\lambda_2 \in [0, 1] \) determines the strength of scale economies in hiring. If \(\lambda_2 = 0 \), there are no economies of scale and the cost of posting \(v \) vacancies is the same for all firms. On the other hand, if \(\lambda_2 = 1 \), the cost of a given employment growth rate is the same for all firms. For any \(0 < \lambda_2 < 1 \), a given level of employment growth is more costly for larger firms, and other things equal their growth rates are relatively small.

Firms in our model are large in the sense that cross-firm variation in realized worker arrival rates is ignorable. That is, all firms fill the same fraction \(\phi \) of their posted vacancies. It follows that expansion from \(l \) to \(l' \) simply requires the posting of \(v = \frac{l'-l}{\phi} \) vacancies, and

\(^7\)This specification generalizes Nilsen et al. (2007), who set \(\lambda_2 = 1 - 1/\lambda_1 \). See also Merz and Yashiv (2007), and Yashiv (2006).
we can write the cost of expanding from \(l \) to \(l' \) workers as

\[
C_h(l, l') = \left(\frac{c_h}{\lambda_1} \right) \phi^{-\lambda_1} \left(\frac{l' - l}{l \lambda_2} \right)^{\lambda_1}.
\]

(16)

Clearly, when labor markets are slack, hiring is less costly because each vacancy is more likely to be filled.

Downward employment adjustments are also costly. When a firm reduces its workforce from \(l' \) to \(l \), it incurs firing costs proportional to the number of workers shed:\(^8\)

\[
C_f(l, l') = c_f(l - l').
\]

(17)

For convenience we assume hiring and firing costs are incurred in terms of service goods, and we describe both with the adjustment cost function:

\[
C(l, l') = \begin{cases}
C_h(l, l') & \text{if } l' > l, \\
C_f(l, l') & \text{otherwise}.
\end{cases}
\]

Several observations concerning adjustment costs are in order. First, while convex hiring costs induce firms to expand gradually, there is no incentive to downsize gradually. Second, when the firm exits, it is not liable for \(c_f \). Finally, as will be discussed below, it is possible that a firm will find itself in a position where the marginal worker reduces operating profits, but it is more costly to fire her than retain her.

Regardless of whether a firm expands, contracts, or remains at the same employment level, we assume it bargains with each of its workers individually and continuously. This implies that bargaining is over the marginal product of labor, and all workers at a firm in a particular state \((z, l)\) are paid the same wage (Stole and Zwiebel 1996; Cahuc and Wasmer 2001; Cahuc, Marque, and Wasmer 2008). Moreover, the marginal worker at an expanding firm generates rents, while the marginal worker at a contracting firm does not (Bertola and Caballero 1994; Bertola and Garibaldi 2001; Koeniger and Prat 2007).\(^9\) Hence expanding firms face different wage schedules than others. These schedules depend upon firms’ states, so we denote the wage schedule paid by a hiring firm as \(w_h(z, l) \) and the wage schedule paid by a non-hiring firm as \(w_f(z, l) \). Details are deferred to Section 2.10 below.

We now elaborate firms’ optimal employment policies within a period (see Figure 1). An incumbent firm enters the current period with the productivity level and work force \((z, l)\) determined in the previous period. Thereupon it may exit immediately, either because the

\(^8\)As is standard in the literature (see Ljungqvist 2002 for a review), we assume that firing costs take the form of a resource cost and are not pure transfers from firms to workers.

\(^9\)This result obtains because hiring firms face convex adjustment costs, while firing costs are linear in the number of fired workers.
expected present value of its profit stream is negative, or because it is hit with an exogenous exit shock.

If a firm opts to stay active and is not hit with an exogenous exit shock, it proceeds to an interim stage in which it observes its current-period productivity realization z'. Then, taking stock of its updated state, (z', l), the relevant wage schedules, and adjustment costs $C(l, l')$, it chooses its current period work force, l'. Both hiring and firing decisions take immediate effect and firms enter the end of the period with (z', l'), making optimal intermediate usage and exporting decisions based on their new state. Profits are realized and wages are paid at this point. Depending on whether the firm is hiring or not, profits are

$$
\pi(z', l, l') = \begin{cases}
R(z', l') - w_h(z', l')l' - C(l, l') - c_p & \text{if } l' > l \\
R(z', l') - w_f(z', l')l' - C(l, l') - c_p & \text{otherwise},
\end{cases}
$$

where c_p, the per-period fixed cost of operation, is common to all firms.

Firms discount the future at the same rate $(1 + r)$ as consumers. So the beginning-of-period value of a firm in state (z, l) is

$$
V(z, l) = \max \left\{ 0, \frac{1 - \delta}{1 + r} \mathbb{E}_{z' \mid z} \max_{l'} [\pi(z', l, l') + V(z', l')] \right\},
$$

where δ is the probability of an exogenous death shock, and the maximum of the term in square brackets is the value of the firm in the interim state, after it has realized its productivity shock.

The solution to (19) implies an employment policy function,

$$
l' = L(z', l),
$$

an indicator function $I^h(z', l)$ that distinguishes hiring and firing firms, and an indicator
function $I^c(z, l)$ that characterizes firms’ continuation and exit policy. $I^h(z', l)$ and $I^c(z, l)$ take the value one if a firm is hiring or continuing, respectively, and zero otherwise.

2.7.4 Entry

In the steady state, a constant fraction of firms exits the industry either endogenously or exogenously. These firms are replaced by an equal number of entrants, who find it optimal to pay a sunk entry cost of c_e and create new firms. Upon entry, these entrants are endowed with an initial employment of $l_e > 0$, and draw their initial productivity level from the ergodic productivity distribution implied by (8), hereafter denoted as $\psi_e(z)$. Firms need at least l_e workers to operate, and the search costs for the initial l_e workers are included in c_e, along with fixed capital costs. Thereafter entrants behave exactly like incumbent firms, with their interim state given by (z, l_e) (see Figure 1). So by the time they begin producing, new entrants have adjusted their workforce to $l' \geq l_e$ in accordance with their initial productivity. Free entry implies that

$$V_e = \int_z V(z, l_e)\psi_e(z)dz \leq c_e,$$

which holds with equality if there is a positive mass of entrants. We assume that each worker-consumer owns equal shares in a diversified fund that collects profits from firms, finances entry, and redistributes the residual as dividends to its owners.

2.8 Discussion

Our value-added and hiring cost functions (equations 14 and 16) combine to deliver several key model features. Most importantly, they introduce a link between job turnover and the firm-level market size index, Δ (expression 15). Other things equal, an increase in Δ makes the value-added function (14) steeper, increasing the cost of deviating from static profit-maximizing employment levels. Thus, holding the distribution of firms over (z, l) fixed, policies that increase Δ will make firms’ employment levels more responsive to z shocks.\(^\text{10}\)

This effect of Δ on turnover links job security to openness through Melitz-type (2003)\(^\text{10}\)

\(^{10}\)To better understand this feature of our model, suppose the marginal value of an additional worker is simply her marginal revenue product, $\alpha\Delta z (l')^{\alpha\Delta - 1}$, and assume the entire cost of hiring l' workers is captured by the vacancy posting cost, $\left(\frac{c_h}{\lambda_1}\right) \phi^{-\lambda_1} (l'-l)^{\lambda_1} l^{\lambda_2}$. Then the first order condition for employment implies a positive relationship between l' and Δ among all firms in states where hiring occurs: $l' = f(\Delta|z, l), f_\Delta > 0$. Further, the elasticity of l' with respect to z increases with Δ:

$$d\ln z = \left[\frac{(\lambda_1 - 1) \cdot f(\Delta|z, l)}{f(\Delta|z, l) - l} + 1 - \alpha\Delta\right] d\ln l'$$

Of course, other properties of our model complicate this relationship, including wage schedules, firing costs, and the distinction between the value of a worker and her marginal revenue product.
effects. Specifically, a reduction in τ_c or τ_m reduces Δ for unproductive non-exporters because these firms experience increased import competition without any offsetting increase in foreign sales. Exporters, on the other hand, see an increase in Δ as trade costs fall because they gain more in foreign demand than they lose in domestic demand. And small, productive non-exporters are similarly effected, since a large Δ value for exporters creates strong incentives for them to hire and expand into foreign markets. (Fajgelbaum 2013 features an analogous effect in a setting without productivity dynamics.) These firms therefore grow faster when exporters’ Δ increases, especially when they become exporters and their Δ value jumps discretely.

This tendency for openness to make productive firms more responsive to z shocks is what we dubbed the sensitivity effect in the introduction.\footnote{Holmes and Stevens (2013) document that large firms in the U.S. are more sensitive to import competition than small firms. Their interpretation, however, differs from ours.} When the heightened volatility among productive firms dominates reductions in volatility at unproductive firms, it increases job turnover. Further, to the extent that turnover rises, it is amplified by a feedback effect. Greater job turnover increases the pool of unemployed workers, and increases the vacancy filling rate, $\phi(V,U)$. This flattens the marginal cost of hiring, making firms even more responsive to z shocks.

Thus far we have discussed the effects of openness on firms’ hiring policies, given their initial states, (z,l). But as Melitz (2003) stresses, the distribution of firms over the state space also reacts to changes in τ_c or τ_m. And since reductions in trade frictions tend to concentrate workers at large, stable firms, this distribution effect by itself creates a direct relationship between openness and job stability. The net effect of reductions in τ_c and τ_m on turnover and unemployment thus depends upon the relative strengths of the sensitivity effect and the distribution effect.

In addition to linking turnover with trade costs, our value-added function and hiring cost function combine to link openness with wage inequality. This feature of the model resembles earlier treatments in the trade literature.\footnote{Other open economy labor-search models that translate exporter rents into high wages include Helpman and Itskhoki (2010), Helpman et al. (2010), Fajgelbaum (2013), Egger and Kreickemeier (2009), and Felbermayr et al. (2011).} Firms with high levels of output, which tend to be exporters, generate larger revenues when trade costs are low. Since convex hiring costs discourage productive yet small firms from moving immediately to their static profit-maximizing employment levels, those firms also tend to have more surplus to bargain over. In contrast, small and unproductive non-exporters face more import competition and thus have less surplus to bargain over when trade costs are low, which reduces their wages. This pattern is consistent with the empirical finding that, controlling for employment, exporters pay their workers more (Bernard and Jensen 1999).
Finally, it is worth mentioning that our formulation provides new explanations for several well-documented features of exporters. First, equations (14) and (16) imply that exporters generate relatively high revenues per unit input bundle, controlling for productivity. Our formulation thus provides an explanation for the fact that revenue-based productivity measures are higher among exporters: they have higher mark-ups.\footnote{In support of this interpretation, De Loecker and Warzynski (2012) report evidence that mark-ups are higher among exporting firms. Trade models that lack factor market frictions cannot explain this result because firms in these models freely expand or contract until their mark-ups are the same (assuming CES preferences).} Second, re-interpreting z shocks to be product appeal indices rather than efficiency indices, the model explains why exporters manage to be larger than non-exporters, even though they charge higher prices and pay higher wages.

2.9 The worker’s problem

Figure 2 presents the intra-period timing of events for workers. Consider first a worker who is employed by an industrial firm in state (z, l) at the beginning of the current period. This worker learns immediately whether her firm will continue operating. If it shuts down, she joins the pool of industrial job seekers (enters state u) in the interim stage. Otherwise, she enters the interim stage as an employee of the same firm she worked for in the previous period. Her firm then realizes its new productivity level $z’$ and enters the interim state $(z’, l)$. At this point her firm decides whether to hire workers. If it expands its workforce to $l’ > l$, she earns $w_h(z’, l’)$, and she is positioned to start the next period at a firm in state $(z’, l’)$.

If the firm contracts or remains at the same employment level, she either loses her job and reverts to state u or she retains her job, earns $w_f(z’, l’)$, and starts the next period at a firm in state $(z’, l’)$. All workers at contracting firms are equally likely to be laid off, so each loses her job with probability $p_f = (l - l’)/l$.

Workers in state u are searching for industrial jobs. They are hired by entering and expanding firms that post vacancies. If they are matched with a firm, they receive the same wage as those who were already employed by the firm. If they are not matched, they support themselves by home-producing $b < 1$ units of the service good. At the start of the next period, they can choose to work in the service sector (enter state s) or search for a job in the industrial sector (remain in state u). Likewise, workers who start the current period in the service sector choose between continuing to work at the service wage $w_s = 1$ and entering the pool of industrial job seekers. These workers are said to be in state o.

We now specify the value functions for the workers in the interim stage. Going into the service sector generates an end-of-period income of 1 and returns a worker to the o state at
the beginning of the next period. Accordingly, the interim value of this choice is

$$J^s = \frac{1}{1 + r}(1 + J^o).$$ \hfill (22)

Searching in the industrial sector exposes workers to the risk of spending the period unemployed, and supporting themselves by home-producing \(b \) units of the service good. But it also opens the possibility of landing in a high-value job. Since the probability of finding a match is \(\tilde{\phi} \), the interim value of searching for an industrial job is

$$J^u = \left[\frac{\tilde{\phi} E J^e_h}{1 + r} + \frac{(1 - \tilde{\phi})}{1 + r} (b + J^o) \right],$$ \hfill (23)

where \(E J^e_h \) is the expected value of matching with a hiring firm to be defined below.

The value of the sectorial choice is \(J^o = \max\{J^s, J^u\} \). In an equilibrium with both sectors in operation, workers must be indifferent between them, so \(J^o = J^s = J^u \). Combined with (22), this condition implies that \(J^o, J^s, \) and \(J^u \) are all equal to \(1/r \).

The expected value of matching with an industrial job, \(E J^e_h \), depends on the distribution of hiring firms and the value of the jobs they offer. For workers who match with a hiring firm in the interim state \((z', l) \), the interim period value is given by

$$J^e_h(z', l) = \frac{1}{1 + r}[w_h(z', l') + J^e(z', l')],$$ \hfill (24)

where \(l' = L(z', l) \) and \(J^e(z', l') \) is the value of being employed at an industrial firm in state
At the start of the next period. Accordingly, the expected value of a match for a worker as perceived at the interim stage is

\[EJ_h^e = \int_{z'} \int_{l} J_h^e(z', l) g(z', l) dldz', \]

(25)

where \(g(z', l) \) is the density of vacancies across hiring firms

\[g(z', l) = \frac{v(z', l) \tilde{\psi}(z', l)}{\int_{z'} \int_{l} v(z', l) \psi(z', l) dldz'}. \]

(26)

Here \(v(z', l) = T^h(z', l) [L(z', l) - l] / \phi \) gives the number of vacancies posted by a firm in interim state \((z', l)\), and \(\tilde{\psi}(z', l) \) is the interim stage unconditional density of firms over \((z', l)\). Note that the latter density is distinct from the end-of-period stationary distribution of firms, \(\psi(z, l) \).

It remains to specify the value of starting the period matched with an industrial firm, \(J^e(z, l) \), which appears in (24) above. The value of being at a firm that exits immediately (exogenously or endogenously) is simply the value of being unemployed, \(J^u \). This is also the value of being at a non-hiring firm, since workers at these firms are indifferent between being fired and retained. Hence \(J^e(z, l) \) can be written as

\[J^e(z, l) = \left[\delta + (1 - \delta)(1 - T^e(z, l)) \right] J^u + (1 - \delta)r^e(z, l) \max \left\{ J^u, E_{z'} \left[T^h(z', l) J_h^e(z', l) + (1 - T^h(z', l)) J^u \right] \right\}. \]

(27)

2.10 Wage schedules

We now characterize the wage schedules. Consider first a hiring firm. After vacancies have been posted and matching has taken place, the labor market closes. Firms then bargain with their workers simultaneously and on a one-to-one basis, treating each worker as the marginal one. At this point, vacancy posting costs are already sunk and workers who walk away from the bargaining table cannot be replaced in the current period. Similarly, if an agreement between the firm and the worker is not reached, the worker remains unemployed in the current period. These timing assumptions create rents to be split between the firm and the worker.

As detailed in Appendix 2, it follows that the wage schedule for hiring firms with an end-of-period state \((z', l')\) is given by

\[w_h(z', l') = (1 - \beta)b + \frac{\beta}{1 - \beta + \alpha \beta \Lambda \Delta(z', l') \alpha \Lambda \left(l' \right) \alpha \Lambda - 1 - \beta P_f(z', l') c_f}{\partial R(z', l')/\partial l'}, \]

(28)
where $\beta \in [0, 1]$ measures the bargaining power of the worker, and $P_f(z', l')$ is the probability of being fired next period.14 Workers in expanding firms get their share of the marginal product of labor plus $(1 - \beta)$ share of their outside option, while part of the firing cost is passed on to them as lower wages.15

The marginal worker at a non-hiring firm generates no rents, so the firing wage just matches her reservation value (see Appendix 2):

$$w_f(z', l') = r J^u - [J^e(z', l') - J^u].$$

(29)

Three assumptions lie behind this formulation. First, workers who quit do not trigger firing costs for their employers. Second, firms cannot use mixed strategies when bargaining with workers. Finally, fired workers are randomly chosen. The first assumption ensures that workers at contracting firms are paid no more than the reservation wage, and the remaining assumptions prevent firms from avoiding firing costs by paying less than reservation wages to those workers they wish to shed. Importantly, $w_f(z, l)$ does vary across firms, since those workers who continue with a firing firm may enjoy higher wages in the next period. This option to continue has a positive value—captured by the bracketed term in (29), so firing firms may pay their workers less than the flow value of being unemployed.

2.11 Equilibrium

Six basic conditions characterize our equilibrium. First, the distribution of firms over (z, l) states in the interim and end of each period, denoted by $\tilde{\psi}(z, l)$ and $\psi(z, l)$, respectively, reproduce themselves each period through the stochastic process on z, the policy functions, and the productivity draws that firms receive upon entry. Second, all markets clear: supply matches demand for services and for each differentiated good, where supplies are determined by employment and productivity levels in each firm. Third, the flow of workers into unemployment matches the flow of workers out of unemployment—that is, the Beveridge condition holds. Fourth, a positive mass of entrants replaces exiting firms every period so that free entry condition (21) holds with equality. Fifth, aggregate income matches aggregate expenditure, so trade is balanced. Finally, workers optimally choose the sector in which they are working or seeking work. Appendix 3 provides further details.

14This expression is analogous to equation (9) in Koeniger and Prat (2007).

15As in Bertola and Caballero (1994), wages decline in firms’ employment (l'), holding productivity (z) fixed. This reflects the diminishing marginal revenue product of labor, and induces firms to hoard labor and thereby keep workers’ wages low. Cahuc, Marque, and Wasmer (2008) discuss conditions under which overemployment might result at the macroeconomic level.
Notes: In all panels, 1991 is marked as the reform year. See text for details about variables. Missing data points were unavailable. Data sources for each panel in clockwise order: 1) DANE Annual Survey of Manufacturers. Pre-1991 series are based on own calculations from the micro-data, post-1991 series has been obtained from DANE. 2) Inter-American Development Bank (2004). See footnote 22 for the definition of job turnover. 3) International Monetary Fund (2011). 4) Approximate figures based on Figure 3.1. in Mondragón-Vélez and Pena (2010). 5) Manufacturing share of urban employment, ILO (2013) 6) World Bank (2013).

3 Quantitative Analysis

3.1 Pre- and post-reform conditions in Colombia

To explore the quantitative implications of our model, we fit it to Colombian data. This country suits our purposes for several reasons. First, Colombia underwent a significant trade liberalization during the late 1980s and early 1990s, reducing its average nominal tariff rate from 21 percent to 11 percent (Goldberg and Pavcnik 2004). Second, Colombia also implemented labor market reforms in 1991 that substantially reduced firing costs. According to Heckman and Pages (2000), the average cost of dismissing a worker fell from an equivalent of 6 months’ wages in 1990 to 3 months’ wages in 1999. Finally, major changes in Colombian trade volumes and labor markets followed these reforms, suggesting that they and/or external reductions in trade frictions may well have been important.

Key features of the Colombian economy during the pre- and post-reform period are sum-
marized in Figure 3. The first panel shows the fraction of manufacturing establishments that were exporters, as well as the aggregate revenue share of exports. Before 1991, about 12 percent of all plants were exporters on average (we use "plant" and "firm" interchangeably in the remainder of the paper) and total exports accounted for 9 percent of aggregate manufacturing revenues. Reflecting the globalization of the Colombian economy, both ratios increased by about 250 percent from the 1980s to the 2000s. The second panel shows job turnover rates in manufacturing, due both to expansion and contraction, and the entry or exit of plants. This series went from an average of 18.1 percent during the pre-reform period 1981-1990 to 23 percent during the post-reform period 1993-1998.

The third panel of Figure 3 shows the evolution of the unemployment rate. During the post-reform years 1991-1998, this series hovered around its 1981-90 average of 10.8 percent. During 2000-2006, its average was a somewhat higher 13 percent, but this increase mainly reflected a financial crisis at the end of the 1990s. In developing countries, official unemployment rates do not provide a complete picture of labor market conditions. Lacking formal benefits, many unemployed workers end up being self-employed in service-related jobs in order to subsist. The fourth panel shows the employment share of self-employed workers. After the reforms, this ratio began a sustained increase. This can be taken as a sign of more precarious labor market conditions. A similar trend in self-employment has been documented in the context of Brazilian trade reforms by Menezes-Filho and Muendler (2011).

The fifth panel documents a drop in the manufacturing share of urban employment from 22.6 percent in 1985-1990 to 19.3 percent in 2000-2006. Finally, the sixth panel shows that over the same time period, the Gini coefficient for Colombia rose from roughly 53 percent to roughly 58 percent.

These aggregate trends were accompanied by a dramatic shift in firm size distribution. Figure 4 shows the size distribution of manufacturing firms in the 1980s (black bars) and 2000s (white bars). Average firm size increased from 45 to 60 workers, and the proportion of firms with more than 100 workers increased from 15 percent to 22 percent.

In sum, Colombia experienced a significant shift in its manufacturing firm size distribution and an overall decline in manufacturing employment. Manufacturing jobs also became more unstable as job turnover rate increased. Unemployment, self-employment and wage inequality increased. We now investigate how, in the context of our model, these changes might be linked to the changes in tariffs, firing costs and foreign market conditions that Colombian firms experienced during the late 1980s and early 1990s.
3.2 Fitting the model to the data

Assuming that Colombia was in a steady state prior to reforms, we use data from 1981-1990 and the existing literature to estimate the parameters of our model. First, we fix some standard parameters at values reported by previous studies or at their data counterparts directly. Then we estimate the remaining parameters, basing identification on a set of moments related to the aggregate economy and establishment-level behavior.

Parameters not estimated Several parameters are not identified by the model; these we take from external sources. The real borrowing rate in Colombia fluctuated around 15 percent between the late 1980s and early 2000s, so we set \(r = 0.15 \) (Bond et al. 2008). The average share of services in Colombian GDP during the sample period was 0.48, so this is our estimate for \(\gamma \).\(^{16}\) Heckman and Pages (2000) estimate that dismissal costs amounted to 6 months’ wages in 1990 (their Figure 1), so we fix firings costs at \(c_f = 0.6 \) in the benchmark economy.\(^{17}\) Eaton and Kortum (2002) estimate that the tariff equivalent of iceberg costs falls between 123 percent and 174 percent, so we choose our pre-reform value of \(\tau_c - 1 \) to be 1.50. Finally, we take our estimate of the pre-reform nominal tariff rate, \(\tau_m - 1 = 0.21 \), from Goldberg and Pavcnik (2004).

The estimator This leaves us with 16 parameters to estimate, collected in the vector

\[
\Omega = (\sigma, \alpha, \rho, \sigma_x; \beta, \theta, \delta, \lambda_1, \lambda_2, b, l_e, c_h, c_p, c_x, c_e, D^e_F).
\]

These we estimate using the method of simulated moments (Gouriéroux and Monfort 1996). Specifically, let \(\tilde{m} \) be a vector of sample statistics that our model is designed to explain and define \(m(\Omega) \) as the vector of model-based counterparts to these sample statistics. Our estimator is then given by

\[
\hat{\Omega} = \arg \min \left(\tilde{m} - m(\Omega)^t \hat{W} (\tilde{m} - m(\Omega)) \right),
\]

where \(\hat{W} \) is a bootstrapped estimate of \([\text{var}(\tilde{m})]^{-1} \) with off-diagonal elements set to zero.\(^{18}\)

\(^{16}\)Source: ICP Table 7 downloaded from http://www.eclac.cl/deype/PCI_resultados/eng/index.htm).

\(^{17}\)In the benchmark economy average wages are about 1.2. Since the model period is a year, 6 months’ wages is \(c_f = 0.6 \). Note that \(c_f \) is not a parameter that we can select without running the model as its value depends on average wage in the benchmark economy. Since we match it exactly, however, we do not report its standard errors.

\(^{18}\)Setting off-diagonal terms to zero improves the stability of our estimator while maintaining consistency and keeping it independent of units of measurement. Examples of other studies employing the same strategy include Lee and Wolpin (2006) and Dix-Carneiro (2013).
The sample statistics The vector \(\bar{m} \) and the associated weighting matrix are based on plant-level panel data from Colombia. These data are annual observations on all manufacturing firms with at least 10 workers, covering the 1981-1990 period.\(^{19} \)

The first set of moments in \(\bar{m} \) consists of means, variances, and covariances for the vector \((\ln l_t, \ln G_t, I^x_t, \ln l_{t+1}, \ln G_{t+1}, I^x_{t+1})\).\(^{20} \) Gross revenues \(G \) are gross sales, expressed in thousands of 1977 pesos. The indicator \(I^x \) takes a value of unity for those plant-year observations with positive exports. Finally, the labor input \(l \) is measured in “effective worker” units. Specifically, for a given plant-year, \(l \) is the sum of all workers in the plant, each weighted by the average wage (including fringes) for workers in its category. Five categories of workers are distinguished: managerial, technical, skilled, unskilled, and apprentice.\(^{21} \)

The second and third groups of moments in \(\bar{m} \) include quintiles of the plant size distribution and the average rate of employment growth among expanding plants within each size category, respectively. Quintiles are based on effective employment levels, \(l \), and constructed using the pooled panel of plants.\(^{22} \) Employment growth rates for quintile \(j \) are constructed as cross-plant averages of \((l_{t+1} - l_t)/[\frac{1}{2}(l_{t+1} + l_t)]\), including only expanding plants that were in quintile \(j \) at the beginning of the period. New plants are included in these growth rates, and are treated as having an initial employment of zero.

The fourth group in \(\bar{m} \) contains aggregate statistics for the pooled sample of plants. These include the job turnover rate, the plant exit rate, and the standard deviation in effective wages. Job turnover is a cross-year average of the annual turnover rate, net of aggregate employment growth or contraction.\(^{23} \) The plant exit rate is the fraction of plants that exit the panel in year \(t \), averaged over the 10-year sample period. Finally, the standard deviation in effective wages is constructed as the cross-plant standard deviation of the log of real payments to labor (wages and benefits) per effective worker. Given that our measure of effective

\(^{19}\)The data were collected by Colombia’s National Statistics Department (DANE) and cleaned as described in Roberts (1996). They cover 88,815 plant-observations during the sample period. Estimates of \(\text{v} \) (\(\bar{m} \)) are generated by bootstrapping the sample.

\(^{20}\)In a stationary equilibrium, \((\ln l_{t+1}, \ln G_{t+1}, I^x_{t+1}) = (\ln l_t, \ln G_t, I^x_t) \) and \(\text{cov}(\ln l_{t+1}, \ln G_{t+1}, I^x_{t+1}) = \text{cov}(\ln l_t, \ln G_t, I^x_t) \). We therefore exclude \(E(\ln l_{t+1}, \ln G_{t+1}, I^x_{t+1}) \) and \(\text{cov}(\ln l_{t+1}, \ln G_{t+1}, I^x_{t+1}) \). This leaves 3 means, 3 variances, and 12 covariances.

\(^{21}\)For each category of worker, the average wage is based on the mean real wage in the entire 10-year panel and expressed as a ratio to the average real wage for unskilled workers during the same period. Thus wage weights are constant across plants and time, and the only source of variation in \(l \) is variation in the employment level of at least one category of worker.

\(^{22}\)While our estimation allows \(l_e \) (the size of entering plants) to be arbitrarily small, our database does not cover plants with less than 10 workers. This means that plants appearing in the database for the first time can either be plants crossing the 10-worker threshold from below, or plants in their first year of operation. We apply the same truncation to our simulated moments. This means, for example, that statistics describing the smallest quintile characterize the smallest quintile among observed producers.

\(^{23}\)Let \(c, e, \) and \(d \) be the set of continuing, entering, and exiting plants, respectively. Also, let \(i \) index plants. Our year \(t \) job turnover measure is then:

\[
X_t = \frac{(\Sigma_{i \in c} l_{it} - l_{it-1}) + \Sigma_{i \in e} l_t + \Sigma_{i \in d} l_{t-1} - |\Sigma_i l_{it} - \Sigma_i l_{it-1}|)}{\Sigma_i l_{it-1}},
\]
workers has been adjusted for workforce composition as discussed above, this measure of wage
dispersion controls for observable worker characteristics to the extent possible. Unavoidably,
it partly reflects variation in unobservable worker characteristics. But this latter source of
noise is averaged across individual workers within a firm, and thus is hopefully relatively
modest.24

The last two elements of \(\tilde{m} \) are not simple descriptive statistics. Rather, they are sample-
based estimates of \(\left(\frac{\sigma-1}{\sigma} \right) (1-\alpha) \) and \(d_F \) obtained by applying the logic of Olley and Pakes
(1996) to the gross revenue function. By including these statistics in the moment vector
rather than treating them as fixed parameters when estimating \(\Omega \), we recognize the
effects of their sampling error on \(\hat{\Omega} \).25

Our approach to estimating these two statistics merits further explanation. By (3) and
(12), gross revenues before fixed exporting costs can be written as

\[
\ln G_{it} = d_H + \mathcal{T}_{it}^r d_F(\eta_0) + \left(\frac{\sigma-1}{\sigma} \right) \ln z_{it} + \alpha \ln l_{it} + (1-\alpha) \ln m_{it} .
\]

(30)

Also, among firms that adjust their employment levels, the policy function \(l' = L(z', l) \) can be
inverted to express \(z' \) as a monotonic function of \(l' : \ln z' = g(\ln l, \ln l') \). This "control
function" allows us to eliminate \(z \) from (30):

\[
\ln G_{it} = \tilde{d}_H + \mathcal{T}_{it}^r d_F(\eta_0) + \left[\frac{\sigma-1}{\sigma} (1-\alpha) \right] \ln(P_{m_{it}}) + \varphi(\ln l_{it-1}, \ln l_{it}) + \xi_{it} .
\]

(31)

Here \(\varphi(\ln l_{it-1}, \ln l_{it}) = \frac{\sigma-1}{\sigma} [\alpha \ln l_{it} + g(\ln l_{it-1}, \ln l_{it})] \) is treated as a flexible function of its
arguments, and the intercept \(\tilde{d}_H = d_H - (1-\alpha) \frac{\sigma-1}{\sigma} \ln P \) reflects the fact that we have replaced
the unobservable \(m_{it} \) with observable input expenditures, \(P_{m_{it}} \). The error term \(\xi_{it} \) captures
measurement error in \(\ln G_{it} \) and any productivity shocks that are unobserved at the time
variable inputs and exporting decisions are made. Because \(\xi_{it} \) is orthogonal to \(P_{m_{it}} \) and
\(\mathcal{T}_{it}^r \), we obtain our estimates of \(\frac{\sigma-1}{\sigma} (1-\alpha) \) and \(d_F(\eta_0) \) by applying least squares to equation
(31). Just as Olley and Pakes (1996) excluded observations with zero investment to keep
their policy function invertible, we exclude observations for which \(l_{it} = l_{it-1} \).

\[24\] The cross-plant distribution of average wages provides a very natural measure of wage dispersion in a
model with homogenous workers. See also Lentz and Mortensen (2008).

\[25\] The alternative approach, commonly used, is to pre-estimate technology and taste parameters that can be
identified without solving the dynamic problem, then treat them as parameters at the computationally
intensive stage when parameters identified by the dynamic problem are estimated.

and our turnover statistic is \(\frac{1}{1990} \sum_{t=1981}^{1990} X_t \). The job turnover numbers in Table 2 are slightly higher than
those depicted in Figure 3 for two reasons. First, Figure 3 is based on worker head counts, while our
moment is based on effective workers. Second, the turnover rates in Figure 3 are taken from a study limited
to establishments with at least 15 workers, while our moment is based on establishments with at least 10
workers. It was not possible to construct Figure 3 using effective workers and a 10 worker cutoff because we
did not have access to establishment level data more recent than 1991.
Identification While it is not possible to associate individual parameters in Ω with individual statistics in \bar{m}, particular statistics play relatively key roles in identifying particular parameters. We devote the rest of this subsection to a discussion of these relationships.

To begin, the sample-based estimates of $\frac{\sigma^{-1}}{\sigma}(1 - \alpha)$ and $d_F(\eta_0)$ provide a basis for inference regarding α and σ. This is because, for any given value of $\left(\frac{\sigma^{-1}}{\sigma}(1 - \alpha)\right)$, the elasticity of revenue with respect to labor, $\alpha \Lambda$, increases monotonically in σ. Thus, loosely speaking, the regression of revenue on employment—which is implied by the sample moments $\text{cov}(\ln l_t, \ln G_t)$, $\text{var}(\ln G_t)$, and $\text{var}(\ln l_t)$—pins down σ.26 And once σ and $\frac{\sigma^{-1}}{\sigma}(1 - \alpha)$ are determined, α and Λ are also implied. These moments also discipline θ. As we mentioned above, greater job turnover increases the pool of unemployed workers, and increases the vacancy fill rate, $\phi(V, U)$. Hence θ also helps determine how responsive firms’ employment levels are to z.

Next note that by inverting the revenue function, we can express $\ln z_t$ as a function of the data $(\ln l_t, \ln G_t, \mathcal{I}_t^z)$ and several parameters discussed above: $(d_F(\eta_0), \alpha, \Lambda)$. Thus, given these parameters, the data vector $(\ln l_t, \ln G_t, \mathcal{I}_t^z, \ln l_{t+1}, \ln G_{t+1}, \mathcal{I}_{t+1}^z)$ determines $\ln z_{t+1}$ and $\ln z_t$, and the second moments of this vector imply the parameters of the autoregressive process that generates $\ln z_t$, i.e., ρ and σ_z.

The average level of gross revenues — proxied by $E(\ln G_t)$ — helps to identify the fixed cost of operating a firm, c_p, while the mean exporting rate $E(I^x)$ is informative about the fixed costs of exporting, c_x. Also, since the cost of creating a firm, c_e, must match the equilibrium value of entry, the estimated intercept \tilde{d}_H from (31) helps us to pin down the price level P in the estimation. In turn, this pins down the value of entry V_e from (21). Further details are described in Appendix 4.

The job turnover rate among continuing firms is informative about the general magnitude of hiring costs, which scale with c_h. Similarly, the firm-size-specific job add rates are informative about frictions faced by firms in different states. More precisely, in the absence of labor market frictions, the job turnover rate, the firm size distribution, and the quantile-specific add rates would simply be determined by the productivity process. Deviations from these patterns require adjustment frictions, and quintile-specific patterns require different frictions for firms of different sizes. Thus differential firm growth rates by firm size allows us to pin down λ_1 (which determines convexity of hiring costs) and λ_2 (which determines the relative stability of large versus small firms).

Finally, in combination with information on job turnover and hiring rates, the share of

26In this regression, the error term is a function of z and thus is correlated with labor. But the dependence of l on z is built into our model, so under the maintained hypothesis that the model is correctly specified, there is no simultaneity bias. Put differently, by exploiting our model’s structure and assuming constant returns to scale, we avoid the need for a second stage Olley-Pakes step.
Table 1: Parameters Estimated with Simulated Method of Moments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Estimate</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Elasticity of substitution</td>
<td>6.831</td>
<td>0.0404</td>
</tr>
<tr>
<td>α</td>
<td>Elasticity of output with respect to labor</td>
<td>0.195</td>
<td>0.0006</td>
</tr>
<tr>
<td>ρ</td>
<td>Persistence of the z process</td>
<td>0.961</td>
<td>0.0002</td>
</tr>
<tr>
<td>σ_z</td>
<td>Standard deviation of the z process</td>
<td>0.135</td>
<td>0.0003</td>
</tr>
<tr>
<td>β</td>
<td>Bargaining power of workers</td>
<td>0.457</td>
<td>0.0007</td>
</tr>
<tr>
<td>θ</td>
<td>Elasticity of the matching function</td>
<td>1.875</td>
<td>0.0023</td>
</tr>
<tr>
<td>δ</td>
<td>Exogenous exit hazard</td>
<td>0.046</td>
<td>0.0001</td>
</tr>
<tr>
<td>c_h</td>
<td>Scalar, vacancy cost function</td>
<td>0.696</td>
<td>0.0006</td>
</tr>
<tr>
<td>λ_1</td>
<td>Convexity, vacancy cost function</td>
<td>2.085</td>
<td>0.0042</td>
</tr>
<tr>
<td>λ_2</td>
<td>Scale effect, vacancy cost function</td>
<td>0.302</td>
<td>0.0007</td>
</tr>
<tr>
<td>b</td>
<td>Value of home production</td>
<td>0.403</td>
<td>0.0010</td>
</tr>
<tr>
<td>l_e</td>
<td>Initial size of entering firms</td>
<td>6.581</td>
<td>0.0120</td>
</tr>
<tr>
<td>c_p</td>
<td>Fixed cost of operating</td>
<td>10.006</td>
<td>0.0189</td>
</tr>
<tr>
<td>c_x</td>
<td>Fixed exporting cost</td>
<td>100.23</td>
<td>0.5528</td>
</tr>
<tr>
<td>c_e</td>
<td>Entry cost for new firms</td>
<td>25.646</td>
<td>0.209</td>
</tr>
<tr>
<td>D_F</td>
<td>Foreign market size</td>
<td>1361.239</td>
<td>154.58</td>
</tr>
</tbody>
</table>

employment in the non-traded services sector and the cross-firm dispersion in log wages help to identify the matching function parameter (θ), workers’ bargaining power (β), and the value of being unemployed (b). These parameters determine how rents are shared between the workers and the employers in hiring firms, and, as a result, the wage dispersion across firms.

Estimates and model fit Table 1 reports our estimates of Ω, along with their standard errors, while Table 2 reports the data-based and model-based vectors of statistics, \tilde{m} and $m(\hat{\Omega})$, respectively. Standard errors in Table 1 are constructed using the standard asymptotic variance expression, with $\text{var}(\tilde{m})$ bootstrapped from the sample data.\(^{27}\) Since our data-based moments are calculated from a large survey of plants, sample variation in the moments is small; this is reflected in small standard errors in Table 2. Our solution algorithm is summarized in Appendix 4.

Overall, the model fits the data quite well.\(^{28}\) In particular, it captures the size distribution of firms (Figure 4, first two bars in each bin), the exit rate, the persistence in employment levels, and the variation in growth rates across the plant size distribution. The model underestimates wage dispersion a bit, but this is to be expected, since our data-based measure of wage dispersion controls for only five types of workers, and thus reflects some unobserved worker heterogeneity. In contrast, our model-based dispersion measure is based on the

\(^{27}\)Specifically, the variance covariance matrix is $(J'WJ)^{-1}(J'W\hat{Q}(WJ)(J'WJ)^{-1}$, where $J = \partial Y / \partial m$, W is the weighting matrix, and $\hat{Q} = \text{cov}(\tilde{m} - m(\hat{\Omega}))$.\(^{28}\)At fitted values, the average percentage deviation between data- and model-based moments is 12.6 percent.
Table 2: Data-based versus Simulated Statistics

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
<th>Size Distribution</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(\ln G_t)$</td>
<td>5.442</td>
<td>5.253</td>
<td>20th percentile cutoff</td>
<td>14.617</td>
<td>15.585</td>
</tr>
<tr>
<td>$E(\ln l_t)$</td>
<td>3.622</td>
<td>3.636</td>
<td>40th percentile cutoff</td>
<td>24.010</td>
<td>25.773</td>
</tr>
<tr>
<td>$E(\mathcal{I}_t)$</td>
<td>0.171</td>
<td>0.108</td>
<td>60th percentile cutoff</td>
<td>41.502</td>
<td>41.432</td>
</tr>
<tr>
<td>$\text{var}(\ln G_t)$</td>
<td>2.807</td>
<td>3.329</td>
<td>80th percentile cutoff</td>
<td>90.108</td>
<td>79.109</td>
</tr>
<tr>
<td>$\text{cov}(\ln G_t, \ln l_t)$</td>
<td>1.573</td>
<td>1.788</td>
<td>Plant Growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{var}(\ln l_t)$</td>
<td>1.271</td>
<td>1.219</td>
<td>Rates by Quintile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{cov}(\ln l_t, \mathcal{I}_t)$</td>
<td>0.230</td>
<td>0.251</td>
<td><20th percentile</td>
<td>1.421</td>
<td>1.234</td>
</tr>
<tr>
<td>$\text{cov}(\ln l_t, \mathcal{I}_t)$</td>
<td>0.152</td>
<td>0.160</td>
<td>20th-40th percentile</td>
<td>0.255</td>
<td>0.271</td>
</tr>
<tr>
<td>$\text{cov}(\mathcal{I}_t)$</td>
<td>0.112</td>
<td>0.067</td>
<td>40th-60th percentile</td>
<td>0.209</td>
<td>0.183</td>
</tr>
<tr>
<td>$\text{cov}(\ln G_t, \ln G_{t+1})$</td>
<td>2.702</td>
<td>4.196</td>
<td>60th-80th percentile</td>
<td>0.184</td>
<td>0.151</td>
</tr>
<tr>
<td>$\text{cov}(\ln G_t, \ln l_{t+1})$</td>
<td>1.538</td>
<td>1.556</td>
<td>Aggregate Turnover/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{cov}(\ln l_t, \ln G_{t+1})$</td>
<td>0.225</td>
<td>0.278</td>
<td>Wage Dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{cov}(\ln l_t, \ln l_{t+1})$</td>
<td>1.543</td>
<td>1.394</td>
<td>Firm exit rate</td>
<td>0.108</td>
<td>0.120</td>
</tr>
<tr>
<td>$\text{cov}(\ln l_t, \mathcal{I}_{t+1})$</td>
<td>1.214</td>
<td>1.161</td>
<td>Job turnover</td>
<td>0.198</td>
<td>0.240</td>
</tr>
<tr>
<td>$\text{cov}(\ln l_t, \mathcal{I}_{t+1})$</td>
<td>0.152</td>
<td>0.185</td>
<td>Std. dev. of log wages</td>
<td>0.461</td>
<td>0.426</td>
</tr>
<tr>
<td>$\text{cov}(\mathcal{I}t, \ln G{t+1})$</td>
<td>0.220</td>
<td>0.279</td>
<td>Olley-Pakes Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{cov}(\mathcal{I}t, \ln l{t+1})$</td>
<td>0.149</td>
<td>0.201</td>
<td>$(1-a)\left(\frac{a-1}{a}\right)$</td>
<td>0.685</td>
<td>0.687</td>
</tr>
<tr>
<td>$\text{cov}(\mathcal{I}t, \mathcal{I}{t+1})$</td>
<td>0.089</td>
<td>0.073</td>
<td>d_F</td>
<td>0.090</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Notes: All data-based statistics are calculated using Colombian plant-level panel data for the pre-liberalization period, 1981-90. These data were collected by the Colombian National Administrative Department of Statistics (DANE) in its Annual Manufacturer Survey (EAM), which covers all establishments with at least 10 workers.

Assumption of homogenous effective labor units.

Estimates of $b, c_p, c_x,$ and c_e are measured in terms of our numeraire—the price of the service good, or equivalently, the average annual service sector wage. We estimate this to be $w_s = \$3,461$ in 2012 US dollars during the sample period so, expressed in dollars, the sunk cost of creating a new firm is $25.65 \times \$3,461 = \$88,771$; the annual fixed cost of operating a business amounts to $10 \times \$3,461 = \$34,610$; and the fixed cost of exporting is $100.23 \times \$3,461 = \$346,880$.\(^{29}\) (The magnitude of the latter figure reflects the large gap in our sample between the average revenues of exporters and non-exporters.) To put these numbers in context, the mean and median annual sales of a Colombian manufacturing firm during the sample period were $\$4,418,360$ and $\$508,970$, respectively.

Several other features of our results on preferences and technology merit comment. First, our estimate of the elasticity of substitution among differentiated industrial goods, $\sigma = 6.83$,
is very much in line with the literature.30 Second, given our estimates of α and σ, the elasticity of value added with respect to labor is $\alpha \Lambda = 0.53$ (refer to equation 14). This figure falls a bit below the range typically estimated for value-added production functions.31 Third, we find substantial persistence in the z process ($\rho = 0.96$). This relatively high estimate reflects the fact that, unlike most estimates of productivity processes, we treat capital stocks as fixed upon entry and common across firms. This effectively bundles persistence in employment due to capital stocks into the z process. Fourth, we estimate that about half of the exit that occurs is due to adverse productivity shocks, and half is due to factors outside our model ($\delta = 0.046$). Finally, our model allows us to infer the typical size at which firms enter, recognizing that they do not actually appear in the database until they have acquired 10 workers. This entry size amounts to $l_e = 6.58$ workers.

The remaining parameters in Table 1 concern labor markets. Note that the returns to home production by unemployed workers is 60 percent lower than the secure wage they could have earned if they had committed to work in the service sector. The parameters of the vacancy cost function imply both short-run convexities ($\lambda_1 = 2.09$) and modest scale economies ($\lambda_2 = 0.30$).32 Since $\lambda_2 < 1$, it is relatively costly for large producers to sustain a given rate of growth in their labor force. Given that ρ is almost unity, this is the main mechanism through which our model matches patterns of size-dependent growth in the data. The matching function parameter, $\theta = 1.88$, is close to the value of 2.16 that Cosar (2013) calibrates using aggregate labor market statistics from Brazil, and not far from the value of 1.27 that den Haan et al. (2000) obtain in calibrating their model to the US economy. Finally, our model assigns roughly equal bargaining power to workers and firms ($\beta = 0.46$).

30 Estimates of the elasticity of substitution vary widely; our figure falls somewhere in the middle. For example, using establishment data from Slovenia, De Loecker and Warzynski (2012, Tables 2 and 3) estimate mark-ups ranging from 0.13 to 0.28, implying demand elasticities that range from 2.27 to 8.3. Similarly, using firm-level Indian data, De Loecker et al. (2012) estimate a median mark-up of 1.10, implying a demand elasticity of 11, although they find the distribution of mark-ups is spread over a wide range of values. Using trade data, Baier and Bergstrand (2001) estimate a demand elasticity of 6.43, while Broda and Weinstein (2006) get estimates around 12 for their most disaggregated (10 digit HTS) data.

31 Direct comparisons with other recent studies are difficult because most control for capital stocks, and most estimate gross production functions rather than value added functions. One well-known study that does estimate a value-added function is Olley and Pakes (1996). Their preferred estimate of the elasticity of value-added with respect to labor is 0.61—a bit higher than our 0.54. Another well-known study, Ackerberg et al. (2006), reports estimates between 0.75 and 1.0. When comparing to studies that estimate gross physical production functions (correcting for price variation), it is perhaps best to focus on the ratio of the labor elasticity (α) to the materials elasticity. In our model this figure is $\alpha/(1 - \alpha) = 0.195/(1 - 0.195) = 0.24$. In other studies it is either $\alpha_{\text{lab}}/\alpha_{\text{materials}}$ or $\alpha_{\text{lab}}/(\alpha_{\text{materials}} + \alpha_{\text{capital}})$, depending upon whether one treats capital as a material input. Several recent studies of selected industries find the first measure falls around 0.33 while they find the latter falls around 0.25 (e.g., De Loecker 2011; De Loecker et al. 2012).

32 Our estimate of λ_1 is consistent with the available evidence on hiring cost convexities (e.g., Merz and Yashiv 2007, and Yashiv 2006). We also come close to satisfying the relationship $\lambda_2 = 1 - 1/\lambda_1$ implied by Nilsen et al.’s (2007) specification.
Table 3: Model Implications for Statistics not in \bar{m}

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue share of exports</td>
<td>0.090</td>
<td>0.120</td>
</tr>
<tr>
<td>Relative market size</td>
<td>0.057</td>
<td>0.053</td>
</tr>
<tr>
<td>Manufacturing share of employment</td>
<td>0.226</td>
<td>0.248</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.108</td>
<td>0.124</td>
</tr>
<tr>
<td>Exporters versus Non-exporters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln l_{x=1} - \ln l_{x=0}$ (size premium)</td>
<td>1.402</td>
<td>1.855</td>
</tr>
<tr>
<td>$\ln w_{x=1} - \ln w_{x=0}$ (wage premium)</td>
<td>0.420</td>
<td>0.528</td>
</tr>
<tr>
<td>Aggregate employment share of exporters</td>
<td>0.360</td>
<td>0.409</td>
</tr>
<tr>
<td>Aggregate revenue share of exporters</td>
<td>0.518</td>
<td>0.629</td>
</tr>
<tr>
<td>Wage-Size Relationship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corr(w, l)</td>
<td>0.394</td>
<td>0.102</td>
</tr>
</tbody>
</table>

$\ln w = \alpha + \beta_1 \ln l + \beta_x I^x + \varepsilon$

$\ln l$ coefficient (β_l) | 0.201 | -0.094 |

I^x coefficient (β_x) | 0.137 | 0.702 |

R^2 | 0.295 | 0.158 |

Notes: Data-based statistics are constructed using the same panel of establishment used for Table 2. Numbers in parentheses are OLS standard errors.

Non-targeted statistics and out-of-sample fit Before discussing policy implications of these estimates, we ask how well the model replicates features of the data that we did not use as a basis for identification. To address this question we construct several additional statistics in Table 3.

We start with the aggregates in the first panel. The pre-reform revenue share of exports, plotted in Figure 3, is 9 percent. In our estimation, we targeted the fraction of firms that export, and the revenue increment due to exporting d_F, but did not explicitly target the revenue share of exports. Yet, the model generates a 12 percent share that is quite close to its empirical level. In the model, $D_H/(k^\gamma D^*_F)$ measures the size of domestic expenditures on tradable goods relative to total foreign demand for tradables. We estimate this ratio as 0.0053. While it is hard to find an exact empirical counterpart to this statistic, we calculate Colombia’s average GDP relative to the sum of its trade partners’ GDP over 1981-1990 and find a value of 0.0057. Another relevant statistic is the employment share of manufacturing, which averaged 0.226 in the pre-reform period. Using the empirical expenditure share of tradables ($\gamma = 0.48$) and fitting the average firm size and productivity in manufacturing, our model predicts an employment share of $L_q = 0.248$ for the differentiated goods sector, which is again close to the data. Finally, the model-generated unemployment rate among those who search for industrial jobs, $L_u/(L_u + L_q)$, is 0.124, which is quite close to the average...
Colombian unemployment rate of 10.8 percent in the pre-reform period. Note that our model abstracts from labor market frictions in the service sector in order to focus on intra-sectoral effects in the tradable industry. Unemployment in the data is, however, generated by both sectors. Without detailed data on sectorial job finding and separation rates, it is not possible to gauge the level of search frictions within each sector. Nonetheless, transition rates from each sector into unemployment are very similar in the data (see Appendix 5.1 for further details). Also, urban employment shares of manufacturing and services were stable in the pre-reform period and in the 2000s (Panel 5 of Figure 3). These facts imply similar steady state sectoral unemployment rates, and thus suggest that industrial unemployment figures are representative of the economy overall.\footnote{This is consistent with evidence on sectoral unemployment rates in U.S. According to the BLS, unemployment rate in manufacturing was 9 and 7.3 percents in 2011 and 2012, respectively. Average unemployment rate in service sectors was 8.2 and 7.3 percent for the same years. See \url{http://www.bls.gov/cps/cpsaat26.pdf}, accessed on September 26, 2013.}

As the second panel of Table 3 shows, Colombian exporters are larger (\textit{size premium}) and pay higher wages (\textit{wage premium}) than non-exporters. Also, as a group they account for more than a third of industrial employment and slightly more than half of total revenues. The model generates all of these patterns, although it overstates the gap between exporters and non-exporters. This tendency to overstate exporter premia while matching other moments reflects the fact that in our model, all firms above a threshold output level are exporters (see equation 11). The contrast between exporters and others could be weakened without sacrificing model fit by adding another source of firm heterogeneity—for example random fixed exporting costs. But the workings of the model that we wish to focus upon would be unaffected, so we opt for simplicity here.

This same deterministic relationship between output and exporting status makes it difficult for our model to generate the observed positive association between size and wages, \textit{conditional} on exporting status. The third panel of Table 3 reports the wage-size relationship. While our model generates a positive unconditional correlation, adding an exporter dummy to the model-based regression of log wages on log employment turns the coefficient on log employment slightly negative. With the exporter dummy absorbing much of the cross-firm rent variation, two remaining forces are at work in our model. On the one hand, holding productivity and exporting status constant, the marginal revenue product of labor falls with employment, putting downward pressure on wages at large firms. On the other hand, holding exporting status constant, productivity shocks tend to induce a positive correlation between firm size and rents, thus wages tend to be higher at large firms.\footnote{Bertola and Garibaldi (2001), from whom we take our characterization of labor markets, emphasize the interplay between these two mechanisms. The net effect can go in either direction.} In the model, the marginal revenue product effect dominates. But in the data, the relation between
employment and exports is noisier and additional forces are at work, including unobserved worker heterogeneity and perhaps greater monopoly power among larger firms.

Finally, we ask how well our model does in capturing cross-worker (as opposed to cross-firm) residual wage inequality. Since all workers within a firm receive the same wage, and there is distribution of workers across firms, cross-worker wage dispersion differs from the targeted cross-firm dispersion that we reported in Table 2. We lack the appropriate survey data to construct our own data-based version of this concept. However, we note that the pre-reform average Gini coefficient was around 0.53 (World Bank, 2013, and figure 3), while our model generates a Gini of 0.26. As an alternative statistic, Attanasio et al. (2004) report the 1984-1990 average of unconditional standard deviation of log worker wages as 0.80 using the Colombian Household Survey (their Table 2a). The model counterpart is 0.452. Since both data-based measures incorporate observable and unobservable characteristics of workers and firms, and observable worker characteristics typically explain around a third of the wage variation in Mincer regressions, it seems reasonable that our model generates around half of total dispersion by these measures.

4 Simulated Effects of Globalization and Reforms

We are now prepared to examine the effects of reforms and falling trade frictions in our estimated model. Our aim is to determine the extent to which these simulated effects can capture the long-term changes in labor market outcomes documented in Figure 3.35 Our first experiment reduces tariffs τ_m and firing costs c_f to their actual post-reform levels. Specifically, we cut τ_m from 1.21 to 1.11, and c_f from 0.6 to 0.3. Our second experiment goes beyond the first one by also reducing trade costs, τ_c, from its baseline level of 2.5 to 2.1. This 27 percent drop in $\tau_c - 1$, in combination with the reductions in τ_m and c_f, is chosen to match the observed increase in aggregate revenue share of exports.

The reduction τ_c captures additional forces of globalization during the period under study. These include the increased income and openness of Colombia’s trading partners, improvements in global communications, and general reductions in shipping costs (Hummels, 2007). It also captures the integration of rapidly growing emerging markets into the global economy. We view these shocks as originating beyond Colombia’s borders, inasmuch as Latin America in general experienced a surge in trade that roughly matched Colombia’s (World

35Whenever possible, we focus on the post-2000 period because the early 1990s were too close to the reform years to plausibly approximate a new steady state and the late 1990s were characterized by a financial crisis and recession. However, some series such as job turnover and wage inequality are only available up to 2000.
Table 4: Effects of Reforms and Globalization

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Reforms</th>
<th>Reforms & Globalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_m</td>
<td>1.21</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>c_f</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>τ_c</td>
<td>2.5</td>
<td>2.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Size Distribution

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Baseline</th>
<th>Reforms</th>
<th>Reforms & Globalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>20th percentile</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>40th percentile</td>
<td>25</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>60th percentile</td>
<td>39</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>80th percentile</td>
<td>78</td>
<td>81</td>
<td>114</td>
</tr>
<tr>
<td>Average firm size</td>
<td>46</td>
<td>49</td>
<td>62</td>
</tr>
</tbody>
</table>

Firm Growth Rates

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Baseline</th>
<th>Reforms</th>
<th>Reforms & Globalization</th>
</tr>
</thead>
<tbody>
<tr>
<td><20th percentile</td>
<td>1.15</td>
<td>1.14</td>
<td>1.20</td>
</tr>
<tr>
<td>20th-40th percentile</td>
<td>0.26</td>
<td>0.26</td>
<td>0.34</td>
</tr>
<tr>
<td>40th-60th percentile</td>
<td>0.18</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>60th-80th percentile</td>
<td>0.15</td>
<td>0.16</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Aggregates

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Baseline</th>
<th>Reforms</th>
<th>Reforms & Globalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of firms exporting</td>
<td>1</td>
<td>1.298</td>
<td>2.710</td>
</tr>
<tr>
<td>Revenue share of exports</td>
<td>1</td>
<td>1.353</td>
<td>2.497</td>
</tr>
<tr>
<td>Exit rate</td>
<td>1</td>
<td>0.866</td>
<td>0.957</td>
</tr>
<tr>
<td>Job turnover</td>
<td>1</td>
<td>1.027</td>
<td>1.121</td>
</tr>
<tr>
<td>Mass of firms</td>
<td>1</td>
<td>0.929</td>
<td>0.705</td>
</tr>
<tr>
<td>Unemployment rate in the industrial sector</td>
<td>1</td>
<td>1.055</td>
<td>1.285</td>
</tr>
<tr>
<td>Industrial share of employment</td>
<td>1</td>
<td>0.990</td>
<td>0.939</td>
</tr>
<tr>
<td>Standard deviation of log wages (firms)</td>
<td>1</td>
<td>0.999</td>
<td>1.074</td>
</tr>
<tr>
<td>Standard deviation of log wages (workers)</td>
<td>1</td>
<td>0.982</td>
<td>0.977</td>
</tr>
<tr>
<td>Log 90-10 wage ratio (firms)</td>
<td>1</td>
<td>0.998</td>
<td>1.080</td>
</tr>
<tr>
<td>Log 90-10 wage ratio (workers)</td>
<td>1</td>
<td>0.988</td>
<td>1.000</td>
</tr>
<tr>
<td>Exchange rate (k)</td>
<td>1</td>
<td>0.987</td>
<td>0.685</td>
</tr>
<tr>
<td>Real income</td>
<td>1</td>
<td>1.035</td>
<td>1.280</td>
</tr>
</tbody>
</table>

Note: Aggregate statistics in the bottom panel are normalized by their baseline levels.

The results of the first experiment (replicating the reforms) are reported in the second column of Table 4. The top and middle panels report the absolute values of the moments while the bottom panel normalizes the baseline outcomes to one. Note that some of the baseline results slightly differ from their estimated values reported in Table 2. This discrepancy is due to computational issues. As we explain in Appendix 4, our quantitative strategy allows us to use an estimation algorithm that is simpler and thus faster than the one we use in simulating the effects of parameter changes. While these two algorithms generate essentially the same results for most moments, some differ due to numerical approximations (such as the first quintile growth rate). The results in Table 4 are generated consistently using the

36We could alternatively have lowered c_x sufficiently to induce a 250 percent expansion would have resulted in implausibly small export shipments per firm. In contrast, the required 27 percent decline in trade frictions over the course of a decade seems plausible.
same simulation algorithm.

Note that the reforms increase aggregate real income \((I/P)\) by 3.5 percent (see Appendix 3 for the definition of aggregate income \(I\)). But they also lead to small increases in job turnover and industrial unemployment, while reducing the size of the industrial sector work force and shifting the firm size distribution rightward. So these policy changes improve average incomes at the expense of job security, but both effects are modest.

To conserve space we relegate details on the separate effects of \(\tau_m\) and \(c_f\) to Appendix 5. However, we note here that reducing firing costs alone triggers two opposing effects. On the one hand, it induces a 17 percent decline in the exit rate, since these costs create an incentive for firms to shut down. (Recall that, unlike contracting firms, exiting firms are not required to pay \(c_f\) to each displaced worker.) On the other hand, the well-known direct impact of firing cost reductions on job security (e.g., Ljungqvist 2002; Mortensen and Pissarides 1999) leads to an increase in the job turnover rate among continuing producers. These two forces almost cancel each other, so that firing cost reductions alone have very little effect on job turnover, unemployment, or other variables in Table 4. Accordingly, other than the exit rate, the results in the second column are essentially attributable to the reduction in \(\tau_m\).

We now turn to our second experiment, which characterizes the combined effects of reforms and globalization. Results are reported in the third column of Table 4. Starting with average firm size, note that our simulation predicts a fairly large increase from 46 to 62 workers as a result of the reductions in \(\tau_m\) and \(\tau_c\). Figure 4 reports plant size distribution in the data and in the model for pre and post-reform periods. Since the data for post-reform period is in terms of the number of workers, we report the number of workers (not effective workers as we did in Table 2), both for the model and the data.\(^{37}\) As Figure 4 shows, our post-reform simulation matches the actual movement in the Colombian plant size distribution quite closely, not only in terms of average size, but also in terms of shape (third and fourth bars in each bin). We match this post-reform rightward shift through the worker reallocation effect emphasized by Melitz (2003).

Turning to job turnover, our simulation predicts an increase of 12 percent, capturing close to half of the 27 percent increase that we observe in Colombia during the post-reform period (Panel 2 of Figure 3, and Section 3.1). This reflects the dominance of the sensitivity effect over the distribution effect, as discussed above in section 2.8. That is, without any change in the employment policy function, the rightward shift in size distribution would have caused a reduction in job turnover, as firms move to a region of the state space with high \(z\) values, where the probability of large percentagewise adjustments in \(l\) is small. However,

firms’ employment levels become more sensitive to productivity shocks as reductions in trade costs increase the payoff to hiring among successful firms. This effect is compounded by the reduction in firing costs, which makes contractions less costly. As documented in the third panel ("Firm Growth Rates") in Table 4, firms grow faster in each quintile of the firm size distribution and the increase is particularly pronounced in higher quintiles.

The dominance of the sensitivity effect is graphically depicted in the left panel of Figure 5, which plots the change in state-specific employment growth rates ($\Delta l/l$) relative to the pre-reform baseline. With lower tariffs, firing costs, and iceberg trading costs, low z firms shrink much more than they do in the benchmark economy while high z firms experience much larger growth rates (on the order of 20 to 40 percentage points more), especially if they are relatively small.

With more job turnover, contracting firms release more workers to the unemployment pool, driving up the number of industrial job seekers. This makes it cheaper for hiring firms to fill vacancies, as the job filling rate ϕ rises from 56 to 68 percent. In turn, the lower marginal cost of hiring makes firms’ employment policy functions still more responsive to productivity shocks, completing a feedback loop.

Because of these forces, our model predicts a 28.5 percent increase in the rate of unemployment among workers who participate in the industrial job market. In the data, the unemployment rate rose from an average of 10.8 percent during 1981-1990 to an average of 13 percent during 2000-2006, implying a 20 percent increase. While this is broadly consistent with the increase predicted by our model, we remind the reader that Colombia endured a financial crisis and recession at the end of the 1990s. The effects of this on unemployment probably lingered into the early part of the next decade.
As we argued in Section 3, unemployment alone is an insufficient measure of labor market conditions in developing countries. The declining employment share of manufacturing and the corresponding rise in self-employment, mostly associated with personal services, point to a further deterioration of stable employment opportunities for workers (Panels 3 and 4 of Figure 3). Our model is consistent with these outcomes in that it predicts a 6 percent contraction in the manufacturing employment share. This contraction is due to a large decrease in the number of operating firms, as discussed above. Compared to the data, the simulations explain around half of the decline in manufacturing share of employment from a pre-reform average of 22.6 percent in 1985-1990 to 19.3 percent between 2000-2006.

A final outcome of interest is wage inequality, both across firms and across workers. While the average real wage (\bar{w}/P^*) increases for workers who retain their jobs, differences between the post-reform (second experiment) and pre-reform (baseline) wage schedules depend very much upon employer states (z, l). The right panel of Figure 5 shows changes in firm-level wages from their benchmark values for each (z, l) combination. Wages become more polarized as relatively productive firms benefit from additional export sales and pay higher wages while smaller, less productive firms suffer from increased import competition and lower their wages. This rent polarization is reflected in cross-firm wage dispersion measures (Table 4), and is consistent with the increase in overall inequality observed in Colombia (Panel 6 of Figure 3). The effects on inequality are modest, however, as both the standard deviation and the

38 Note that our model does not explicitly feature self-employment in the service sector: firm size is not well defined there because of the linear production function. In the data, however, self-employment is mostly associated with the service sector: around 90 percent of self-employed workers (who are not employers) are in the service sector (Figure 3.4 in Mondragón-Vélez and Peña 2010). Therefore, we interpret an expansion of the service sector as a potential source of increased self-employment.
90th-10th interpercentile differential of firm-level wages (in logs) increase by only 8 percent.

Counteracting this cross-firm effect on wage dispersion, however, the rightward shift in the firm size distribution puts more workers into larger firms. And since wages are equal within firms in our model, this tends to reduce inequality across workers. This compositional channel dominates the polarization of wage schedules across firms, reducing the standard deviation of log wages across industrial workers by 2.3 percent and undoing the rise in the interpercentile wage differential. Our model thus predicts little if any effect of increased openness on within-industry residual wage inequality through the rent-sharing mechanism.

To put this result in context, we note that related quantitative studies find similarly limited roles for other mechanisms. Attanasio et al. (2004) investigate the effects of Colombian trade reforms on wage inequality through the skill premium, industry wage premiums and increased informalization in the manufacturing sector. While their results suggest a role for trade policy in each of these cases, the overall contribution to changes in wage inequality seems to be small. Likewise, Helpman et al. (2012) find a limited role for within-industry mechanisms using Brazilian data. Exploring alternative mechanisms through which globalization may have contributed to increased wage inequality thus remains an important direction for future research.

Finally, our second experiment (reforms and globalization) predicts sizeable aggregate income gains from globalization through increased selection, market share reallocations, and cheaper intermediates. These effects dominate the upward pressure on our exact price index \(P \) that results from a fall in the measure of varieties \(N \), generating a 28 percent increase in real income with respect to the baseline. The net welfare implications of these income gains would ideally be calculated by weighing them against the welfare losses due to greater worker-specific volatility in jobs and wages. But to do so would require introducing risk aversion into the model, which would substantially complicate the analysis.

5 Summary

In Latin America and elsewhere, globalization and labor market reforms have been associated with more job turnover, higher unemployment rates, and greater wage inequality. We formulate and estimate a dynamic structural model that links these developments. Our formulation combines ongoing firm-level productivity shocks and Melitz-type (2003) trade effects with labor market search frictions and worker-firm wage bargaining.

Fit to micro data from Colombia, the model delivers several basic messages. First, this

\[39 \text{ According to their Figure 2, reducing variable trade costs such that exporter employment share increases from its initial level of 40 percent to 70 percent increases the standard deviation of log worker wages from 0.464 to 0.473.} \]
country’s tariff reductions and labor market reforms in the early 1990s are unlikely to have been the main reason its labor market conditions deteriorated during subsequent decades. Second, reductions in global trade frictions do explain a substantial share of the heightened job turnover and unemployment this country experienced. Finally, neither Colombia’s reforms nor the general forces of globalization go very far toward explaining rising wage inequality.

Many other countries registered growth rates in merchandise trade similar to Colombia’s over the past two decades, even without major commercial policy reforms. To the extent that these surges were mainly caused by the international integration of product markets, globalization may have contributed to similar labor market outcomes in these countries as well.

In principle, our analysis could be extended in several directions. First, allowing for directed search would introduce intra-firm wage heterogeneity into the model and allow us to make more nuanced statements relating openness to wage distributions. Second, and similarly, incorporating worker heterogeneity in terms of job tenure would permit us to link openness with wage effects among workers at different stages in their careers. Third, a more fully-articulated representation of the service sector would allow us to better characterize economywide patterns of unemployment and perhaps also explicitly deal with informal jobs. Finally, introducing risk aversion would permit us to formally link job turnover rates to welfare, and to examine the trade-off between static gains from trade and losses from heightened risks of job loss. We see these extensions as interesting directions for future work.

References

Industry Productivity,” *Econometrica* 71(6), 1695-1725.

Appendix 1: The Revenue Function

From (13), the first order condition for firms’ optimal m choice is given by

$$Pm = (1 - \alpha) \left(\frac{\sigma - 1}{\sigma} \right) \exp \left[d_H + T^x d_F(\eta^0) \right] (zl^{\alpha} m^{(1-\alpha)})^{\frac{\sigma - 1}{\sigma}},$$

which gives the optimal choice for m as

$$m = \left(\frac{1 - \alpha}{P} \right) \left(\frac{\sigma - 1}{\sigma} \right) \exp \left[d_H + T^x d_F(\eta^0) \right] \frac{\sigma}{\sigma - 1} \Lambda (zl^{\alpha})^\Lambda,$$ \hspace{1cm} (32)

where $\Lambda = \frac{\sigma - 1}{\sigma - (1-\alpha)(\sigma - 1)} > 0$. Using this expression to eliminate m from (13), and noting that

$$\frac{\sigma}{\sigma - 1} \Lambda = 1 + (1 - \alpha) \Lambda,$$

and

$$\frac{\sigma - 1}{\sigma} + \Lambda \frac{(1 - \alpha)(\sigma - 1)}{\sigma} = \frac{(\sigma - 1)}{\sigma} [1 + (1 - \alpha) \Lambda] = \Lambda,$$

yields gross revenue at state (z, l):

$$G(z, l) = \exp \left[d_H + T^x d_F(\eta^0) \right] (zl^{\alpha})^{\frac{\sigma - 1}{\sigma}} \left\{ \left(\frac{1 - \alpha}{P} \right) \left(\frac{\sigma - 1}{\sigma} \right) \exp \left[d_H + T^x d_F(\eta^0) \right] \right\}^{\frac{\sigma}{\sigma - 1} \Lambda} (zl^{\alpha})^\Lambda \left[(1 - \alpha)(\sigma - 1) \right]^{\frac{1 - \alpha}{\sigma - 1} \Lambda},$$

$$= P^{-(1-\alpha)\Lambda} \left[(1 - \alpha) \left(\frac{\sigma - 1}{\sigma} \right) \right]^{(1-\alpha)\Lambda} (\exp \left[d_H + T^x d_F(\eta^0) \right])^{\frac{\sigma}{\sigma - 1} \Lambda} (zl^{\alpha})^\Lambda.$$

We can now derive a parameterized version of the net revenue function (14). From (32), optimal expenditures on intermediate inputs are:

$$Pm = P^{-(1-\alpha)\Lambda} \left[(1 - \alpha) \left(\frac{\sigma - 1}{\sigma} \right) \exp \left[d_H + T^x d_F(\eta^0) \right] \right]^{\frac{\sigma}{\sigma - 1} \Lambda} (zl^{\alpha})^\Lambda.$$
Subtracting this expression and fixed exporting costs from gross revenues yields:

\[R(z, l) = G(z, l) - Pm - c_xI^x \]

\[= \left[1 - (1 - \alpha)\frac{\sigma - 1}{\sigma} \right] P^{-\left(1-\alpha\right)\Lambda} \left(1 - (1 - \alpha)\frac{\sigma - 1}{\sigma} \right)^{\left(1-\alpha\right)\Lambda} \exp \left[d_H + I^x d_F(\eta^0) \right] \frac{x}{\sigma} \Lambda (z\eta^0)^{\Lambda} - c_xI^x \]

\[= \left[\frac{\sigma - (1 - \alpha)(\sigma - 1)}{\sigma} \right] P^{-\left(1-\alpha\right)\Lambda} \left(1 - (1 - \alpha)\frac{\sigma - 1}{\sigma} \right)^{\left(1-\alpha\right)\Lambda} \exp \left[d_H + I^x d_F(\eta^0) \right] \frac{x}{\sigma} \Lambda (z\eta^0)^{\Lambda} - c_xI^x \]

\[= P^{-\left(1-\alpha\right)\Lambda} \left(\frac{\sigma - 1}{\sigma\Lambda}\right) \left(1 - (1 - \alpha)\frac{\sigma - 1}{\sigma} \right)^{\left(1-\alpha\right)\Lambda} \exp \left[d_H + I^x d_F(\eta^0) \right] \frac{x}{\sigma} \Lambda (z\eta^0)^{\Lambda} - c_xI^x \]

\[= \Theta P^{-\left(1-\alpha\right)\Lambda} \exp \left[d_H + I^x d_F(\eta^0) \right] \frac{x}{\sigma} \Lambda (z\eta^0)^{\Lambda} - c_xI^x, \]

where \(\Theta = \left(\frac{1}{\left(1-\alpha\right)\Lambda}\right) \left[\frac{(1-\alpha)(\sigma - 1)}{\sigma}\right] \frac{x}{\sigma} \Lambda. \)

Appendix 2: The Wage Functions

Hiring Wages In order to characterize wages in hiring firms, we first determine the total surplus for a firm and a worker that are matched in the end-of-period state \((z', l')\). At the time of bargaining, the surplus that the marginal worker generates for the firm is given by

\[\Pi^{\text{firm}}(z', l, l') = \frac{1}{1 + r} \left[\frac{\partial \pi(z', l, l')}{\partial l'} + \frac{\partial \mathcal{V}(z', l')}{\partial l'} \right]. \]

Note that at the time of bargaining, the vacancy posting and matching process are over and the costs of vacancy postings are sunk. As a result, if bargaining fails, the firm is simply left with fewer workers. Thus we only use the relevant part of the profit function for hiring firms, i.e., when \(l' > l \) in (18), denoted by \(\pi(z', l, l') \). The surplus that a marginal worker generates consists of two parts: the current increase in the firm’s profits, i.e., marginal revenue product net of wages, and the increment to the value of being in state \((z', l')\) at the start of the next period. If the firm does not exit next period, i.e., if \(\mathcal{V}(z', l') > 0 \), the marginal worker will have a positive value only if the firm expands. Otherwise, the firm will incur the dismissal cost, \(c_f \). If the firm exits, its expected marginal value from the current marginal hire will be zero.

Similarly, the surplus for the marginal worker who is matched by a hiring firm in the end-of-period state \((z', l')\) is

\[\Pi^{\text{worker}}(z', l') = \frac{1}{1 + r} \left[w_h(z', l') + J^e(z', l') - (b + J^o) \right], \]

where the worker enjoys \(w_h(z', l') \) in the current period, and starts the next period in a firm with the beginning-of-period state \((z', l')\). If bargaining fails, the worker remains unemployed this period, engages in home production of \(b \), and starts the next period in state \(o \).

The worker and firm split the total surplus by Nash bargaining where the bargaining power of the firm is given by \(\beta \):

\[\beta \Pi^{\text{firm}}(z', l, l') = (1 - \beta) \Pi^{\text{worker}}(z', l'). \]
Wages are thus determined as a solution to the following equation:

$$\beta \left[\frac{\partial \pi(z', l', l')}{\partial l'} + \frac{\partial V(z', l')}{\partial l'} \right] = (1 - \beta) \left[w_h(z', l') + J^e(z', l') - (b + J^o) \right].$$

(33)

Note that we cannot rule out the case in which a firm hires in the current period and exits at the beginning of the next period. The bargaining outcome depends on the decision to exit or continue which is made by the time of bargaining. We analyze these two cases separately.

1. Exiting firms: If the firm is going to exit next period, i.e., $I^c(z', l') = 0$, we have $\partial V(z', l')/\partial l' = 0$ and $J^e(z', l') = J^u$ from the definition of J^e. In this case, $\partial V(z', l')/\partial l'$ cancels with $J^e - J^o$ in (33) since $J^o = J^u$ in equilibrium. We are left with

$$\beta \frac{\partial \pi(z', l', l')}{\partial l'} = (1 - \beta)[w_h(z', l') - b].$$

(34)

Using the definition of $\pi(z', l')$ from (18), and rearranging terms, equation (34) becomes

$$\frac{\partial w_h(z', l', l')}{\partial l'} \beta l' + w_h(z', l') - \beta \frac{\partial R(z', l')}{\partial l'} - (1 - \beta)b = 0,$$

which is the same as equation (10) in Bertola and Garibaldi (2001). From (14) we have:

$$\frac{\partial R(z', l')}{\partial l'} = \Delta \alpha \Lambda (z')^\Lambda (l')^{\alpha \Lambda - 1}.$$

Here, we suppressed the dependence of $\Delta(\cdot)$ on l' since $\partial \Delta/\partial l' = 0$ if the firm’s exporting decision does not depend on the marginal worker. Since workers bargain individually and simultaneously with the firm, no single worker will be taken as the marginal worker for the export decision. Accordingly, retracing Bertola and Garibaldi’s (2001) derivation we obtain:

$$w_h(z', l') = (1 - \beta)b + \frac{1}{\beta + \alpha \Lambda - 1} \Delta \alpha \Lambda (z')^\Lambda (l')^{\alpha \Lambda - 1} \int_0^l l' \frac{1 - \beta}{\beta} \Delta \alpha \Lambda (z')^\Lambda (l')^{\alpha \Lambda - 1} du.$$

In this case, the worker is paid a fraction of her marginal revenue plus her share of the outside option b.

2. Continuing Firms: In this case, we have $V(z', l') > 0$. There is an expected gain from keeping the marginal worker because of the possibility of further hiring next period. The worker’s expected gain in the beginning of the next period (when she still has a chance to leave the firm and search) is $J^e(z', l') - J^u$. The pair shares the expected
gains, i.e., $J^e(z', l') - J^u$ cancels with the expected gain of the firm in (33). In the event of a contraction, however, the firm cannot enforce contracts that require laid-off workers to pay their share of firing costs. As a result, expected firing costs, $P_f(z', l')c_f$, are subtracted from firm surplus in the current period:

$$
\beta \left[\frac{\partial \pi(z', l', l')}{\partial l'} - P_f(z', l')c_f \right] = (1 - \beta)[w_h(z', l') - b],
$$

Conditional on the firm not hiring, the possibility of losing one’s job, $p_f(z', l)$, is

$$
p_f(z', l) = \frac{l - L(z', l)}{l},
$$

and the probability of being fired next period is then given by

$$
P_f(z', l') = E_{z''/z'} \{ [1 - T^h(z'', l')] p_f(z'', l') \}.
$$

The wage schedule for expanding firms that will stay in the market next period is then given by

$$
w_h(z', l') = (1 - \beta)b + \frac{\beta}{1 - \beta + \alpha \beta \Lambda} \Delta \alpha \Lambda (z')^\Lambda (l')^{\alpha \Lambda - 1} - \beta P_f(z', l')c_f.
$$

Firing Wages To derive the firing wage schedule, we begin by writing the value of employment at a firing firm in the interim stage as

$$
J^e_f(z', l) = \frac{1}{1 + r} \left[p_f(z', l)(1 + r)J^u + (1 - p_f(z', l)) (w_f(z', l') + J^e(z', l')) \right],
$$

where $l' = L(z', l)$. This expression reflects the fact that workers who are not fired are paid just enough to retain them. Since workers are indifferent between staying and leaving, the two outcomes inside the bracket have equal value, i.e.,

$$
w_f(z', l') + J^e(z', l') = (1 + r)J^u,
$$

which yields the wage schedule according to which workers in firing firms are paid:

$$
w_f(z', l') = rJ^u - [J^e(z', l') - J^u].
$$

Appendix 3: Steady State Equilibrium

Let the transition density of the Markov process on z be denoted by $h(z'|z)$. Given a measure of aggregate expenditure abroad denominated in foreign currency, D_F^r, a steady state equilibrium for a small open economy consists of: a measure of domestic differentiated goods N_H; an exact price index for the composite good P; an aggregate demand index for industrial goods D_H; aggregate income I; a measure of workforce in services L_s; a measure workers in differentiated goods sector L_q; a measure of workers searching for jobs.
in the industrial sector U; a measure of unemployed workers L_u; the job finding rate $\tilde{\phi}$; the vacancy filling rate ϕ; the exit rate μ_{exit}; the fraction of firms exporting μ_x; the measure of entrants M; the value and associated policy functions $V(z,l)$, $L(z,l)$, $I^h(z,l)$, $I^c(z,l)$, $I^x(z,l)$, J^p, J^u, J^x, and J^c; the wage schedules $w_h(z,l)$ and $w_f(z,l)$; the exchange rate k; and end-of period and interim distributions $\psi(z,l)$ and $\tilde{\psi}(z,l)$ such that:

1. **Steady state distributions**: In equilibrium, $\psi(z,l)$ and $\tilde{\psi}(z',l)$ reproduce themselves through the Markov processes on z, the policy functions, and the productivity draws upon entry. In order to define the interim distribution, $\tilde{\psi}(z,l)$, let $\tilde{\psi}(z',l)$ be the interim frequency measure of firms defined as

$$
\tilde{\psi}(z',l) = \begin{cases}
\int_z h(z'|z)\psi(z,l)I^c(z,l)dz & \text{if } l \neq l_e \\
\psi_{e}(z') + \int_z h(z'|z)\psi(z,l)I^c(z,l)dz & \text{if } l = l_e.
\end{cases}
$$

Then, $\tilde{\psi}(z',l)$ is given by

$$
\tilde{\psi}(z',l) = \frac{\tilde{\psi}(z',l)}{\int_{z'} \int_{l} \tilde{\psi}(z',l)dz'dl},
$$

while the end-of period distribution is

$$
\psi(z',l') = \frac{\int_l \tilde{\psi}(z',l)I(L(z,l),l')dl}{\int_{z'} \int_{l} \tilde{\psi}(z',l)I(L(z,l),l')dz'dl},
$$

where $I(L(z,l),l')$ is an indicator function with $I(L(z,l),l') = 1$ if $L(z',l) = l'$.

2. **Market clearance in the service sector**: Demand for services comes from two sources: consumers spend a $(1 - \gamma)$ fraction of aggregate income I on it, and firms demand it to pay their fixed operation and exporting costs, as well as labor adjustment and market entry costs. Aggregate income I itself is the sum of wage income earned by service and industrial sector workers, market services supplied by unemployed workers, tariff revenues rebated to worker-consumers, and aggregate profits in the industrial sector distributed to worker-consumers who own the firms.

The average labor adjustment cost is given by

$$
\bar{c} = \int_z \int_l C(l,L(z,l))\tilde{\psi}(z,l)dldz.
$$

The market clearance condition is then given by

$$
L_s + bL_u = (1 - \gamma)I + N_H(\bar{c} + c_p + \mu_xc_x) + Mc_e.
$$

3. **Labor market clearing**: Total production employment in the industrial sector is given by

$$
L_q = N_H\bar{l} = N_H \int_z \int_l l\psi(z,l)dldz,
$$

45
where
\[
\bar{l} = \int_z \int_l l \psi(z, l) dl dz
\]
(35)
is the sector’s average employment. Every period a fraction \(\mu_l \) of workers in that sector is laid off due to exits and downsizing:

\[
\mu_l = \int_z \int [1 - T^c(z, l)] l \psi(z, l) dl dz + \int_z \int [\psi(z, l)] l - L(z, l) \psi(z, l) dl dz
\]

\[
\int_z \int l \psi(z, l) dl dz
\]

Then, the equilibrium flow condition is

\[
U \tilde{\phi} = L_q \mu_l.
\]

In equilibrium, a measure of \(L_u = (1 - \tilde{\phi}) U \) of workers who search do not find a job, and labor market clearing condition is given by

\[
1 = L_u + L_q + L_a.
\]

On the vacancies side, the aggregate number of vacancies in this economy is given by

\[
V = N_H \int_z \int v(z, l) I^h(z, l) \frac{\tilde{\psi}(z, l)}{\mu_h} dl dz = N_H \bar{v},
\]

where

\[
\bar{v} = N_H \int_z \int v(z, l) I^h(z, l) \frac{\tilde{\psi}(z, l)}{\mu_h} dl dz,
\]

(36)
is the average level of vacancies, and \(\mu_h \) is the fraction of hiring firms:

\[
\mu_h = \int_z \int I^h(z, l) \tilde{\psi}(z, l) dl dz.
\]

The total number of vacancies, \(V \), together with \(U \), determines matching probabilities \(\phi(V, U) \) and \(\tilde{\phi}(V, U) \) that firms and workers take as given.

4. **Firm turnover:** In equilibrium, there is a positive mass of entry \(M \) every period so that the free entry condition (21) holds with equality. The fraction of firms exiting is implied by the steady state distribution and the exit policy function,

\[
\mu_{exit} = \int_z \int [1 - T^c(z, l)] \psi(z, l) dl dz + \delta,
\]

and measure of exits equals that of entrants,

\[
M = \mu_{exit} N_H.
\]

5. **Trade balance:** Adding up final and intermediate demand, total domestic expenditures on imported varieties equals \(D_H (\tau_m \tau_v k)^{1-\sigma} \). Taking the import tariff into account, domestic demand for foreign currency (expressed in domestic currency) is thus
\[\frac{D_H(\tau_m \tau, k)}{\tau_m^{1-\sigma}} = D_H \tau_m^{-\sigma} (\tau_c k)^{1-\sigma}. \]

Tariff revenue is given by \(D_H \tau_m^{-\sigma} (\tau_c k)^{1-\sigma} (\tau_m - 1) \), and is returned to worker-consumers in the form of lump-sum transfers. Total export revenues are \(\frac{k D_F P_X^{1-\sigma}}{\tau_c} \) with the foreign market price index for exported goods \(P_X^* \) as defined in Section 2.3. Trade is balance given by

\[
\frac{D_H (\tau_m \tau_c k)}{\tau_m} = \frac{k D_F P_X^{1-\sigma}}{\tau_c}.
\]

The exchange rate \(k \) moves to ensure that this condition holds. Balanced trade ensures that national income matches national expenditure.

6. Workers are indifferent between taking a certain job in the undifferentiated sector and searching for a job in the industrial sector: \(J^o = J^s = J^u \).

Appendix 4: Numerical Solution Algorithm

To compute the value functions, we discretize the state space on a log scale using 550 grid points for employment and 60 grid points for productivity. We set the maximum firm size as 2000 workers and numerically check that this is not restrictive. In the steady state, a negligible fraction of firms reaches this size, which is also the case in the data. The algorithm works as follows:

1. Formulate guesses for \(D_H, w_f(z, l), w_h(z, l), d_F \) and \(\phi \). Given \(\phi \), calculate \(\tilde{\phi} = (1-\phi^\theta)^{1/\theta} \).

2. Given \(D_H, w_f(z, l), d_F, \phi \) and \(w_h(z, l) \), calculate the value function for the firm, \(V(z, l) \), using equation (19) and find the associated decision rules for exiting, hiring, and exporting. Calculate the expected value of entry, \(V_e \), using equation (21). Compare \(V_e \) with \(c_e \). If \(V_e > c_e \), decrease \(D_H \) (to make entry less valuable) and if \(V_e < c_e \), increase \(D_H \) (to make entry more valuable). Go back to Step 1 with the updated value of \(D_H \) and repeat until \(D_H \) converges.

3. Given \(w_f(z, l), d_F, \phi \) and the converged value of \(D_H \) from Step 2, update \(w_f(z, l) \). To do this, first calculate \(J^e(z', l') \) using equations (24) and (27), and imposing the equilibrium condition \(J^u = J^o \). Given \(J^e(z, l) \), update firing wage schedule using equation (29). Compare the updated firing wage schedule with the initial guess. If they are not close enough go back to Step 1 with the new firing wage schedule and repeat Steps 1 to 3 until \(w_f \) converges. Note that if firing wages are too high, then \(J^e(z, l) \)—the value of being in a firm at the start of a period—is high, since the firm is less likely to fire workers. A high value of \(J^e(z, l) \), however, lowers firing wages. Similarly, if firing wages are too low, then \(J^e \) is low, which pushes firing wages up.

4. Given \(d_F \) and \(\phi \), the converged value of \(D_H \) from step 2, and the converged value of \(w_f(z, l) \) from Step 3, update \(w_h(z, l) \) using equation equation (28).
5. Given ϕ, the converged value of D_H from Step 2, the converged value of $w_f(z, l)$ from Step 3, and the converged value of $w_h(z, l)$ from step 4, calculate the trade balance. To do this:

(a) Given firms’ decisions, calculate $\psi(z, l)$ and $\tilde{\psi}(z, l)$, the stationary probability distributions over (z, l) at the end and interim states, respectively.

(b) Given $\tilde{\psi}(z, l)$, calculate the average number of vacancies and the average employment in the industrial sector using equations (35) and (36).

(c) Take a guess for N_H. Given N_H and \bar{v}, calculate the mass of unemployed U in the industrial sector from

$$\phi(V, U) = \frac{M(V, U)}{V} = \frac{U}{((vN_H)^{\theta} + U^{\theta})^{1/\theta}},$$

which is one equation in one unknown. Given U, calculate $L_u = (1 - \phi)U$. Then, given \bar{l}, the size employment in the service sector is given by $L_s = 1 - L_u - N_H\bar{l}$. Given N_H, L_s, L_u, M (mass of entrants), and I (aggregate income), check if supply and demand are equal in the service sector:

$$L_s + bL_u = (1 - \gamma)I + N_H(\bar{v} + c_p + \mu_xc_x) + Mc_e,$$

Update N_H until supply equals demand.

(d) Given the value of N_H from Step 4c, calculate exports and imports. If exports are larger than imports, lower d_F; if exports are less than imports, increase d_F. Go back to Step 1 with the updated value of d_F, and repeat until convergence.

6. Given the converged value of D_H from Step 2, the converged value of $w_f(z, l)$ from Step 3, the converged value of $w_h(z, l)$ from Step 4, and the converged value of d_F from Step 5, update ϕ. In order to do that, first calculate EJ^u using (24). Given EJ^h and $\tilde{\phi}$, calculate J^u using (23). If $J^o > J^u$, increase ϕ (to attract workers to the differentiated goods sector) and if $J^o < J^u$, we lower ϕ (to make the differentiated goods sector less attractive). Go back to Step 2, and repeat until ϕ converges.

Estimation Procedure In our policy experiments, we use the complete algorithm above to compute equilibrium outcomes for given a set of parameters, including the cost of entry c_e. In these experiments, both d_F and D_H are equilibrium objects that respond to changes in τ_m, τ_e and c_f. While estimating the model, however, we use the Olley-Pakes intercepts \tilde{d}_H estimated from (31) to calculate firms’ net revenue schedule $R(\cdot)$. Similarly, we treat d_F as a moment to be matched: given \tilde{d}_H and the simulated value of the foreign market size parameter D_F, we calculate η using equation (10), which allows to use the implied d_F directly in our solution algorithm. The equilibrium price level P and exchange rate k can easily be solved in equilibrium so that trade balance holds and \tilde{d}_H is consistent with D_H. Also, assuming that the economy is in a steady state with positive entry, we back out c_e by setting it equal to the equilibrium value of entry ν_e. This approach to discipline the cost of
entry \(c_e \) is in line with the quantitative literature (Hopenhayn and Rogerson 1993). These shortcuts allow us to skip Steps 2 and 5d in the estimation and considerably reduce the computation time.

Appendix 5: Further Results and Data Sources

Table 5: Isolated Effects

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>(I)</th>
<th>(II)</th>
<th>(III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_m)</td>
<td>1.21</td>
<td>1.11</td>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>(c_f)</td>
<td>0.6</td>
<td>0.6</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>(c_e)</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Size Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20th percentile</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>40th percentile</td>
<td>25</td>
<td>26</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>60th percentile</td>
<td>39</td>
<td>41</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>80th percentile</td>
<td>78</td>
<td>84</td>
<td>78</td>
<td>104</td>
</tr>
<tr>
<td>Average firm size</td>
<td>46</td>
<td>49</td>
<td>46</td>
<td>57</td>
</tr>
<tr>
<td>Firm Growth Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20th percentile</td>
<td>1.15</td>
<td>1.14</td>
<td>1.12</td>
<td>1.17</td>
</tr>
<tr>
<td>20th-40th percentile</td>
<td>0.26</td>
<td>0.28</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>40th-60th percentile</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.22</td>
</tr>
<tr>
<td>60th-80th percentile</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>Aggregates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of firms exporting</td>
<td>1</td>
<td>1.339</td>
<td>0.989</td>
<td>2.191</td>
</tr>
<tr>
<td>Revenue share of exports</td>
<td>1</td>
<td>1.339</td>
<td>0.999</td>
<td>2.060</td>
</tr>
<tr>
<td>Exit rate</td>
<td>1</td>
<td>0.949</td>
<td>0.832</td>
<td>1.025</td>
</tr>
<tr>
<td>Job turnover</td>
<td>1</td>
<td>1.032</td>
<td>1.006</td>
<td>1.096</td>
</tr>
<tr>
<td>Mass of firms</td>
<td>1</td>
<td>0.918</td>
<td>1.001</td>
<td>0.764</td>
</tr>
<tr>
<td>Unemployment rate in the industrial sector</td>
<td>1</td>
<td>1.076</td>
<td>1.001</td>
<td>1.213</td>
</tr>
<tr>
<td>Industrial share of employment</td>
<td>1</td>
<td>0.985</td>
<td>1.002</td>
<td>0.949</td>
</tr>
<tr>
<td>Standard deviation of log wages (firms)</td>
<td>1</td>
<td>1.002</td>
<td>0.979</td>
<td>1.035</td>
</tr>
<tr>
<td>Standard deviation of log wages (workers)</td>
<td>1</td>
<td>1.002</td>
<td>0.978</td>
<td>0.989</td>
</tr>
<tr>
<td>Log 90-10 wage ratio (firms)</td>
<td>1</td>
<td>1.010</td>
<td>0.978</td>
<td>1.045</td>
</tr>
<tr>
<td>Log 90-10 wage ratio (workers)</td>
<td>1</td>
<td>1.020</td>
<td>0.981</td>
<td>1.009</td>
</tr>
<tr>
<td>Exchange rate ((k))</td>
<td>1</td>
<td>0.97</td>
<td>1.05</td>
<td>0.727</td>
</tr>
<tr>
<td>Real income</td>
<td>1</td>
<td>1.042</td>
<td>0.993</td>
<td>1.180</td>
</tr>
</tbody>
</table>

Notes: Each column presents the outcomes from an isolated counterfactual scenario. Columns (I): reducing tariffs, Columns (II): reducing firing costs, Columns (III): reducing iceberg trade costs.

5.1 Sectoral Labor Flows in Colombia

The Colombian Statistical Agency DANE publishes monthly labor market indicators. We accessed the following link on September 26, 2013:
The file is in Spanish but variable names can be easily translated using online translators. In this file, the worksheets titled "ocup ramas trim tnal" indicates monthly sectoral urban employment levels (Población ocupada según posición ocupacional, CABECERAS). The worksheet titled "cesantes ramas trim tnal" reports last sector of employment for the unemployed (Población desocupada censate según ramas de actividad anterior, CABECERAS). We exclude agriculture and mining, and aggregate service industries. The ratio of outflows from employment to unemployment gives sectoral transition rates. For the 2000-2006, average transition rates are 0.137 for manufacturing and 0.148 for services.