Bounded Rationality, Strategy Simplification, and Equilibrium

Hubie Chen
Departament de Tecnologies de la Informació i les Comunicacions
Universitat Pompeu Fabra
Barcelona, Spain
hubie.chen@upf.edu

Abstract

It is frequently suggested that predictions made by game theory could be improved by considering computational restrictions when modeling agents. Under the supposition that players in a game may desire to balance maximization of payoff with minimization of strategy complexity, Rubinstein and co-authors studied forms of Nash equilibrium where strategies are maximally simplified in that no strategy can be further simplified without sacrificing payoff. Inspired by this line of work, we introduce a notion of equilibrium whereby strategies are also maximally simplified, but with respect to a simplification procedure that is more careful in that a player will not simplify if the simplification incents other players to deviate. We study such equilibria in two-player machine games in which players choose finite automata that succinctly represent strategies for repeated games; in this context, we present techniques for establishing that an outcome is at equilibrium and present results on the structure of equilibria.

1 Introduction

A frequently raised criticism of game theory is that its predictions clash with empirical observations as a consequence of being based on the assumption that agents possess and use unbounded computational power. This criticism has motivated the introduction and investigation of so-called models of bounded rationality [27], in which computational power considerations on agents are present. A number of different approaches to the study of bounded rationality have been suggested [2, 7, 16, 23, 25, 26]. One model that has received considerable attention is a machine game in which players choose finite-state automata that succinctly represent strategies for repeated games [17, 20, 23, 25, 1]; the model of finite-state automata can be taken as a formalization of players having bounded-size memory, and is well-studied in computer science.

Rubinstein with co-authors Abreu and Piccione [25, 1, 24], in the context of the machine game, proposed and studied forms of Nash equilibrium under which strategies are maximally simplified in the sense that a player’s strategy cannot be simplified without reducing his payoff. A supposition basic to this work is that players desire to minimize the complexity of their strategies, and hence in choosing strategies are concerned with balancing the the maximization of payoff with the minimization of strategy complexity. Simplicity of strategies may be valued for a number of reasons; for instance, complex strategies may be more expensive to execute, more likely to break down, harder to learn, or costly to maintain [21]. Following Rubinstein [25], it can be suggested that such maximally simplified equilibria resemble phenomena observed in real life:
institutions, organizations, and human abilities may degenerate or be reduced if they contain unnecessary or redundant components.

The Rubinstein-Abreu-Piccione line of work, more specifically, studies Nash equilibria where the players have preference relations that increase in the payoff and, when payoff is maintained, decrease in the complexity. While one can study the equilibria they define in any game where there is a complexity measure associated with the actions of each player, their work focuses on the mentioned machine game, and the complexity measure studied is the number of states of an automaton, which can be viewed as the memory size of a strategy.

Inspired by this line of work, we introduce and study a new notion of equilibrium intended to capture maximally simplified strategies, but with respect to a more careful, conservative simplification procedure. The motivation for this new equilibrium notion stems from the observations that, in the Rubinstein model, a player simplifies without considering whether or not the simplification may incent other players to deviate, and that this liberal mode of simplification may spoil desirable outcomes that are Nash equilibria in the usual payoff sense. These observations can be illustrated by the following example. Consider the so-called grim trigger strategy in the infinitely repeated Prisoner’s dilemma; this strategy, which can be implemented by a two-state automaton, is to cooperate until the other player is seen to have defected, and to then defect indefinitely. While this strategy paired with itself is a Nash equilibrium in the payoff sense—no player can unilaterally deviate and increase his payoff—it is not an equilibrium in the Rubinstein sense, since either player could maintain payoff but reduce complexity by switching to a strategy that always cooperates. Notice, however, that such a switch would in turn incent the other player to change to a strategy that always defects against cooperation, thus spoiling the cooperation. It can in fact be verified that no pair of strategies that cooperate indefinitely form an equilibrium in the Rubinstein sense.

Whereas in the Rubinstein model a player will simplify his strategy so long as he can maintain his payoff, in our model each player is forward-looking, and will only simplify his strategy if, in addition, no other player can profitably deviate post-simplification. That is, in considering simplifications, players are averse to potential payoff-motivated deviations by other players. Our notion of equilibrium, which we call lean equilibrium, is thus defined as an outcome of strategies at Nash equilibrium such that no player can both individually simplify his strategy and preserve the property of being at Nash equilibrium. The described grim trigger strategy paired with itself does constitute a lean equilibrium in the infinitely repeated prisoner’s dilemma: the described strategy has two states, so any simplification must have one state; in order for the result to be a Nash equilibrium, the player with one state must always cooperate in order to be a best response to the other player; but, this is not a Nash equilibrium as the other player could then profitably deviate by always defecting.

We present results on lean equilibria for two-player machine games where each player chooses a finite-state automaton representing a strategy in an infinitely repeated game. We study three complexity measures; in addition to studying the “number of states” measure, we study two measures that we introduce. One is based on the number of states, but does not count threat states, and the other counts the number of transitions to non-threat states; the precise definitions appear later in the paper. Our primary technical results are the following.

- We give techniques for establishing that outcomes are at lean equilibrium, and illustrate their use by a number of examples (Section 5).

- We present results on the structure of machines that are at equilibria, and, with respect to the number-of-transitions measure, give a precise description of the equilibria structure. This description in fact shows that the machine structure can be inferred from a third-party observer that only views the induced sequence of action pairs (Section 6).
We believe that the developed theory evidences that the two introduced complexity measures are natural and mathematically robust.

While the present work focuses on machine games with finite automata and was certainly inspired by previous work on such games, we want to emphasize that the notion of lean equilibrium is defined in a very general way (Section 3) and can be applied to any game in which there is a notion of complexity associated with the players’ actions. Indeed, our view is that one of the most promising avenues for future work is to analyze the lean equilibria in other types of games where such a notion of complexity is present or can be naturally defined. We believe that the theory and results developed in this work vindicates the introduced equilibrium notion as a tangible and robust mathematical concept of which one can hope to present analysis in further games.

Related work. The present work is a contribution to the study of bounded rationality; surveys and general references include [26, 16, 3]. The present article can in particular be taken as following a body of research where players in games are represented using models of computation; here, we briefly describe some of this research.

The study of machine games where players select automata representing strategies in repeated games was initiated early in the study of bounded rationality. The already described work of Rubinstein, Abreu, and Piccione studies Nash equilibria where players’ preferences take into account strategy complexity in addition to repeated game payoff. The paper of Rubinstein [25] studies an equilibrium concept in the spirit of subgame perfect equilibrium, obtaining structural results on such equilibria. Abreu and Rubinstein [1] gave general structural results on equilibria and studied the payoff sets of certain 2-by-2 games; and, Piccione and Rubinstein [24] studied equilibria in repeated extensive games. Banks and Sundaram [4] studied an equilibrium notion similar to that considered in these papers, but focused on a “transitional” notion of strategy complexity that accounts for the amount of opponent monitoring required, and can differentiate among strategies with the same number of states. Kalai and Stanford [17] gave a characterization of the number-of-states complexity measure for automata via an analog of the Myhill-Nerode theorem, and study subgame perfect equilibria in infinitely repeated games from the viewpoint of this measure. A number of works studied repeated games played by finite automata where bounds on the strategy complexity are imposed exogenously, including the articles of Neyman [19], Ben-Porath [6], Papadimitriou and Yannakakis [23], and Neyman [20]; one focus of study is the set of payoffs sustainable in equilibrium. Gilboa [13], Papadimitriou [22], and Ben-Porath [5] studied the computational complexity of problems involving the computation of best response automata.

Another line of work studies games where players must employ computable strategies. Some of the initial work explored basic consequences of this modeling and invokes notions and ideas from computability theory, including the contributions of Binmore [8, 9], Canning [10], and Anderlini [2]. Megiddo and Wigderson [18] presented results on games played by Turing machines where the number of states is restricted. Howard [15], Tennenholtz [28], and Fortnow [11] showed existence of equilibrium and folk theorem style results by making use of self-reference ideas.

More recent work includes the following. A framework for games where the actions have associated costs was proposed and studied by Ben-Sasson, Kalai, and Kalai [7]. Halpern and Pass [14] present and study a machine game on Turing machines where utilities can be a function of machine complexities in addition to the action profile; among other issues, they study existence of equilibria and notions of protocol security. Fortnow and Santhanam [12] introduce and study a machine game model where players’ actions are probabilistic Turing machines that output actions in an underlying game; the payoff associated with a machine is discounted by the computation time used to produce actions. Their results include connections
between the existence of Nash equilibria in the so-called factoring game and the computational complexity of factoring, and general sufficient conditions for the existence of equilibria.

2 Preliminaries

In this section, we review some basic notions to be used. Our notation and terminology are standard, and for the most part follow typical conventions such as those described in the text by Osborne and Rubinstein [21]. A strategic game is a tuple \((N, (A_i), (\succeq_i))\) consisting of a set \(N = \{1, \ldots, n\}\) of players, a nonempty set \(A_i\) of actions for each player \(i\) \(\in N\), and a preference relation \(\succeq_i\) defined on \(A = \times_{j \in N} A_j\) for each player \(i\) \(\in N\). For the most part, we will focus on two-player strategic games where the preference relations are specified by payoff functions \(u_i : A_i \rightarrow \mathbb{R}\). Recall that a Nash equilibrium of a strategic game \((N, (A_i), (\succeq_i))\) is a profile \(a^* \in A\) of actions such that for all \(i \in N\) and for all \(a_i \in A_i\), it holds that \((a_{-i}^*, a_i) \succeq_i (a_{-i}^*, a_i')\).

For our purposes in this paper, a convex combination of vectors \(x_1, \ldots, x_d \in \mathbb{R}^m\) is a vector of the form \(\alpha_1 x_1 + \cdots + \alpha_d x_d\) where the \(\alpha_n\) are rational coefficients with \(\sum_{n=1}^d \alpha_n = 1\) and \(0 \leq \alpha_n \leq 1\) for each \(n\). We will make use of the following payoff notions. Let \(G = (N, (A_i), (u_i))\) be a strategic game. A feasible payoff profile of \(G\) is a convex combination of the vectors \(\{u(a) \mid a \in A\}\). We define player \(i\)'s minmax payoff, denoted \(v_i\), to be the lowest payoff that the other players can force upon player \(i\), that is, \(v_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} u_i(a_{-i}, a_i)\). A feasible payoff profile \(w \in \mathbb{R}^n\) of \(G\) is called enforceable if \(v_i \leq w_i\) for all \(i \in N\), and is called strictly enforceable if \(v_i < w_i\) for all \(i \in N\).

3 Lean equilibrium

We define a complexity order on a set of actions \(A_i\) to be a binary relation on \(A_i\). We will consider games where each player \(i \in N\) has a complexity order \(\succeq_i\) associated to his set of actions \(A_i\); the intended interpretation is that \(b_i \succeq_i a_i\) if player \(i\) considers the action \(b_i\) to have the same complexity as or lower complexity than action \(a_i\). In such games, for \(a_i, b_i \in A_i\), we will write \(b_i \lessdot a_i\) to denote that \(b_i \succeq_i a_i\) and \(b_i \neq a_i\). Also, for \(a, b \in A\), we will write \(b \lessdot a\) to denote that for all \(i \in N\), it holds that \(b_i \succeq_i a_i\). We remark that in studying machine games, the complexity orders we consider are all total orders.

Definition 3.1 Let \(G = (N, (A_i), (\succeq_i))\) be a strategic game with complexity orders \((\succeq_i)\). A profile \(a^* \in A\) of actions is a lean equilibrium of the game \(G\) if \(a^*\) is a Nash equilibrium, but for all \(i \in N\) and for all \(a_i \in A_i\), if \((a_{-i}^*, a_i)\) is a Nash equilibrium and \(a_i \succeq a_i^*\), then \(a_i = a_i^*\). \(\square\)

In other words, a profile \(a^*\) is a lean equilibrium if it is a Nash equilibrium, but any strict simplification of some coordinate of \(a^*\) is not a Nash equilibrium: for all \(i \in N\) and for all \(a_i \in A_i\), if \(a_i \lessdot a_i^*\) then \((a_{-i}^*, a_i)\) is not a Nash equilibrium.

We now present a basic property of lean equilibrium, namely, the existence of lean equilibria under the assumption of the existence of Nash equilibria and a mild assumption on the complexity orders.

Proposition 3.2 Suppose that \(G = (N, (A_i), (\succeq_i))\) is a strategic game with complexity orders \((\succeq_i)\) that are partial orders that are well-founded in the sense that for all \(i \in N\) and for all \(a_i \in A_i\), there exists a bound on the length of a chain \(c_1 \lessdot_i \cdots \lessdot_i c_k \lessdot_i a_i\). Then for every Nash equilibrium \(a^*\) of \(G\), there exists a lean equilibrium \(b \in A\) such that \(b \lessdot a^*\).
Proof. For an action a_i from an action set A_i, let $C(a_i)$ denote the maximum length k of a chain $c_1 \prec_i \cdots \prec_i c_k \preceq_i a_i$. For an action profile $a \in A$, define $C(a) = \sum_{i \in N} C(a_i)$. We prove the result by induction on $C(a^*)$.

For the base case, where $C(a^*) = 0$, the profile a^* is a lean equilibrium, as for all $i \in N$ and for all $a_i \in A_i$, we have that $a_i \preceq_i a_i^*$ implies $a_i = a_i^*$. For the inductive case, suppose that $C(a^*) > 0$. If the profile a^* is not a lean equilibrium, then there exists $i \in N$ and there exists $a_i \in A_i$ such that (a_{-i}^*, a_i) is a Nash equilibrium and $a_i \preceq_i a_i^*$. We have that $C(a_{-i}^*, a_i) < C(a^*)$; by applying the induction hypothesis to (a_{-i}^*, a_i), we obtain a lean equilibrium $b \in A$ such that $b \preceq (a_{-i}^*, a_i)$. We have $(a_{-i}^*, a_i) \preceq (a^*, a)$ and thus by transitivity of \preceq, it holds that $b \preceq a^*$. □

One of the equilibrium notions studied by Abreu and Rubinstein [1] is Nash equilibrium with respect to the lexicographical ordering where payoff is prioritized over complexity: one profile a^* is strictly preferred by a player to another profile b^* if a^* gives the player a strictly higher payoff than b^*, or if a^* gives the player the same payoff as b^* but the player has strictly lower complexity in a^*. We formalize this equilibrium notion and show that each such equilibrium is a lean equilibrium, as follows.

Definition 3.3 Let $G = (N, (A_i), (\preceq_i))$ be a strategic game with complexity orders \preceq_i. A profile $a^* \in A$ of actions is an Abreu-Rubinstein equilibrium of the game G if for all $i \in N$ and for all $a_i \in A_i$, (1) $(a_{-i}^*, a_i) \preceq_i (a_{-i}^*, a_i^*)$ and (2) $(a_{-i}^*, a_i^*) \preceq_i (a_{-i}, a_i)$ implies that $a_i \preceq_i a_i^*$ does not hold. □

Proposition 3.4 Let $G = (N, (A_i), (\preceq_i))$ be a strategic game with complexity orders \preceq_i. Every Abreu-Rubinstein equilibrium is a lean equilibrium.

Proof. Let a^* be an Abreu-Rubinstein equilibrium. Clearly, the profile a^* is a Nash equilibrium. Now consider a player $i \in N$ and an action $a_i \in A_i$. We want to show that if $a_i \preceq_i a_i^*$, then (a_{-i}^*, a_i) is not a Nash equilibrium. By the definition of Abreu-Rubinstein equilibrium, if $a_i \preceq_i a_i^*$, then $(a_{-i}^*, a_i) \preceq_i (a_{-i}, a_i)$, implying, as desired, that (a_{-i}^*, a_i) is not a Nash equilibrium. □

In light of this proposition, all examples of Abreu-Rubinstein equilibria are examples of lean equilibria. For instance, the Abreu-Rubinstein equilibria of certain two-player games are studied in [1, Section 5]; all examples given there are examples of lean equilibria. On the other hand, later in this paper, we will encounter examples of lean equilibria that are not Abreu-Rubinstein equilibria (for instance, in Examples 5.5 and 5.9).

4 Machine games

In this section, we introduce the machine games whose lean equilibria we will study, and some associated notions. These games involve choosing machines which implement strategies for repeated games, and have been previously studied, as discussed in the introduction.

Machines and machine games. Let $G = (S_1, S_2, u_1, u_2)$ be a two-person game in strategic form, where S_i is a finite set of actions for player i, and $u_i : S_1 \times S_2 \to \mathbb{R}$ is the payoff function for player i.

A machine for player i is a four tuple $M_i = (Q_i, q_i^1, \lambda_i, \delta_i)$ where Q_i is a finite set of states, $q_i^1 \in Q_i$ is the start state or initial state, $\lambda_i : Q_i \to S_i$ is the output function, and $\delta_i : Q_i \times S_j \to Q_i$ is the transition function; here, S_j denotes the action set of the other player. We emphasize that in this paper, we consider only machines having a finite number of states, that is, finite-state machines. We use M_i to denote the set of all machines for player i, relative to a game G. We often use i and j to denote the two different players.
A pair of machines \((M_1, M_2)\) naturally induces a sequence \((q^t)_{t \geq 1}\) of state pairs and a sequence \((s^t)_{t \geq 1}\) of action pairs \((G\)-outcomes), defined inductively as follows:

\[
q^1 = (q^1_1, q^1_2), \\
s^t = (\lambda_1(q^t_1), \lambda_2(q^t_2)), \quad \text{for } t \geq 1, \\
q^t = (\delta_1(q^{t-1}_1, s^{t-1}_2), \delta_2(q^{t-1}_2, s^{t-1}_1)), \quad \text{for } t > 1.
\]

Each of the sequences \((q^t)\), \((s^t)\) is ultimately periodic; we say that a sequence \((b^t)_{t \geq 1}\) is ultimately periodic if there exist numbers \(n, p \geq 1\) such that for all \(m \geq n\), it holds that \(b^m = b^{m+p}\).

The payoff given to a machine is computed by the limit of means. For a sequence of action pairs \((s^t)\), we define \(r_i^T(s^t)\) to be the average payoff to player \(i\) over the first \(T\) elements of the sequence, that is, we define \(r_i^T(s^t) = \frac{1}{T} \sum_{k=1}^{T} u_i(s^k)\). We define \(r_i(s^t)\) to be the corresponding limit of the average payoffs, that is, \(r_i(s^t) = \lim_{T \to \infty} r_i^T(s^t)\); note that we will make use of this function only on ultimately periodic sequences \((s^t)\), and so the limit will always exist. For a pair of machines \((M_1, M_2)\), we define \(r_i^T(M_1, M_2) = r_i^T(s^t)\) and \(r_i(M_1, M_2) = r_i(s^t)\), where \((s^t)\) denotes the sequence of action pairs induced by the machines \((M_1, M_2)\). Our focus will be on the machine game defined by \(G_m = (M_1, M_2, r_1, r_2)\).

Paths and cycles. With respect to a two-player game, a path in a machine \(M_i\) is a sequence \(p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} \cdots \xrightarrow{a_m} p_{m+1}\) where \(p_1, \ldots, p_{m+1} \in Q_i\) are states, \(a_1, \ldots, a_m \in S_j\) are actions, and \(\delta_i(p_k, a_k) = p_{k+1}\) for each \(k \in \{1, \ldots, m\}\). A cycle is a path where \(p_1 = p_{m+1}\), and is said to be a simple cycle if the states \(p_1, \ldots, p_m\) are pairwise distinct. For a path \(P\) in \(M_1\), the payoff to \(M_1\), denoted by \(r_1(P)\), is defined as \(\frac{1}{m} \sum_{k=1}^{m} u_1(\lambda_1(p_k), a_k)\); and, the payoff to \(M_2\), denoted by \(r_2(P)\), is defined as \(\frac{1}{m} \sum_{k=1}^{m} u_2(\lambda_1(p_k), a_k)\). For a path \(P\) in \(M_2\), the payoffs \(r_1(P)\) and \(r_2(P)\) are defined similarly. It is known and straightforward to verify that, in the machine game \(G_m\), a payoff-maximizing response for player \(i\) to a machine \(M_j\) has payoff equal to the maximum of \(r_i(C)\) over all cycles in the machine \(M_j\) reachable from the initial state, which is equal to the maximum of \(r_i(C)\) over all such cycles in the machine \(M_j\) that are simple.

Let us define a subcycle of a cycle \(p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} \cdots \xrightarrow{a_m} p_{m+1}\) to be a cycle that has either the form \(p_n \xrightarrow{a_n+1} \cdots p_{n'}\) or the form \(p_{n'} \xrightarrow{a_{n'}+1} \cdots p_m p_{m+1} = p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} \cdots p_n\) with \(n, n'\) satisfying \(1 \leq n \leq n' \leq k\).

Complexity measures. We will study three complexity measures on machines. The first is the number of states \(|Q_i|\) of a machine \(M_i\). We define the other two in the following way. We define a threat state of a machine \(M_i\) to be a state \(q\) such that \(\delta_i(q, s) = q\) for all \(s \in S_j\) and where \(\max_{a_j \in A_j} u_j(\lambda_i(q), a_j)\) is the minmax payoff of the other player \(j\), that is, where \(\lambda_i(q)\) forces the other player \(j\) to his minmax payoff. We define a normal state of a machine \(M_i\) to be a state that is not a threat state. We use \(R_i\) to denote the set of all normal states of a machine \(M_i\), and we use \(|\delta_i|\) to denote the number of normal transitions, by which we mean transitions between normal states:

\[|\delta_i| = |\{(q_i, s_j) \in R_i \times S_j \mid \delta_i(q_i, s_j) \in R_i\}|.\]

The two other complexity measures that we will study are the number of normal states, denoted by \(|R_i|\), and the number of normal transitions, denoted by \(|\delta_i|\). We will speak of lean equilibria with respect to, for instance, the measure \(|R_i|\), by which we mean a lean equilibria where the complexity order for player \(i\) is given by \(M_i \preceq_i, M_i'\) if and only if \(|R_i| \leq |R_i'|\); here, \(R_i\) and \(R_i'\) denote the sets of normal states of the machines \(M_i\) and \(M_i'\), respectively.
Relative to a pair of machines \((M_1, M_2)\), for each \(i \in \{1, 2\}\), we define the set of played states for player \(i\), denoted by \(P_i\), to be the set \(\{q^t_i | t \geq 1\}\); here, \((q^t)\) denotes the sequence of state pairs induced by \((M_1, M_2)\). We identify the following facts concerning played states, which we will sometimes use tacitly in the sequel.

Proposition 4.1 Let \((M_1, M_2)\) be a pair of machines having a strictly enforceable payoff profile. For each player \(i \in \{1, 2\}\):

- Every played state is a normal state, and thus it holds that \(|P_i| \leq |R_i|\).
- The number of played states lower bounds the number of normal transitions: \(|P_i| \leq ||\delta_i||\).

The first claim follows from the assumption that the payoff profile is strictly enforceable, which implies that neither player ever plays a threat state. The second claim follows from the first and the observation that every played state has at least one transition to another played state.

Equivalence relations. We now introduce a number of equivalence relations, each of which is defined over the set of positive integers, that will be used in our analysis and description of lean equilibria. Let \((s^t)\) and \((q^t)\) be the sequences of action pairs and state pairs, respectively, induced by a pair of machines. We define the equivalence relation \(\equiv_s\) by: \(t \equiv_s t'\) if and only if for all \(n \geq 0\), it holds that \(s^{t+n} = s^{t'+n}\). Similarly, we define the equivalence relation \(\equiv_q\) by: \(t \equiv_q t'\) if and only if for all \(n \geq 0\), it holds that \(q^{t+n} = q^{t'+n}\). It is straightforward to verify, however, that \(t \equiv_q t'\) if and only if \(q^t = q^{t'}\); we will make use of this simpler characterization. As the sequence \((s^t)\) is equal to the sequence \((q^t)\) mapped under the functions \((\lambda_1, \lambda_2)\), it is clear that if \(t \equiv_q t'\), then \(t \equiv_s t'\); viewing these equivalence relations as sets of pairs, we can write \(\equiv_q \subseteq \equiv_s\). We define the equivalence relations \(\equiv_i\) for \(i \in \{1, 2\}\) by \(t \equiv_i t'\) if and only if \(q_i^t = q_i^{t'}\). It is clear that \(t \equiv_i t'\) if and only if \(t \equiv_1 t'\) and \(t \equiv_2 t'\). For a value \(t \geq 1\), we will use \([t]_s\) to denote the \(\equiv_s\)-equivalence class of \(t\), and similarly for the other equivalence relations.

5 Establishing lean equilibrium: examples and theory

In this section, we give techniques for establishing that outcomes of the machine game are at lean equilibrium, and illustrate their use by presenting a number of examples. We begin by defining some notions; the definitions and also the later results are relative to a game \(G = (S_1, S_2, u_1, u_2)\) and its corresponding machine game \(G_m\), although in what follows we will generally not mention the games \(G\) and \(G_m\) explicitly.

By a finite action sequence, we mean a finite-length sequence \(\sigma = \sigma^1 \ldots \sigma^k\) of action pairs (elements of \(S_1 \times S_2\)). For each player \(i \in \{1, 2\}\), we define the payoff of a finite action sequence \(\sigma\) as \(r_i(\sigma) = (u_i(\sigma^1) + \ldots + u_i(\sigma^k))/k\). We say that a finite action sequence \(\sigma\) is strictly enforceable if its payoff profile \((r_1(\sigma), r_2(\sigma))\) is strictly enforceable. Each strictly enforceable finite action sequence \(\sigma\) naturally induces a pair of machines \((M^\sigma_1, M^\sigma_2)\), where for each player \(i \in \{1, 2\}\), the machine \(M^\sigma_i\) is defined to have \(k + 1\) states: \(k\) normal states, which we denote as \(\{1, \ldots, k\}\), and a threat state. The output function \(\lambda_i\) is defined with \(\lambda_i(n) = \sigma^m_i\) for all \(n \in \{1, \ldots, k\}\). The transition function \(\delta_i\) is defined with \(\delta_i(n, \sigma^m_i) = n + 1\) for \(n \in \{1, \ldots, k - 1\}\), and \(\delta_i(k, \sigma^m_k) = 1\); all other transitions out of the normal states go to the threat state. We use \(\langle \sigma\rangle\) to denote the infinite sequence obtained by repeating \(\sigma\), that is, the sequence \(\sigma \sigma \ldots = \sigma^1 \ldots \sigma_k \sigma^1 \ldots \sigma_k \ldots\). The sequence of action pairs generated by \((M^\sigma_1, M^\sigma_2)\) is clearly equal to \(\langle \sigma\rangle\). We call a machine \(M\) a \(\sigma\)-machine if for any best response \(M'\) to \(M\), the pair \((M, M')\) generates the sequence \(\langle \sigma\rangle\); clearly, for any strictly enforceable sequence \(\sigma\), the machines \(M^\sigma_1\) and \(M^\sigma_2\) are \(\sigma\)-machines.
Let σ be the following game:

$$\begin{align*}
\text{Proposition 5.1} & \quad \text{Let } \sigma^t \text{ be a finite action sequence such that } \sigma^t = \langle s^t \rangle = \langle \sigma \rangle \text{ is } i\text{-irreducible if for any two distinct values } t_1, t_2 \in \{1, \ldots, k\}, \text{ it holds that } q^{t_1}_i \neq q^{t_2}_i.
\end{align*}$$

This proposition follows immediately from the definitions of (q^t) and (s^t).

Let σ be a strict equilibrium finite action sequence of length k, and let M_j be a σ-machine. If σ is i-irreducible, then there are k \equiv_s-equivalence classes, $[1]_s, \ldots, [k]_s$, and for any best response N_i to M_j with $|P_i| \leq k$, the pair (N_i, M_j) has \equiv_i equal to \equiv_s.

Proof. By the definition of i-irreducibility and the definition of \equiv_s, we have that there are k \equiv_s-equivalence classes, $[1]_s, \ldots, [k]_s$. Consider a best response N_i to M_j. Since M_j is a σ-machine, the pair (N_i, M_j) must produce an action sequence (s^t) equal to $\langle \sigma \rangle$. By Proposition 5.1, no i-state is played in two different \equiv_s-equivalence classes. Since by hypothesis the number of states played by i is less than or equal to k, we have that $[1]_s, \ldots, [k]_s$ must be the equivalence classes of \equiv_i, and hence that \equiv_i is equal to \equiv_s. \square

In this section, we will give a number of examples involving the Prisoner’s Dilemma, which we take to be the following game:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(2, 2)</td>
<td>(-1, 3)</td>
</tr>
<tr>
<td>D</td>
<td>(3, -1)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

Note that, in this game, each of the two players has a minmax payoff of 0. For an integer $N \geq 0$ and an action pair (s_1, s_2), we will use the notation $N \cdot (s_1, s_2)$ to denote the finite action sequence containing N copies of the pair (s_1, s_2). For instance, $2 \cdot (C, D)$ represents the sequence $(C, D), (C, D)$ and $2 \cdot (D, C), 3 \cdot (C, D)$ represents the sequence $(D, C), (D, C), (C, D), (C, D), (C, D)$.

Example 5.3 Let $N_C, N_D \geq 1$ be constants, and consider the finite action sequence $\sigma = N_C \cdot (C, C), N_D \cdot (D, D)$ in the Prisoner’s Dilemma. Clearly, the sequence σ is strictly enforceable, and has length $k = N_C + N_D$. We show that, with respect to the measures $|R|$ and $||\delta||$, the pair (M_1^σ, M_2^σ) is an Abreu-Rubinstein equilibrium, and hence a lean equilibrium (by Proposition 3.4), as follows.

First, we show that the sequence σ is both 1-irreducible and 2-irreducible. We begin by arguing 1-irreducibility. Let $t_1, t_2 \in \{1, \ldots, k\}$ be two distinct values, and assume without loss of generality that $t_1 < t_2$. We show that t_1 and t_2 are 1-incompatible with respect to $\langle \sigma \rangle$. If $\sigma^{t_1^i} \neq \sigma^{t_2^i}$, then clearly t_1 and t_2 are 1-incompatible. In the case that $\sigma^{t_1^i} = \sigma^{t_2^i}$, by the definition of σ, there exists a minimum value $m \geq 1$ such that $\sigma^{t_1^i} = \langle \sigma \rangle^{t_2^i+m}$; observe that $\sigma^{t_1^i} = \langle \sigma \rangle^{t_1^i+m}$. For all n with $0 \leq n < m$, we have $\langle \sigma \rangle^{t_1^i+n} = \langle \sigma \rangle^{t_2^i+n} = \sigma^{t_2^i}$, and so we have that t_1 and t_2 are 1-incompatible. We thus have that σ is 1-irreducible; by an argument that is identical up to swapping the players, we also have that σ is 2-irreducible.
We now argue that the pair \((M_1^\sigma, M_2^\sigma)\) is an Abreu-Rubinstein equilibrium with respect to \(|R|\) and \(||\delta||\).

Observe that for these machines, we have \(|R_1| = |R_2| = ||\delta_1|| = ||\delta_2|| = k\). We show by contradiction that there is no player 1 best response \(N_1\) to \(M_2^\sigma\) having \(|R_1| < k\) or \(||\delta_1|| < k\). Suppose that there is; then the payoff profile of \((N_1, M_2^\sigma)\) must be \((r_1(\sigma), r_2(\sigma))\), which is strictly enforceable, and by Proposition \[4.1\] it holds that \(|P_1| < k\). By the 1-irreducibility of \(\sigma\) and Theorem \[5.2\] it holds that \(\equiv_1\) is equal to \(\equiv_2\) and hence that \(|P_1| = k\), contradicting that \(|P_1| < k\). It can similarly be shown that there is no player 2 best response \(N_2\) to \(M_1^\sigma\) having \(|R_2| < k\) or \(||\delta_2|| < k\). We have thus argued that the pair \((M_1^\sigma, M_2^\sigma)\) is an Abreu-Rubinstein equilibrium with respect to \(|R|\) and \(||\delta||\).

In the Prisoner’s Dilemma, it can similarly be shown that for constants \(N_{CD}, N_{DC} \geq 1\), the finite action sequence \(\sigma = N_{CD} \cdot (C, D)\), \(N_{DC} \cdot (D, C)\) is both 1-irreducible and 2-irreducible, and that when \(\sigma\) is strictly enforceable, the pair \((M_1^\sigma, M_2^\sigma)\) is an Abreu-Rubinstein equilibrium with respect to both \(|R|\) and \(||\delta||\). More generally, let \(G = (S_1, S_2, u_1, u_2)\) be a game, let \(\beta_1 : \{1, \ldots, b\} \to S_1\) and \(\beta_2 : \{1, \ldots, b\} \to S_2\) be injective mappings, and let \(N_1, \ldots, N_b \geq 1\) be constants, with \(b \geq 2\). By arguments similar to those given above, the finite action sequence \(\sigma = N_1 \cdot (\beta_1(1), \beta_2(1)), \ldots, N_b \cdot (\beta_1(b), \beta_2(b))\) can be shown to be both 1-irreducible and 2-irreducible, and when \(\sigma\) is strictly enforceable, the pair \((M_1^\sigma, M_2^\sigma)\) can be shown to be an Abreu-Rubinstein equilibrium with respect to \(|R|\) and \(||\delta||\).

We now introduce another technique for establishing lean equilibria. Let \(\sigma\) be a finite action sequence. Define a rotation of \(\sigma = \sigma^1 \ldots \sigma^k\) to be a length \(k\) sequence of the form \(\sigma^n \sigma^{n+1} \ldots \sigma^k \sigma^1 \sigma^2 \ldots \sigma^{n-1}\) for \(n\) with \(1 \leq n \leq k\). Let \(i \in \{1, 2\}\) be one of the players and let \(B \subseteq S_i\). We say that \(\sigma\) is \((i, B)\)-rigid if for every rotation \(\rho\) of \(\sigma\) and every \(n\) with \(1 \leq n < k\), when \(\rho_1^k, \rho_n^k \in B\), it holds that \((u_j(\rho_1) + \cdots + u_j(\rho_n))/n \neq r_j(\sigma)\).

Theorem 5.4 Let \(i \in \{1, 2\}\) and \(B \subseteq S_i\). Let \(\sigma\) be a strictly enforceable finite action sequence of length \(k\), let \(b\) be the number of elements \(\sigma^n\) of \(\sigma\) with \(\sigma^n \in B\), and let \(M_j\) be a \(\sigma\)-machine. If \(\sigma\) is \((i, B)\)-rigid, then for any machine \(N_i\) with \(|\{q \in P_1 \mid \lambda_i(q) \in B\}| < b\) relative to \((N_i, M_j)\), the pair \((N_i, M_j)\) is not a Nash equilibrium.

Proof. Since \(M_j\) is a \(\sigma\)-machine, if \((s')\) is not equal to \(\langle \sigma \rangle\), then \(N_i\) is not a best response to \(M_j\) and \((N_i, M_j)\) is not a Nash equilibrium, so we assume that \((s') = \langle \sigma \rangle\).

Consider the state pair sequence \((q_1^{t+dk} d_{\geq 1})\). By the finiteness of the state sets of the machines, some state pair must occur infinitely often in this sequence. Hence we can find time points \(t_1, t_2\) of the form \(1 + dk\) with \(t_1 < t_2\) such that \(q_1^{t_1} = q_2^{t_2}\). The sequence \(q_1^{t_1}, q_1^{t_1+1}, \ldots, q_2^{t_2}\) determines a cycle

\[
C = q_1^{t_1} \xrightarrow{\lambda_1} q_1^{t_1+1} \xrightarrow{\lambda_2} \cdots \xrightarrow{\lambda_{t_2}} q_1^{t_2}
\]

in \(N_i\). By our choice of \(t_1, t_2\) and the assumption that \((s') = \langle \sigma \rangle\), we have \(r_j(C) = r_j(N_i, M_2^\sigma) = r_j(\sigma)\).

By the hypothesis on \(B\) and \(b\), among the sequence of states \(q_1^{t_1}, q_1^{t_1+1}, \ldots, q_1^{t_1+(k-1)}\) there must be two indices \(t' < t''\) with \(q_1^{t'} = q_1^{t''}\) and \(\lambda(q_1^{t'}) \in B\). The sequence of states \(q_1^{t'}, q_1^{t'+1}, \ldots, q_1^{t''}\) determine a subcycle \(C'\) of \(C\) which, by \((i, B)\)-rigidity, has \(r_j(C') \neq r_j(C)\). We can view \(C\) as the concatenation of the subcycle \(C'\) with another subcycle \(C''\). The value \(r_j(C)\) is the convex combination of \(r_j(C')\) and \(r_j(C'')\); since \(r_j(C') \neq r_j(C)\), we have \(r_j(C'') \neq r_j(C)\). It must hold that one of the values \(r_j(C'), r_j(C'')\) is strictly greater than \(r_j(C)\). This implies that \((N_i, M_j)\) is not a Nash equilibrium, as player \(j\) could strictly improve his payoff by deviating. □
Example 5.5 Consider, in the Prisoner’s Dilemma, a strictly enforceable payoff \(w \) that is the convex combination of \(u(C, C) \) and \(u(C, D) \). We can write \(w = (N_{CC}/N)u(C, C) + (N_{CD}/N)u(C, D) \) where \(N_{CC}, N_{CD} \) are integers, and \(N = N_{CC} + N_{CD} \). Since the payoff \(w \) is strictly enforceable, we have \(N_{CC} > 0 \). We can assume that \(N_{CC}, N_{CD} \) do not share any prime factors, for if they do share one, we can divide both of them by the factor while preserving the value of \(w \). Note that this assumption implies that \(N_{CC} \) and \(N \) do not share any prime factors.

Let \(\sigma = N_{CC} \cdot (C, C), N_{CD} \cdot (C, D) \). We will show that \((M^\sigma_1, M^\sigma_2) \) is a lean equilibrium with respect to \(|R| \) and \(||\delta|| \). Note that the first player could preserve payoff but reduce complexity via a machine with one state that always outputs \(C \), a machine that has \(|R| = 1 \) and \(||\delta|| = 2 \). Hence this pair is not an Abreu-Rubinstein equilibrium with respect to \(|R| \) when \(N \geq 2 \), nor with respect to \(||\delta|| \) when \(N \geq 3 \). Along these lines, observe that no two \(\equiv_s \)-equivalence classes (for \(\langle \sigma \rangle \)) are 1-incompatible, since in the sequence \(\sigma \) player 1 always plays the same action.

We show that \(\sigma \) is \((1, \{C\}) \)-rigid. We show this by contradiction; let \(\rho \) be a rotation of \(\sigma \) and let \(n \) be such that \(1 \leq n < N \) and \((u_2(\rho_1) + \cdots + u_2(\rho_n))/n = w \). This implies that for integers \(n_{CC}, n_{CD} \) with \(0 \leq n_{CC} \leq n, 0 \leq n_{CD} \leq n \), and \(N_{CC} + n_{CD} = n \), we have \((n_{CC}/n)u(C, C) + (n_{CD}/n)u(C, D) = w \). Since \(u(C, C) \neq u(C, D) \), we have \(n_{CC}/n = N_{CC}/N \), implying that \(N_{CC} = n_{CC}N \). This implies that \(N > 1 \) divides \(N_{CC} \). Since \(N \) and \(N_{CC} \) do not share any prime factors, this implies that \(N \) divides \(n \), a contradiction to \(n < N \). We have thus shown that \(\sigma \) is \((1, \{C\}) \)-rigid.

Consider any machine \(N_1 \) with \(|R_1| < N \) or \(||\delta_1|| < N \). Such a machine must have \(|P_1| < N \), and hence by Theorem 5.4, the pair \((N_1, M^\sigma_2) \) is not a Nash equilibrium. On the other hand, it is straightforward to verify that the sequence \(\sigma \) is 2-incompatible. Thus, for any machine \(N_2 \) with \(|R_2| < N \) or \(||\delta_2|| < N \), we have \(|P_2| < N \) and by Theorem 5.2, the machine \(N_2 \) is not a best response to \(M^\sigma_1 \). We conclude that the pair \((M^\sigma_1, M^\sigma_2) \) is a lean equilibrium with respect to \(|R| \) and \(||\delta|| \).

Example 5.6 Consider, in the Prisoner’s Dilemma, a finite action sequence of the form \(\sigma = k_{CD} \cdot (C, D), k_{DD} \cdot (D, D), k_{DC} \cdot (D, C) \), where \(k_{CD}, k_{DD}, k_{DC} \geq 1 \) and \(\sigma \) is strongly enforceable. We use \(k \) to denote the length \(k_{CD} + k_{DD} + k_{DC} \) of \(\sigma \). We show that the pair \((M^\sigma_1, M^\sigma_2) \) is a lean equilibrium with respect to \(|R| \) and \(||\delta|| \).

Let \(N_1 \) be a machine for player 1. Suppose that \(N_1 \) is a best response to \(M^\sigma_2 \). Then the pair \((N_1, M^\sigma_2) \) produces the action sequence \(\langle s^t \rangle = \langle \sigma \rangle \). We show that if \(N_1 \) has \(|R_1| < k \) or \(||\delta_1|| < k \), then the pair \((N_1, M^\sigma_2) \) is not a Nash equilibrium.

Let \(Q_C \) denote the states of \(N_1 \) that output \(C \), and let \(Q_D \) denote the normal states of \(N_1 \) that output \(D \). It is straightforward to verify that for any two distinct \(t_1, t_2 \in \{1, \ldots, k_{CD}\} \), the classes \([t_1], [t_2] \) are 1-incompatible, and hence, we have \(|Q_C| \geq k_{CD} \) by Proposition 5.1. We next show that \(\sigma \) is \((1, \{D\}) \)-rigid. Consider any rotation \(\rho \) of \(\sigma \) and a value \(n \) with \(1 \leq n < k \) and \(\rho_1^n = \rho_1^{n+1} = D \); in one of the sequences \(\rho' = \rho_1 \cdots \rho_n, \rho'' = \rho_{n+1} \cdots \rho_k \), player 1 uses only the action \(D \) and hence one of the values \(r_2(\rho'), r_2(\rho'') \) is strictly below 0. On the other hand, \(r_2(\sigma) \) is strictly above 0 and can be written as the convex combination of \(r_2(\rho') \) and \(r_2(\rho'') \), and so neither of \(r_2(\rho'), r_2(\rho'') \) is equal to \(r_2(\sigma) \), and we have that \(\sigma \) is \((1, \{D\}) \)-rigid. Now suppose that \(N_1 \) has \(|R_1| < k \) or \(||\delta_1|| < k \). It follows that \(|P_1| < k \); since \(|Q_C| \geq k_{CD} \), this implies that \(|Q_D| < k_{DD} + k_{DC} \). By Theorem 5.4, we have that \((N_1, M^\sigma_2) \) is not a Nash equilibrium.

In a similar way, it can be shown that for any best response \(N_2 \) to \(M^\sigma_1 \), if \(N_2 \) has \(|R_2| < k \) or \(||\delta_2|| < k \), then the pair \((M^\sigma_1, N_2) \) is not a Nash equilibrium. We thus have that \((M^\sigma_1, M^\sigma_2) \) is a lean equilibrium with respect to \(|R| \) and \(||\delta|| \).

So far, our discussion has focused on the complexity measures \(|R| \) and \(||\delta|| \). We now turn our attention to the complexity measure \(|Q| \).
Example 5.7 As in the previous example, let \(\sigma \) be a finite action sequence of the form \(\sigma = k_{CD} \cdot (C, D), k_{DD} \cdot (D, D), k_{DC} \cdot (D, C) \) for the Prisoner’s Dilemma, where \(k_{CD}, k_{DD}, k_{DC} \geq 1 \) and \(\sigma \) is strictly enforceable; let \(k \) denote the length \(k_{CD} + k_{DD} + k_{DC} \) of \(\sigma \). We give a pair of machines \((M_1, M_2)\) where each machine has \(k \) states that is a lean equilibrium with respect to \(|Q|\).

We define the machines \(M_1, M_2\) as follows. Each machine has state set \(Q_1 = Q_2 = \{1, \ldots, k\}\), initial states \(q_1 = q_2 = 1\), and has output function defined by \(\lambda_i(n) = \sigma^n_i\) for all \(n \in Q_i\). For the states \(n \in Q_i\) where \(\sigma^n_i = D\), we define \(\delta_i(n, C) = \delta_i(n, D) = n + 1\), where \(k + 1\) is understood to represent the state 1. For the states \(n \in Q_i\) where \(\sigma^n_i = C\), we define \(\delta_i(n, C) = n + 1\) and \(\delta_i(n, D) = q_{n+1}^i\) where \(q^i_1\) is the first state where \(\sigma^n_i = C\), that is, \(q_1^i = k_{CD} + k_{DD} + 1\) and \(q_2^i = 1\). The states \(q^n_i\) can be thought of as “internal threat” states. This construction is similar to that of [Page 1276, Case B].

We now observe that in each machine \(M_i\), the simple cycle \(C_i\) that maximizes payoff to the other player \(j\) is the cycle naturally corresponding to \(\sigma\), that is, \(1 \rightarrow 2 \rightarrow \cdots \rightarrow k \rightarrow 1\); this cycle has \(r_j(C_i) = r_j(\sigma)\). This is clearly the unique payoff-maximizing simple cycle of length \(k\). Also, in all shorter simple cycles, player \(i\) only defects, yielding player \(j\) a payoff strictly less than 0.

Let \(N_i\) be a best response to \(M_j\). By the observation in the previous paragraph, the sequence \((q^i_j)\) must, after some finite amount of time, be equal to the sequence 1, \ldots, \(k\) repeated infinitely. It is hence possible to modify the machine \(N_i\), by changing its initial state to a state that is played against the state \(q_1^i = 1\) in the mentioned infinite repetition, to obtain a machine \(N_i'\) that, along with \(M_j\), generates the sequence \((\sigma)\), and has the same number of states as \(N_i\). Now, if \(N_i'\) and \(N_i\) have strictly fewer than \(k\) states, then against \(M_j\) they have strictly fewer than \(k\) played states, and then by arguing as in Example 5.6, the pair \((N_i', M_j)\) is not a Nash equilibrium, from which it follows that the pair \((N_i, M_j)\) is not a Nash equilibrium. We conclude that \((M_1, M_2)\) is a lean equilibrium with respect to \(|Q|\). \(\square\)

We now establish a theorem that will help us to establish lean equilibrium results with respect to \(|Q|\). Let us say that \(\sigma\) is \(i\)-foolable if there exists a rotation \(\rho = \rho^1 \cdots \rho^k\) of \(\sigma\) and an action \(s' \in S_j\) such that for all \(n\) with \(1 \leq n \leq k\), it holds that \(r_j(\rho^n \rho^{n+1} \cdots \rho^{k-1} \rho^1) > r_j(\sigma)\), where \(\rho^i\) is the pair with player \(i\) action equal to \(\rho^i\) and player \(j\) action equal to \(s'\).

Theorem 5.8 Let \(\sigma\) be a strictly enforceable finite action sequence, and let \(M_j\) be a \(\sigma\)-machine. If \(\sigma\) is \(i\)-foolable (via \(\rho\)), and \(N_i\) is a machine such that in \((N_i, M_j)\) it holds that \(P_i = Q_i\) (that is, all states in \(N_i\) are played), then \((N_i, M_j)\) is not a Nash equilibrium.

Proof. If \(N_i\) is not a best response to \(M_j\), we are done, so we assume that \(N_i\) is a best response to \(M_j\), in which case we have \((s') = \langle \sigma \rangle\). Let \(q_i\) be any state of \(Q_i\). We claim that there is a path \(P\) in \(N_i\) from \(q_i\) to a state \(q_i' \in Q_i\) such that \(r_j(P) > r_j(\sigma)\). This suffices, since it implies that \(M_j\) is not a best response to \(N_i\).

We reason as follows. By hypothesis, the state \(q_i\) is played and hence there exists \(t \geq 1\) with \(q_t = q_i'\). Since \((s') = \langle \sigma \rangle\), there exists \(n\) with \(1 \leq n \leq k\) where \(\rho^n \rho^{n+1} \cdots \rho^{k-1} \rho^1 = s'^1 \cdots s'^{t+k-n}\). The desired path \(P\) starts at \(q_i\) and has actions \(\rho^n \rho^{n+1} \cdots \rho^{k-1} s'\), where \(s' \in S_j\) is the action from the definition of \(i\)-foolable; by that definition, we have \(r_j(P) > r_j(\sigma)\). \(\square\)

Example 5.9 We return to the class of sequences considered in our first example, Example 5.3. Let \(N_C, N_D \geq 1\) be constants, and consider the finite action sequence \(\sigma = N_C \cdot (C, C), N_D \cdot (D, D)\) in the Prisoner’s Dilemma; the sequence \(\sigma\) is strictly enforceable, and has length \(k = N_C + N_D\). We show that the pair \((M_1^\sigma, M_2^\sigma)\) is a lean equilibrium with respect to \(|Q|\). Note that this pair is not an Abreu-Rubinstein equilibrium with respect to \(|Q|\), since each of the machines has a threat state that is never played, and hence each of the machines could be simplified without sacrificing payoff by removing this threat state.
To show that the described pair is a lean equilibrium, we show that, for each player i, when N_i is a best response to M_j^q with k or fewer states, the pair (N_i, M_j^q) is not a Nash equilibrium. By the argumentation in Example 5.5 any such best response N_i must have at least k played states. Hence in such a best response N_i, all states are played; by Theorem 5.8 it thus suffices to show that the sequence σ is i-foolable. It is straightforward to verify that σ is i-foolable via the rotation $\rho = N_D \cdot (D, D), N_C \cdot (C, C)$ and the action $D \in S_j$.

\textbf{Example 5.10} We reconsider the sequences treated in Example 5.5. Let $\sigma \in Q$ equilibrium with respect to σ where $N \in S_j$. Let $N \in S_j$ such that $N \in S_j$, for if this intersection contains two distinct elements, $q \in S_j$. Then, for each $q \in S_j$, the state q appears infinitely often in the sequence (q^j), that is, such that there exists $i \in \{1, 2\}$ such that $q_i^u \in \{q_i^t \mid t > u\}$. Then, for each $i \in \{1, 2\}$, the state q_i^u appears infinitely often in the sequence (q_i^t).

\textbf{Proof.} We prove this by contradiction. Suppose one or both of the states q_i^u, q_j^u appears finitely often in the respective sequence (q_i^t). Let $T_i(q)$ denote the set $\{t \mid q = q_i^t\}$, that is, the points in time where player i plays state q. Observe that $T_i(q_i^u) \cap T_2(q_2^u) = \{u\}$, for if this intersection contains two distinct elements, there must be infinitely many points t such that $q_i^t = q_i^u$.

6 Structure of lean equilibria

In this section, we present results describing the structure of lean equilibria in machine games $G_m = (M_1, M_2, r_1, r_2)$ with respect to the complexity measures $|R|$ and $||\delta||$. Our first result demonstrates that the sequence (q_i^t) begins with a sequence of state pairs where each state is used only once, followed by a state pair where each state is used infinitely often.

\textbf{Lemma 6.1} (1-∞ Lemma) Suppose that (M_1, M_2) is a lean equilibrium of G_m with respect to one of the complexity measures $|R|$, $||\delta||$ having a strictly enforceable payoff profile. Let $u \geq 1$ be the minimum value such that one of the states q_i^u, q_j^u is used later in the sequence (q_i^t), that is, such that there exists $i \in \{1, 2\}$ such that $q_i^u \in \{q_i^t \mid t > u\}$. Then, for each $i \in \{1, 2\}$, the state q_i^u appears infinitely often in the sequence (q_i^t).

\textbf{Proof.} We prove this by contradiction. Suppose one or both of the states q_i^u, q_j^u appears finitely often in the respective sequence (q_i^t). Let $T_i(q)$ denote the set $\{t \mid q = q_i^t\}$, that is, the points in time where player i plays state q. Observe that $T_i(q_i^u) \cap T_2(q_2^u) = \{u\}$, for if this intersection contains two distinct elements, there must be infinitely many points t such that $q_i^t = q_i^u$. 12
We claim that the players can be labelled as \(i', i'' \) in such a way that: (1) \(T_{i'}(q_u^v) \) is finite, and (2) there exists \(v \in T_{i''}(q_u^v) \) such that \(v > \max T_{i'}(q_u^v) \).

We establish this claim as follows. If both sets \(T_1(q_1^v), T_2(q_2^v) \) are finite, set \(v = \max(T_1(q_1^v) \cup T_2(q_2^v)) \) and let \(i'' \) be the unique element in \(\{1, 2\} \) such that \(v \in T_{i''}(q_u^v) \). If one of the sets \(T_1(q_1^v), T_2(q_2^v) \) is finite and the other is infinite, let \(i' \) be the player in \(\{1, 2\} \) such that \(T_{i'}(q_u^v) \) is finite; since \(T_{i''}(q_u^v) \) is infinite, it is possible to select a value \(v \) satisfying condition (2).

For the sake of notation, we now assume that \(i' = 1 \) and \(i'' = 2 \). We want to show that \((M_1, M_2)\) is not a lean equilibrium. If \((M_1, M_2)\) is not a Nash equilibrium, we are done, so we assume that it is. Starting from \(M_1 \), we define a new machine \(M'_1 \) as follows. We set \(\delta'_1(q_1^{u-1}, s_{u-1}^v) = q_1^v \), or, in the case that \(u = 1 \), we set the initial state of \(M'_1 \) to be \(q_1^v \). We then have that

\[
q_1^1 \overset{s_1^1}{\rightarrow} q_1^2 \overset{s_2^2}{\rightarrow} \cdots q_1^{u-1} \overset{s_{u-1}^u}{\rightarrow} q_1^v
\]

is a path in \(M'_1 \). We modify \(M'_1 \) so that, other than the transitions in this path, there are no transitions to the states \(q_1^1, \ldots, q_1^{u-1} \); we reroute the transitions to these states to a threat state. We also eliminate the state \(q_1^v \), rerouting the transitions to it to a threat state. The state sequence induced by the machine pair \((M'_1, M_2)\) is \(q_1^1, q_1^2, \ldots, q_1^{u-1}, q_v, q_v+1, q_v+2, \ldots \) and hence the payoffs to each of the two players is the same as in \((M_1, M_2)\).

We show that \((M'_1, M_2)\) is a Nash equilibrium by arguing that player 2 cannot obtain a strictly better payoff. Let \(C \) be any cycle in \(M'_1 \). None of the states \(q_1^1, \ldots, q_1^{u-1} \) can appear in \(C \); since all modified transitions involved these states, the cycle \(C \) is also a cycle of \(M_1 \). As \(M_2 \) was a best response to \(M_1 \), it is a best response to \(M'_1 \).

We now need only argue that \(M'_1 \) is simpler than \(M_1 \). In \((M_1, M_2)\), the state \(q_1^v \) is a played state of \(M_1 \), so by Proposition [4.4] we have \(|R'_1| < |R_1|\). Also, the state \(q_1^v \) contributes at least 1 to the value \(||\delta'_1||\), a contribution not present in the calculation of \(||\delta_1||\), so \(||\delta'_1|| < ||\delta_1||\). □

Lemma 6.2 Suppose that \((M_1, M_2)\) is a lean equilibrium of \(G_m \) with respect to one of the complexity measures \(|R|\), \(||\delta||\) having a strictly enforceable payoff profile, and suppose that \(\equiv_i \) is contained in \(\equiv_s \) (for some \(i \in \{1, 2\} \)). Then, the equivalence relations \(\equiv_s, \equiv_i \) are equal.

Proof. We prove this by contradiction. Suppose there are two values \(t'' < t' \) such that \(t'' \equiv_s t' \) but \(t'' \not\equiv_i t' \). Without loss of generality, we assume that \(i = 1 \), and so we have \(q_1^{t''} \neq q_1^{t'} \). We want to show that \((M_1, M_2)\) is not a lean equilibrium; if \((M_1, M_2)\) is not a Nash equilibrium, we are done, so we assume that it is.

Define \(M'_1 \) to be the machine equal to \(M_1 \), but where the state \(q_1^{t''} \) is eliminated and all transitions to \(q_1^{t''} \) from states in \(R_1 \setminus \{q_1^{t''}\} \) are changed to transitions to \(q_1^v \).

The machine \(M'_1 \) is simpler than \(M_1 \) with respect to the complexity measure \(|R|\), as it has one fewer played state than \(M_1 \) (see Proposition [4.4]). It is also simpler than \(M_1 \) with respect to \(||\delta|||\): the number of normal transitions out of states in \(R_1' \) is equal to that of \(R_1 \), but the state \(q_1^{t''} \) (in \(M_1 \)) has at least one normal transition, as it is played in \((M_1, M_2)\).

We claim that \((M'_1, M_2)\) is a Nash equilibrium of \(G_m \), which suffices. Define \(f([t]_s) \) as \(\{q_1^u \in Q_1 \mid u \in [t]_s\} \). Let \((g_1'), (s')\) be the sequences induced by the machines \((M'_1, M_2)\). We prove by induction that for all \(t \geq 1 \), it holds that \(q_1^t = f([t]_s) \), \(q_1^2 = q_1^3 \), and \(g_1' = s' \). The base case is clear, so assume that the claim holds on \(t \geq 1 \). Then \(g_1'^t = q_1^t \) for some \(t' \equiv s_1 \). As \(s_1' = s_2' = s_3' \), we have \(g_1'^{t' + 1} = \delta_1(q_1^t, s_1') = \delta_1(q_1^t, s_2') = q_1^t + 1 \).

This implies that \(g_1'^{t + 1} = f([t + 1]_s) = f([t + 1]_s) \). As \(\lambda_1(q_1^t) = \lambda_1(q_1^t) = \lambda_1(q_1^t) = s_1' \), we have \(g_1'^{t + 1} = g_1'^{t + 1} \) and hence \(s'^{t + 1} = s' + 1 \).
Thus, to show that \((M'_1, M_2)\) is a Nash equilibrium of \(G_m\), it suffices to show that \(M_2\) cannot deviate to obtain a strictly higher payoff. Suppose that \(p_1 \overset{a_1}{\rightarrow} p_2 \overset{a_2}{\rightarrow} \cdots \overset{a_m}{\rightarrow} p_1\) is a \(M'_1\)-cycle \(C\) giving \(M_2\) a payoff \(r > r_2(M_1, M_2) = r_2(M'_1, M_2)\). By the choice of the values \(t'', t'\), there is a path \(P\) in \(M'_1\) from \(q''_{1_i}\) to \(q''_{1_j}\) whose \(M_2\)-payoff is \(r_2(M_1, M_2)\). For each state-action pair \((p_j, a_j)\) in the cycle \(C\) with \(\delta_j(p_j, a_j) = q''_{1_i}\) (and hence \(\delta'_j(p_j, a_j) = q''_{1_j}\)), replace \(p_{j+1} = q''_{1_i}\) with the path \(P\). In this way, we obtain a \(M'_1\)-cycle whose payoff is also strictly greater than \(r_2(M_1, M_2) = r_2(M'_1, M_2)\), contradicting that \((M_1, M_2)\) is a Nash equilibrium of \(G_m\). \(\square\)

With respect to a machine pair \((M_1, M_2)\), we let \(P_i\) denote the set of played states of \(M_i\).

Lemma 6.3 Suppose that \((M_1, M_2)\) has a strictly enforceable payoff profile. If \((M_1, M_2)\) is a lean equilibrium with respect to \(|R|\), then \(|R_1| = |R_2| = |P_1| = |P_2|\), and if \((M_1, M_2)\) is a Nash equilibrium with respect to \(|\delta|\), then \(|\delta_1| = |\delta_2| = |P_1| = |P_2|\).

Proof. We claim that, starting from a Nash equilibrium \((M_1, M_2)\) with a strictly enforceable payoff profile, player \(j\) has a best response \(M'_j\) to \(M_i\), where \((M'_j, M_j)\) is a Nash equilibrium such that \(|R_j| \leq |P_i|\) and \(|\delta_j| \leq |P_i|\). This implies, in the case of a lean equilibrium with respect to \(|R_j|\), that \(|R_2| \leq |P_1| \leq |R_1| \leq |P_2| \leq |R_2|\), and similarly, in the case of a Nash equilibrium with respect to \(|\delta_j|\), that \(|P_2| \leq |\delta_2| \leq |P_1| \leq |\delta_1| \leq |P_2|\). The claim is argued as follows. The payoffs \(r_1(M_1, M_2), r_2(M_1, M_2)\) are equal to the payoffs to the two players of a cycle \(C\) in machine \(M_i\). The cycle \(C\) is not necessarily a simple cycle, but if it is not simple, it can be viewed as the concatenation of two shorter cycles. Each of the two shorter cycles must give the same payoff to player \(j\) (otherwise \((M_1, M_2)\) would not be a Nash equilibrium, as player \(j\) could profitably deviate). We choose the cycle out of the two shorter cycles that gives the higher payoff to player \(i\). We then iterate this process until we obtain a simple cycle \(C'\). The simple cycle has \(r_j(C') = r_j(C)\) and \(r_i(C') \geq r_i(C)\). It is possible to implement a player \(j\) machine \(M'_j\) that repeatedly walks the cycle \(C'\) in \(M_i\) satisfying the stated inequalities: this is done by taking a machine that simply walks a shortest path from the initial state of \(M_i\) to a state in the cycle \(C'\), and then repeatedly walks the cycle \(C'\). The pair \((M'_j, M_i)\) is a Nash equilibrium: the machine \(M'_j\) obtains the same payoff as the machine \(M'_j\), and the machine \(M_i\) could only profitably deviate by playing a threat state; but since his payoff is greater than or equal to his payoff in \((M_j, M_i)\), this is not beneficial as his payoff is strictly above his minimax payoff. \(\square\)

We now present our main structure theorem. This theorem not only describes the structure of machines at lean equilibrium with respect to the measure \(|\delta|\), but shows that their structure can be derived solely from the equivalence relation \(\equiv_s\), and hence just from the action sequence \((s^i)\); this implies that a third-party observer that only views the resulting action sequence can infer the structure of the machines. In order to give the statement, we introduce the following notion. Define a rho-machine to be a machine \(M\) where each normal state \(q\) reachable from the initial state has exactly one outgoing transition to a normal state; denote this successor state by \(s(q)\). We call the set of states occurring finitely often in the sequence \(q^1, s(q^1), s^2(q^1), \ldots\) the tail of the machine, and the other states (those occurring infinitely often) the head of the machine.

Theorem 6.4 Suppose that \((M_1, M_2)\) is a lean equilibrium of \(G_m\) with respect to the complexity measure \(|\delta|\) having a strictly enforceable payoff profile. Then, the equivalence relations \(\equiv_s\), \(\equiv_q\), \(\equiv_1\), \(\equiv_2\) are all equal, and for each \(i \in \{1, 2\}\), the machine \(M_i\) is a rho-machine having exactly one state \(q_i([t]_s)\) that is played at all time points \([t]_s\) for each equivalence class \([t]_s\) of \(\equiv_s\), whose structure is given by \(\delta_i(q_i([t]_s), s_{j^i}) = q_i([t + 1]_s)\) for all \(t \geq 1\).

Proof. By Lemma 6.3, in each of the machines \(M_1, M_2\), each played state has exactly one outgoing normal transition which is to another played state. Thus, each of the machines is a rho-machine. By Lemma 6.1
the machines have the same tail size and the same head size, and thus the equivalence relations \(\equiv_1\) and \(\equiv_2\) are the same, from which it follows (by definition of \(\equiv_q\)) that the equivalence relations \(\equiv_1\), \(\equiv_2\), and \(\equiv_q\) are all the same. Since \(\equiv_q\) is always contained in \(\equiv_s\), we can invoke Lemma 6.2 to obtain that \(\equiv_1\) and \(\equiv_2\) are each equal to \(\equiv_s\), and we have that all four of the equivalence relations are equal.

For each \(i \in \{1, 2\}\), by the equivalence of \(\equiv_i\) and \(\equiv_s\), the machine \(M_i\) has one played state for each equivalence class of \(\equiv_s\). As already noted, each played state has exactly one outgoing normal transition which is to another played state, and so the machine must be a rho-machine with the described structure. \(\square\)

7 Discussion

We introduced and studied the notion of lean equilibrium, a particular form of Nash equilibrium where strategies cannot be further simplified according to a cautious simplification procedure: a player simplifies only if post-simplification, the strategy vector will be a Nash equilibrium. It is possible to consider similar equilibrium notions relative to even more cautious simplification procedures: for instance, a player might anticipate simplifications of other players, and only want to simplify if, in addition to preserving Nash equilibrium, he will not lose payoff if other players simplify following his simplification. A variant of this idea would have a player simplifying if he will not lose payoff in the case that other players change best response following his simplification. We leave the investigation of these equilibrium notions to future work.

References

